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Abstract

Sentence summarization shortens given texts
while maintaining core contents of the texts.
Unsupervised approaches have been studied to
summarize texts without human-written sum-
maries. However, recent unsupervised mod-
els are extractive, which remove words from
texts and thus they are less flexible than ab-
stractive summarization. In this work, we de-
vise an abstractive model based on reinforce-
ment learning without ground-truth summaries.
We formulate the unsupervised summarization
based on the Markov decision process with re-
wards representing the summary quality. To
further enhance the summary quality, we de-
velop a multi-summary learning mechanism
that generates multiple summaries with vary-
ing lengths for a given text, while making the
summaries mutually enhance each other. Exper-
imental results show that the proposed model
substantially outperforms both abstractive and
extractive models, yet frequently generating
new words not contained in input texts.

1 Introduction

The goal of sentence summarization is to enhance
the readability of texts by reducing their lengths
through word dropping, replacement, or paraphras-
ing. The applications of the task include subtitle
generation (Luotolahti and Ginter, 2015) and email
summarization (Zajic et al., 2008). An issue is
that it is costly to have human editors write sum-
maries for each text. Hence, it is critical to develop
an unsupervised model that does not require any
human-written summaries.

Early models focus on abstractive summariza-
tion that generates words from a vocabulary set
rather than extractive summarization, which merely
selects words from texts. Specifically, abstractive
models have adopted autoencoder networks to sum-
marize texts in an unsupervised manner (Wang and
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Lee, 2018; Févry and Phang, 2018; Baziotis et al.,
2019). In contrast, extractive models summarize
texts by finding word combinations from texts, aim-
ing at maximizing predefined scores (e.g., fluency
of summaries) (West et al., 2019). Despite their
limited functionality, i.e., word selection, recent ex-
tractive models outperformed the abstractive mod-
els (Schumann et al., 2020; Liu et al., 2022).

Despite the success of the extractive models, we
argue that they have an inherent downside. The
extractive models only select words from texts, and
thus they cannot generate new words that can be
effective for sentence summarization. For example,
extractive models are unable to generate acronyms
(e.g., PM) for words (e.g., Prime Minister) if the
acronyms do not appear in texts. In contrast, ab-
stractive models can resolve the limitation of extrac-
tive models. However, the summary quality of ex-
isting abstractive models is sometimes worse than
a simple baseline, which simply truncates input
texts from the beginning (Schumann et al., 2020).
This implies that existing abstractive models fall
short of reducing text lengths while maintaining
the summary quality. The aforesaid limitations of
existing models motivate us to devise an abstractive
model that produces high-quality summaries with
generating new words not contained in input texts.

This work employs reinforcement learning (RL)
for unsupervised abstractive summarization1. RL
enables a model to learn to summarize using re-
wards even though they are non-differentiable. Our
model generates high-quality summaries with con-
sidering 1) the semantic similarity between the
generated summary and its corresponding input
text, and 2) fluency of the generated summaries.
Notably, the semantic similarity is more robust to
preserve core contents of input texts than the word-
level reconstruction objective (Pagliardini et al.,
2018), which is adopted by existing abstractive
models.

1Public source codes: https://github.com/dmhyun/MSRP
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Moreover, we argue that the difficulty of sum-
marization depends on the summary lengths (e.g.,
the shorter the summary, the more difficult it is to
summarize). In this respect, we develop a multi-
summary learning mechanism that generates multi-
ple summaries with varying lengths for a given
text, while making the summaries mutually en-
hance each other. The main idea is to use a high-
quality summary of a certain length, which is easy
to generate, to enhance the quality of a low-quality
summary of another length, which is difficult to
generate, rather than independently generating sum-
maries in each length. Specifically, we design the
mechanism to make low-quality summaries seman-
tically similar to high-quality ones.

We also devise a pretraining task to obtain well-
initialized model parameters for the RL training.
We first augment input texts by applying word-level
perturbations and inserting length prompts, which
indicate the lengths of the original texts. Then, we
train the model to reconstruct the original text from
the augmented one, which makes the model learn
to summarize and control the output length. By
pretraining the model in this manner, our goal is
to equip the model with essential abilities for sum-
marization, which results in an improved summary
quality after the RL training with the pretrained
model. We dub our model Multi-Summary based
Reinforcement learning with Pretraining (MSRP).

