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Abstract

It is notoriously difficult to implement end-
to-end speech translation (E2E-ST) model be-
cause of the task complexity and data scarcity.
Existing techniques often attempt to carry out
implicit knowledge transfer from machine
translation (MT) to ST model by imposing var-
ious constraints. However, in this transfer sce-
nario, a significant problem is that the perfor-
mance of the MT will drop significantly and
the final transfer effect is also restricted. In this
article, we recommend Fine and Coarse Gran-
ularity Contrastive Learning (FCGCL), which
conduct explicit knowledge transfer from MT
to ST model. Specially, we ensure through
multi granularity contrastive learning that in-
puts with similar semantic between different
modalities are encoded closely in the shared
semantic space while inputs with different se-
mantics are kept apart. Experiments on the
MuST-C datasets on all 8 languages and further
analysis show that our method can effectively
improve the E2E-ST performance and achieves
an average BLEU of 29.0 1.

1 Introduction

End-to-end (E2E) speech-to-text translation (ST)
(Bérard et al., 2018; Sperber et al., 2019; Liu et al.,
2019; Dong et al., 2021; Liu et al., 2020b; Du et al.,
2021; Fang et al., 2022; Ye et al., 2021; Xu et al.,
2021; Han et al., 2021) is the task of translating
a source-language audio directly to a foreign lan-
guage text without any intermediate outputs. Differ-
ent from the traditional cascade method (Ney, 1999;
Mathias and Byrne, 2006; Sperber et al., 2017;
Lam et al., 2021; Bahar et al., 2021; Dalmia et al.,
2021) which decomposes ST into two sub-tasks
-automatic speech recognition (ASR) for transcrip-
tion and machine translation (MT) for translation,
E2E-ST jointly handles them in a single neural

* Corresponding author.
1https://github.com/zhhao/fcgcl

network. This endows E2E-ST with special advan-
tages, such as lower latency, less error propagation,
and fewer parameters.

However, E2E-ST is a cross-modal translation
task, and it is non-trivial to train such a model well.
Speech is more complicated and finer granularity
than text, making it more difficult to extract rep-
resentations containing rich semantic information.
Such modal gap between speech and text results in
the performance of ST model is usually inferior to
the corresponding MT model (Liu et al., 2020b). To
overcome this problem, existing techniques often
attempt to carry out implicit knowledge transfer
by imposing various constraints (Liu et al., 2020b;
Du et al., 2021; Fang et al., 2022; Han et al., 2021).
In this transfer scenario, a significant problem is
that the performance of the MT as a constraint will
drop significantly and the final transfer effect is
also restricted.

In this paper, we propose a cross-modal multi
granularity contrastive learning method to make
explicit knowledge transfer from MT to ST model.
The embedding from a ST model encoder can be re-
garded as frame-level representation of fine granu-
larity. Correspondingly, the mean vector of embed-
dings is termed as the coarse granularity sentence-
level representation. The same as ST model, there
are two types of representations with different
granularities obtaining from the MT model en-
coder. We perform fine and coarse granularity
contrastive learning (FCGCL) on both sentence-
level and frame-level to provide comprehensive
guidance for the extraction of speech representa-
tions to bridge the modal gap. The MT model is
pretrained and we frozen its parameters to avoid
the performance drop.

Moreover, another problem needs to be solved is
the representation degeneration (Gao et al., 2019;
Wang et al., 2019; Ethayarajh, 2019) suffered by
the pretrained MT model, which is also called
anisotropy. In this paper we take a simple whiten-
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ing approach (Su et al., 2021; Huang et al., 2021)
to alleviate representation degeneration problem
by transforming the representation into a standard
normal distribution, which satisfies isotropy. We
conduct experiments on the MuST-C benchmark
on all 8 language pairs. The experiment results
and detailed analysis verify the effectiveness of our
proposed method.

2 Method

In this section we first analysis the basic problem
formulation of E2E-ST and introduce the overall
framework of FCGCL. Then the coarse granularity
contrastive learning and the whitening operation to
alleviate the representation degeneration problem
are stated in Section 2.3. Section 2.4 details the
fine granularity contrastive learning and the max-
imum similarity method which is used to find the
corresponding text token for each speech frame
in an unsupervised manner. Finally, we describe
knowledge distillation in Section 2.5.