Experiments show that MSRP outperforms the
abstractive and extractive baseline models in both
automatic and human evaluations. We also analyze
summaries generated by MSRP to illuminate its
benefits compared to the recent extractive models.

2 Related Work

2.1 Unsupervised Sentence Summarization

Supervised models depend on human-written sum-
maries, which involve costly and time-consuming
data creation (Rush et al., 2015; He et al., 2020;
Song et al., 2021). In contrast, unsupervised
models learn to summarize texts without any
human-written summaries. Abstractive models
mainly adopt autoencoders to build a summariza-
tion model. Févry and Phang (2018) adopt a de-
noising autoencoder to summarize texts by treating
texts as noised data and summaries as clean data.
Wang and Lee (2018); Baziotis et al. (2019) de-
sign autoencoders that generate word sequences
as interim outputs of the autoencoders and use the
word sequences as summaries. Zhou and Rush

(2019) devise a model that selects the best next
word based on a fluency score to generate sum-
maries. In contrast, an extractive model (West
et al., 2019) iteratively deletes words from texts
to generate summaries while measuring the fluency
of each intermediate summary. Schumann et al.
(2020) select the best word combination that maxi-
mizes predefined scores based on a hill-climbing
search algorithm, and it surpassed the abstractive
models. However, the search requires exhaustive
computation. In response, Liu et al. (2022) train
an extractive model with summaries generated by
Schumann et al. (2020) so that it can quickly gener-
ate summaries without the exhaustive search. Com-
pared to extractive models, this work aims to design
an abstractive model to enjoy its flexible operation,
i.e., generating words not contained in texts.

2.2 Reinforced Summarization Models

RL has been used as a technique to solve summa-
rization tasks. With referential summaries, Paulus
et al. (2018); Bian et al. (2019) relieve the exposure
bias of teacher forcing-based supervision. With-
out referential summaries, Böhm et al. (2019); Sti-
ennon et al. (2020) devise RL-based models that
maximize a reward representing the summary qual-
ity, which is annotated by human experts. Wang
and Lee (2018) address the unsupervised sentence
summarization where only input texts are avail-
able, which is our target scenario. They utilize
RL to train an autoencoder with a word-level re-
construction loss to preserve contents of texts in
summaries. In this work, we formulate a RL frame-
work to achieve three aspects: 1) semantic simi-
larity between input texts and summaries instead
of word-level similarity, 2) controllability on sum-
mary length, and 3) model-agnostic RL framework.

2.3 Pretraining Task for Summarization

Pretraining tasks are crucial to obtain high accuracy
on NLP tasks (Devlin et al., 2019; Lewis et al.,
2020). Recent research invents pretraining tasks for
long-document summarization (Zhang et al., 2020;
Zhu et al., 2021). However, the approaches are not
applicable to sentence summarization due to the
absence of multiple sentences, and do not consider
controlling the summary length. We thus propose
an effective pretraining task to make models learn
to summarize and control the summary length.
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3 Method

3.1 Problem Formulation
The goal of sentence summarization is to shorten
a text (i.e., a long sentence) t = [w1, w2, · · · , w|t|]
into a short summary y = [y1, y2, · · · , y|y|] where
w, y are words and |y| < |t|. It is important to note
that the text-summary pairs are not available for
training models. In other words, we focus on the
unsupervised sentence summarization.

3.2 Reinforcement Learning Framework
Due to the absence of ground-truth summaries, we
train a text generator based on the quality of gener-
ated summaries. However, the summary generation
requires the word-sampling process, which is non-
differentiable. We thus consider RL to address the
non-differentiability (Figure 1), and describe the
proposed Markov decision process as follows.

States describe the possible combinations of
input texts t and generated summaries yt =
[y1, y2, · · · , yt] at time t. State at time t can be
formulated as st = [t, yt]. Actions are the candi-
date next words from a vocabulary set V at given
states. A policy πθ selects an action at ∈ V as a
next word yt+1 based on a given state st, resulting
in next summary yt+1. Transition function deter-
mines next states based on a state st and action at,
i.e., st+1 = T (st, at) = [t, yt+1].
Reward R(st, at) represents the summary quality
when a target summary length l is given. We obtain
the reward of the generated summaries such that:

R(st, at) =

{
R(y, t, l) if at = [EOS] ∨ t = Mg,

0 otherwise,

where y denotes the generated summary (i.e., y =
yt for simplicity), [EOS] is the end-of-sentence to-
ken, Mg is the maximum length of generated sum-
maries. We design pertinent aspects of summaries:

R(y, t, l) = RC(y, t) +RF (y) +RL(|y|, l).