2.1 Problem Formulation

The speech translation corpus usually contains
speech-transcription-translation triples, denoted as
D = {(x(n), y(n), z(n))}Nn=1, where x represents
audio, y is the translation in target language and
z is the corresponding transcription in the source
language. E2E-ST strives to generate translated
sequences y without generating intermediate tran-
scription z, and the standard training objective is to
optimize the maximum likelihood estimation loss
on the training set:

LST (θ) = −
∑

(x,y)∈D
log p(y|x) (1)

2.2 Model Architecture

The overall structure of FCGCL is shown in Fig-
ure 1, including an E2E-ST model, a pretrained
MT model, and a contrastive learning module. The
encoder and decoder in ST and MT are consis-
tent with the original Transformer (Vaswani et al.,
2017). Following the previous works (Fang et al.,
2022; Ye et al., 2021; Han et al., 2021), we use a
pretrained Wav2vec2.0 (Baevski et al., 2020) with-
out finetune to extract speech representations.

2.3 Coarse Granularity Contrastive Learning

Given N speech-transcription pairs
{(x(n), z(n))}Nn=1, the encoded representa-

tions are denoted as {(h(n)x , h
(n)
z )}Nn=1, where

h
(n)
x ∈ Tx × d and h

(n)
z ∈ Tz × d are the speech

and text representations of the n-th sample from
ST encoder and MT encoder, respectively. Tx and
Tz are the lengths of the speech frame and text
token sequences, respectively. We average the
encoded representation over the time dimension
to get the coarse granularity representations. The
text representation is further whitened to relieve
the representation degeneration problem.
Whitening Affected by word frequency, the word
representations space finally learned by the MT
model encoder is squeezed into a cone, which is
anisotropy. The sentence embedding - as average
of context embeddings from last encoder layer -
suffer from the same issues, thus the sentence em-
bedding space is semantically non-smoothing and
poorly defined in some areas (Li et al., 2020a). This
will lead to the phenomenon that some samples are
not similar to the anchor sample, but the similar-
ity calculated by metrics such cosine similarity is
relatively large. We address the problem by a sim-
ple linear transformation called whitening. The
whitening method (Su et al., 2021; Huang et al.,
2021) will transform the sentence embeddings into
the standard normal distribution, which satisfies
isotropy. The isotropic sentence embedding space
ensures that the cosine similarity can correctly mea-
sure sample similarity.
Contrastive loss In order to ensure the consistency
of negative sample representation, only text sam-
ples are regarded as negative samples and other
speech samples in batch are not considered as neg-
ative samples. We denote the representation to
compute the contrastive loss as {(s(n)x , s

(n)
z )}Nn=1,

where s
(i)
x = AveragePooling(h

(i)
x ), s

(i)
z =

Whitening(AveragePooling(h
(i)
z )), s(i)x ∈ 1 ×

d, s
(i)
z ∈ 1 × d. In order to decouple the relation-

ship between the number of negative samples and
the batch size, we set up a we set up a First-In-First-
Out (FIFO) queue (He et al., 2020) to store negative
samples in previous mini-batch. The contrastive
loss for coarse granularity is as follows:

Lcoarse

= − 1
N

N∑
i=1

log esim(six·siz/τ)
∑N

j=1 e
sim(six·sjz/τ)+

∑K
k=1 e

sim(six·skz/τ)

(2)
where sim(·) is the cosine similarity function, τ is
the temperature and K is the number of negative
samples in queue.
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Figure 1: Overview of our proposed method. The grey modules in the figure indicate that the parameters are no
longer updated during training..

2.4 Fine Granularity Contrastive Learning

The above sentence-level contrastive loss is suf-
ficient for classification tasks. However, for the
sequence-to-sequence generative tasks like ST, the
semantic of each small unit must be accurate which
means the representation of each frame learned
from sentence level contrastive learning may be
sub-optimal. Thus, we further recommend fine
granularity contrastive learning to find the optimal
token-level representation for the decoder.

The j-th frame representation of the i-th speech
sample is denoted as h(i)x,j . For now, let us assume

that we can easily find the positive sample pos
(i)
x,j

for the anchor sample h
(i)
x,j . The setting of negative

samples is the same as that in Section 2.3. Then
the fine granularity contrastive loss is defined as:

Lfine

= − 1
N

N∑
i=1

Tx∑
j=1

log e
sim(h

(i)
x,j

·pos(i)
x,j

/τ)

e
sim(h

(i)
x,j

·pos(i)
x,j

/τ)
+
∑K

k=1,k ̸=i
e
sim(h

(i)
x,j

·skz/τ)

(3)

where K is the number of negative samples, Tx

is the length of frame-level speech and N is the
number of speech.
Obtaining positive samples Given speech repre-
sentation h

(i)
x and the corresponding text represen-

tation h
(i)
z , we calculate the cosine similarity ma-

trix ∆ ∈ Tx×Tz , in which each element means the
cosine similarity between corresponding speech
frame and text token. The matching rule is that
each feature vector in speech is matched to the
most similar feature vector in transcription. The
positive sample selection process can be formulated

as:

pos
(i)
x,j = {h(i)z,m| argmax sim(h

(i)
x,j · h

(i)
z,m)

m

,

m = 1, 2, · · ·Tz}
(4)

where h
(i)
x,j is the j-th frame representation of the i-

th speech, h(i)z,m is the m-th token representation of
the corresponding transcription. The entire match-
ing process can be quickly calculated through ma-
trix with a small amount of calculation. Because
of the unsupervised paradigm, no additional align-
ment model is required. In addition, whitening
is not used when calculating the similarity matrix.
This is because the transform matrix cannot be esti-
mated for some input by SVD in some case where
the length of the token sequence is limited, which
will cause computational instability.

2.5 Knowledge Distillation
In addition, in order to provide further supervi-
sion signals and give multi-level guidance for the
training of the ST model, word-level knowledge
distillation (KD) (Liu et al., 2019) is used to fur-
ther transfer the knowledge from the MT to the ST
model. The KD loss is defined as:

LKD = −
∑

(x,z)∈D

N∑

t=1

|V |∑

k=1

Q(yt = k|y<t, x; θST )

× logP (yt = k|y<t, x; θMT )
(5)

where Q(yt = k|y<t, x; θST ) and P (yt =
k|y<t, x; θMT ) are the decoder output distributions
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of the teacher and the student model, respectively.
x, y, z are speech, translation and transcription, re-
spectively. V is the shared vocabulary between ST
and MT.

2.6 Training
Pretrain A pretrained MT model is used to ini-
tialize the whole ST model. During training, the
parameters of MT are frozen to avoid performance
drop. Our preliminary experiment shows that joint
training does not improve the performance of the
MT model, but has a negative impact. In addition,
the parameters of Wav2vec 2.0 are also frozen to
facilitate quick experiments.

The overall training objective is the weighted
sum of all previous losses:

L = αLST + βLcoarse + γLfine + ηLKD (6)

where α, β, γ, η are hyper-parameters to adjust the
weight of each loss. During inference, only ST
model is preserved, and all other modules are dis-
carded.

3 Experiment

3.1 Dataset and Processing
MuST-C MuST-C (Di Gangi et al., 2019a) is a
multilingual dataset based on English TED talks,
including English speech, English transcription
and the translation in 8 language direction: Ger-
man (De), French (Fr), Russian (Ru), Spanish (Es),
Italian (It), Romanian (Ro), Portuguese (Pt), and
Dutch (NL). It is one of the largest training data for
speech translation. We select the model according
to its performance on the validation set and use
tst-COMMON set to test.
External MT Datasets The MT model is trained
separately and has the same structure as the ST
model, which allows us to use parallel sentence
pairs in the external MT datasets in addition to the
transcription-translation pairs in the ST corpus.

Table 1 lists the statistics of all the datasets in-
cluded.
Processing For speech input, we use the original
16-bit 16kHz mono-channel audio waveform. We
tokenize and truecase all texts via Moses2. Punc-
tuation is kept, but split from words, and then nor-
malized. In each language direction, we apply BPE
(Sennrich et al., 2015) on the combination of source
and target text to obtain shared sub-word units, and
the vocabulary size is set to 8K.

2https://www.statmt.org/moses/

Language (EN-)
MuST-C External MT

hours #sent Source #sent
Germany (DE) 408h 234K WMT 4.6M
French (FR) 492h 280K WMT 40.8M
Russian (RU) 489h 270K WMT 2.5M
Spanish (ES) 504h 270K WMT 15.2M
Italian (IT) 465h 258K OPUS100 1.0M
Romanian (RO) 432h 240K WMT 0.6M
Portuguese (PT) 385h 244K OPUS100 1.0M
Dutch (NL) 442h 253K OPUS100 1.0M

Table 1: Statistics of all datasets

3.2 Experimental setups

Model Configuration The Wav2vec 2.0 follows
the large configuration in (Baevski et al., 2020),
which is self-supervised pretrained on Librispeech
(Panayotov et al., 2015) audio data only3. We use
Transformer (Vaswani et al., 2017) as the backbone,
including 6 encoder layers and 6 decoder layers.
Each of these layers comprises of 256 hidden units,
4 attention heads, and 2048 feed-forward hidden
units.
MT model Pretrain When using additional
datasets to train the MT model, we first train MT
model on additional MT corpora and then finetune
it on the transcription-translation pairs in the MuST-
C corpus to solve the domain mismatch problem.
This is same with (Xu et al., 2021).
E2E-ST Training and Inference During training,
we use the Adam (Kingma and Ba, 2014) optimizer
with β1 = 0.9, β2 = 0.98 and adopt the default
learning schedule in ESPnet (Inaguma et al., 2020).
The dropout rate and the value of label smooth-
ing are all set to 0.1. We adopt dropdim (Zhang
et al., 2022), a recently proposed structured dropout
method, as a data augmentation strategy. We adopt
the random mask strategy described in their paper
with a mask rate of 0.05. An early stop strategy is
adopted during training, that is, training is stopped
if the accuracy of the model on the validation set
does not increase for three consecutive epochs. The
training takes about one day to converge. We set
α,β,γ and η to 0.4, 1.0, 1.0, 0.6 respectively.

During inference, we average the best 5 check-
points for evaluation. We use beam search with a
beam size of 10, and the length penalty is 0.6. We
report the case-sensitive SacreBLEU4 (Post, 2018)
for fair comparison with previous work.

3https://huggingface.co/facebook/wav2vec2-large-960h
4https://github.com/mjpost/sacrebleu, signature: nrefs:1

| bs:1000 | seed:12345 | case:mixed | eff:no | tok:13a |
smooth:exp | version:2.0.0
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Model
External Data BLEU
Speech MT EN-DE EN-FR EN-RU EN-ES EN-IT EN-RO EN-PT EN-NL Avg.

w/o external MT data
STAST (Liu et al., 2020b) × × 23.1 - - - - - - - -
AFS (Zhang et al., 2020) × × 22.4 31.6 14.7 26.9 23.0 21.0 30.0 24.9 23.9
SATE (Xu et al., 2021) × × 25.2 - - - - - - - -
Dual-Decoder (Le et al., 2020) × × 23.6 33.5 15.2 28.1 24.2 22.9 30.0 27.6 25.7
XSTNet (Ye et al., 2021) ✓ × 25.5 36.0 16.9 29.6 25.5 25.1 31.3 30.0 27.5
TDA (Du et al., 2021) × × 25.4 36.1 16.4 29.6 25.1 23.9 31.1 29.6 27.2
STEMM (Fang et al., 2022) ✓ × 25.6 36.1 17.1 30.3 25.6 24.3 31.0 30.1 27.5
FCGCL ✓ × 25.7 36.5 17.5 30.4 26.0 24.6 31.4 30.3 27.8

w/ external MT data
SATE (Xu et al., 2021) ✓ ✓ 28.1 - - - - - - - -
JT-S-MT (Tang et al., 2021) × ✓ 26.8 37.4 - 31.0 - - - -
XSTNet (Ye et al., 2021) ✓ ✓ 27.8 38.0 18.5 30.8 26.4 25.7 32.4 31.2 28.8
Chimera (Han et al., 2021) ✓ ✓ 26.3 35.6 17.4 30.6 25.0 24.0 30.2 29.2 27.3
TDA (Du et al., 2021) ✓ ✓ 27.1 37.4 - - - - - - -
STEMM (Fang et al., 2022) ✓ ✓ 28.7 37.4 17.8 31.0 25.8 24.5 31.7 30.5 28.4
FCGCL ✓ ✓ 28.7 37.5 19.1 31.2 26.5 26.0 32.1 31.0 29.0

Table 2: BLEU scores on MuST-C tst-COMMON set. “External Data” indicates whether the method uses additional
data.

3.3 Main Results

Comparison with E2E Baselines Table 2 shows
the comparison of our proposed method on the
MuST-C dataset and the reference E2E-ST systems.
We mainly compare with previous works with or
without additional MT datasets. (a) Without ex-
ternal MT datasets. Compared with the previous
best model, our proposed method gains an average
improvement of 0.3 BLEU in 8 language directions.
Different from the previous works whose main
ideas is to implicitly bound the parameter space
of ST model by treating the MT as a constraint
term with the sharing mechanism, we employ con-
trastive learning and knowledge distillation to pro-
vide direct guidance for explicit knowledge trans-
fer across modality and thus achieve better results.
(b) With external MT datasets. Our method can fur-
ther achieve a 1.2 BLEU improvement compared
FCGCL without external MT data and outperform
the previous state-of-the-art (SOTA) model by 0.2
BLEU. Contrastive learning is also used in Chimera
(Han et al., 2021), which designed a shared se-
mantic memory to learn the semantic information
shared between modalities, but it limits the feature
output lengths of the two modalities to be consis-
tent. Our method does not have this limitation and
is more efficient.
Comparison with Cascaded Baselines To further
validate the effectiveness of our proposed method,
we compare with several strong cascaded baseline
systems, all of which are trained with additional
datasets. As described in Table 3, our proposed
method can outperform the cascade model and

Model
BLEU

En-De En-Er

Cascaded
XSTNet (Ye et al., 2021) 25.2 34.9

STEMM (Fang et al., 2022) 27.5 -
STAE (Liu et al., 2020b) 28.2 -

End-to-end FCGCL 28.7 37.5

Table 3: Comparison with cascaded models on MuST-C
En-De and En-Fr tst-COMMON set.

achieve better performance, showing the potential
of FCGCL.

4 Analysis

4.1 Ablation Studies
Contributions of Different Parts To better eval-
uate the contribution of each part of our proposed
method, we perform ablation studies on the MuST-
C En-De datasets. The results in Table 4 show that
each part of FCGCL is necessary and has a posi-
tive effect in improving model performance. It is
worth noting that when dropdim is removed, the
model performance has a significant drop, about
0.95 BLEU. This is mainly because dropdim in
FCGCL is not only used to enhance the generaliza-
tion ability of the model, but also to generate harder
representations to enhance the effect of contrastive
learning as a data augmentation method.
Size of Negative Sample Queue In negative
example-based contrastive learning, the size of the
queue directly affects the performance of the model.
Figure 2 shows the experiment results. The blue
and yellow curves in the figure represent the vari-
ation of model performance with the size of the
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Model BLEU
FCGCL 25.71

-coarse 25.03
-fine 25.26
-kd 25.04
-dropdim 24.76

Table 4: BLEU scores on MuST-C En-De tst-
COMMON set when different parts are removed.

τ 0.06 0.08 0.10 0.12 0.14 0.16
BLEU 25.29 25.21 25.46 25.71 25.43 25.03

Table 5: BLEU scores on MuST-C En-De tst-
COMMON under different temperature.

negative sample queue with or without whitening,
respectively.

Without whitening, the optimal queue size is
50. When whitening is used, the model perfor-
mance increases with the queue size, reaching best
performance at 1000. This is mainly because the
whitening operation can reduce the number of false
negative samples. These false negative samples
are not similar to the anchor sample, but the cal-
culated similarity is large due to the anisotropy
phenomenon of the uneven distribution, which af-
fects the calculation of the contrast loss and leads
to the degradation of the model performance. The
whitening operation can alleviate this anisotropy
phenomenon, so the model equipped with whiten-
ing can benefit from more negative samples. How-
ever, when the queue size exceeds 1000, the model
performance drops significantly. We speculate that
although the whitening operation can reduce the
number of false negative samples, the overall false
negative samples are still very large in this case. In
Section 4.2 we conduct further experiments on the
effect of whitening to validate our analysis here.

Effect of Temperature Temperature τ is another
important hyperparameter in contrastive learning,
which controls the strength of penalties on hard
negative samples. The smaller the temperature, the
more the model pays attention to the hard negative
samples and gives them a larger gradient to sepa-
rate from the anchor sample. Table 5 shows the
model performance at different temperature. We
choose several temperature hyper-parameters rang-
ing from 0.06 to 0.16. The model achieves the best
performance at the temperature of 0.12.

Figure 2: Model performance with different negative
queue size.

4.2 Effect of Whitening

To verify the effect of whitening, we compute
the samples pairs similarity distribution. Specif-
ically, we randomly select a speech sample from
the MuST-C En-De tst-COMMON set as the an-
chor sample, and 1000 transcription samples. For
each sample, we average the encoder output over
the time dimension to get the overall representa-
tion. Suppose the similarity distribution of 1000
samples and anchor sample (speech sample) is
[s1x ·s1z, s1x ·s2z, · · · , s1x ·sjz], j = 1, · · · 1000, where
s1x denotes the speech representation, sjz is j-th text
representation. s1z is the corresponding positive
sample representation, and the rest are treated as
negative samples. Then we normalize the similarity
distribution [s1x ·s1z, s1x ·s2z, · · · , s1x ·sjz]/s1x ·s1z, j =
1, · · · 1000.

As shown in Figure 3, blue and yellow represent
the normalized similarity distribution histogram
with or without whitening, respectively. Before
whitening, the number of samples with the nor-
malized similarity greater than 0.2 is about 104.
After whitening, the number is reduced to 34. This
means that whitening operation can partly solve the
representation degeneration of text, alleviating the
problem that some negative samples are not simi-
lar to the anchor sample, but the calculated cosine
similarity is relatively large.

5 Visualization

5.1 Visualization

Visualization of Coarse Granularity Alignment
We randomly select 30 speech-transcription pairs
from MuST-C En-De tst-COMMON set, and then
apply T-SNE (Van der Maaten and Hinton, 2008)
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Figure 3: Histogram of normalized sample similarity
distribution. The horizontal coordinate represents the
similarity normalized by the maximum value. Here, the
maximum value is the similarity between the anchor
sample and the positive sample. The vertical coordinate
represents the number of samples located in the corre-
sponding interval.

Figure 4: Visualization sentence-level representation.

to the vector representations of these samples to
reduce the dimension to two. Note that these vec-
tor representations are obtained by averaging the
encoder outputs over the time dimension.

The results are visualized in Figure 4. Each
speech-transcription pair is connected by a solid
line. It can be intuitively seen from the figure that
most paired speech-transcription are projected to-
gether, and some even overlap with each other. This
proves that FCGCL is capable of bridging the rep-
resentation divergence of the two modalities. In
addition, some speech representations in the figure
are still clustered together, mainly because we com-
pute the contrastive loss across modalities and not
within the modal. Thus, the speech representations
do not show good uniformity. We’ll make further
research about this.
Visualization of Fine Granularity Alignment In

Figure 5: Visualization of similarity matrix after mask-
ing.

order to find this correspondence between speech
frame and text token, we recommend the maximum
similarity method. Is this method reasonable? We
prove its feasibility by performing fine granularity
visualization. We randomly select paired speech-
transcription from MuST-C En-De tst-COMMON,
then get the speech representation h(i)x ∈ Tx×d and
text representation h

(i)
z ∈ Tz × d. Then we calcu-

late the cosine similarity matrix ∆ ∈ Tx×Tz , whose
maximum value in each row is set to 1. The re-
maining values in the similarity matrix are masked
with 0.

Figure 5 shows the alignment of two speech-
transcription pairs. Ideally, the speech frame and its
corresponding transcription token should be mono-
tonically aligned. The overall similarity is mono-
tonic. However, there are a small number of speech
frames showing non-monotonicity. Possible rea-
son is that there are some silence frames in speech
and the model aligns them to a certain token. In
addition, the text may contain the same token. This
might result in wrong alignment since the model
cannot determine which token the speech frame
should correspond to. In general, by adopting this
method, we can effectively and efficiently find the
correspondence between speech frame and text to-
ken in an unsupervised manner with negligible la-
tency overhead.

6 Related Works

End-to-end ST Benefiting from the development
of deep learning in recent years, more and more
researchers have begun to focus on the end-to-
end learning paradigm (Bérard et al., 2016; Duong
et al., 2016). However, due to data scarcity, it is dif-
ficult to train an E2E-ST model well. Researchers
have begun to explore various solutions, ranging
from efficient network architecture design (Karita
et al., 2019; Di Gangi et al., 2019b; Sung et al.,
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2019) to incorporating additional training signals,
including multi-task learning (Weiss et al., 2017;
Liu et al., 2020a), sub-module pre-training (Stoian
et al., 2020; Wang et al., 2020b), knowledge distil-
lation (Liu et al., 2019; Gaido et al., 2020), meta-
learning (Indurthi et al., 2019), data augmentation
(Kocabiyikoglu et al., 2018; Jia et al., 2019; Pino
et al., 2019), attention transfer (Sperber et al., 2019;
Wang et al., 2020a). Another recognized problem is
that the encoder of the ST model is overburdened.
To address this problem, some studies decouple
the ST encoder into an acoustic encoder and a se-
mantic encoder to better extract information from
the input (Dong et al., 2021; Liu et al., 2020b; Xu
et al., 2021). Other studies use various methods to
impose constraints on the E2E-ST model for knowl-
edge transfer between modalities. However, most
of these methods make implicit knowledge transfer,
while in this work we use contrastive learning com-
bined with knowledge distillation to make explicit
knowledge transfer for E2E-ST to bridge the modal
gap and improve the performance.

Contrastive learning Contrastive learning has re-
cently emerged as a powerful method for learning
representations from unlabeled data. Models based
on contrastive learning have achieved outstanding
performance in the domains of computer vision
(He et al., 2020; Chen et al., 2020), speech (Wang
and Oord, 2021; Zhang et al., 2021; Xiao et al.,
2021), and NLP (Gao et al., 2021; Yan et al., 2021;
Ye et al., 2022). Some studies extend contrastive
learning to the multimodal domain (Radford et al.,
2021; Wu et al., 2022; Alayrac et al., 2020). In-
spired by these works, we use cross-modal con-
trastive learning to ensure that inputs with similar
semantic between different modalities are encoded
closely in the shared feature space while inputs
with different semantics is kept apart.

Fine Granularity Contrastive learning Con-
trastive learning usually obtains the overall repre-
sentation of the input through pooling, and then per-
forms loss calculations. For classification tasks, the
overall representation is sufficient. However, the
representation obtained this way is sub-optimal for
generative tasks or dense prediction tasks. Some
studies perform fine granularity contrastive learn-
ing to learn finer input representations (Wang et al.,
2021; Zeng et al., 2021; Wang and Karout, 2021).
To ensure the effectiveness and efficiency of compu-
tation, we adapt the method of (Wang et al., 2021)
to perform cross-modal matching of speech frames

and text tokens.
Representation Degeneration Affected by word
frequency, the embedding space learned in lan-
guage modeling or neural machine translation is
squeezed into a narrow cone, showing an un-
even distribution of anisotropy which is referred
as representation degeneration (Gao et al., 2019;
Wang et al., 2019; Ethayarajh, 2019). Many strate-
gies are recommended to mitigate this problem:
regularization-based methods (Gao et al., 2019;
Wang et al., 2019), flow-based methods (Li et al.,
2020b), whitening methods (Su et al., 2021; Huang
et al., 2021), and methods that utilize noise as the
negative samples (Zhou et al., 2022; Wu et al.,
2021). The whitening-based approach we use,
which was first applied to the BERT, directly pro-
cesses the trained representation without retraining
the model.

7 Conclusion

In this paper, we recommend FCGCL, which com-
bines contrastive learning and knowledge distilla-
tion for explicit knowledge transfer across modal-
ities. In addition, we recommend whitening to
solve the representation degeneration problem of
text representation in MT model. Experiments on
the MuST-C dataset on all 8 languages demonstrate
the effectiveness of our method.

Limitations

Although our method exhibits the desired effect,
it still suffers from certain limitations. First, we
adopt cross-modal contrastive learning to guide the
training of the ST model, but the problem of repre-
sentation degeneration in NLP can seriously affect
the calculation of contrastive loss. In this paper,
we use the whitening operation to deal with this
problem, but when the number of negative samples
is too large (over 1000), the model performance
drops significantly. This shows that the processing
capacity of the whitening operation is also limited,
and more effective methods need to be explored
in the future. Second, we freeze the parameters of
the MT model to avoid quality degradation of text
representations. When calculating the contrastive
loss, in order to ensure the consistency of the rep-
resentation, the rest of the speech representations
in batch are not taken as negative samples, which
causes some speech representations to cluster to-
gether and do not show good uniformity. In the
future, we will consider adding the contrastive loss
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within the speech modal to improve the uniformity
of the speech representation distribution.
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