• Content preservation A requirement for high-
quality summaries is to preserve the gist of the
input texts. We consider the semantic similarity
between summaries and the corresponding texts:

RC(y, t) = sim(f(y), f(t)) (1)

where RC ∈ [0, 1], sim is a similarity function,
and f is a function to embed texts (i.e., y and t)
such as BERT.2 We use cosine similarity with

2The specific model is described in Section 4.1.4.

Figure 1: Reinforcement learning with a length prompt.

normalization, i.e., sim(·, ·) = (cos(·, ·) + 1)/2.
The semantic similarity enables the model to ro-
bustly capture the meaning of texts despite differ-
ent words in two texts, e.g., Who’s the winner?
and Who won the game?.

• Fluency Another requisite for summaries is flu-
ency, representing how generated summaries are
grammatically and semantically natural. We use
the perplexity as fluency:

PPL(y) = exp
{
− 1

|y|

|y|∑

t

log pψ(yt|yt−1)
}

(2)
where PPL is the perplexity from a language
model with its parameters ψ, and yt−1 is the gen-
erated summary before time t. Low PPL indicates
high fluency. We define the fluency reward:

RF (y) = exp(−PPL(y)/σF ) (3)

where RF ∈ (0, 1] and σF ∈ R+ is a tunable
scaling factor to control the steepness of RF .3

• Summary length We design our model to sum-
marize texts in a desired length. We first insert
the desired length l (e.g., 8 words) at the begin-
ning of an input text (e.g., ‘8:’ Figure 1), and
then optimize the following reward:

RL(|y|, l) = exp(−||y| − l|/σL)

where RL ∈ (0, 1] and σL ∈ R+ is a tunable
scaling factor. After training, we can control the
summary length by changing the desired length.

3.2.1 Policy Gradient
Policy gradient directly updates the policy parame-
ters θ to minimize an objective function J :

J (θ) = −
∑

t∈T

Ey∼πθ(·|l,t)R(y, t, l).

3The shape of the reward is provided in Appendix A.1.
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Figure 2: Multi-summary learning mechanism

where T is a set of input texts. Therefore, RL up-
dates the policy parameters θ to maximize the ex-
pected rewards (i.e., RL,RC , and RF ). We adopt
a self-critical policy gradient (Rennie et al., 2017)
to stabilize the training by reducing the variance.
The gradient of the policy can be written as:

▽θJ (θ) ≈ −
∑

t∈T

(
R(y, t, l) − R(ȳ, t, l)

)
▽θ

∑

t

logπθ(yt+1|st)

where ȳ is a baseline summary, whose words are
greedily selected, i.e., yt+1 = argmaxπθ(yt+1|st), in-
stead of sampling words, i.e., yt+1∼πθ(yt+1|st). The
gradient has a direction to maximize the likelihood
if R(y, t, l) > R(ȳ, t, l).

3.3 Multi-Summary Learning Mechanism
We further improve the summary quality by making
multiple summaries with varying lengths mutually
enhance each other (Figure 3). The main idea is
to use a high-quality summary of a certain length,
which is easy to generate, to enhance the quality
of a low-quality summary of another length, which
is difficult to generate.We first generate multiple
summaries in different lengths for each text:

Y = {yl}l∈L where yl∼πθ(·|l, t),

where Y is the set of summaries generated for each
length l ∈ L, L is a set of lengths, and yl is a
summary generated for the length l. For brevity,
we denote a target summary as y, while the other
summaries as y′ henceforth.

We then design the mechanism to make a sum-
mary semantically similar to the other summaries
based on mutual relationship:

RQ(y, Y, t, l) = λ
∑

y′∈Y \y

u(y, y′, t, l) · RC(y, y′)

where RQ ∈ [0, 1], λ ∈ [0, 1] is a weight coeffi-
cient for this reward, u ∈ [0, 1] is a function that

measures the usefulness of a summary y′ to a target
summary y generated for a target length l given
text t. Hence, the model makes a target summary y
to be semantically similar to another summary y′
based on its usefulness, i.e., refer to a summary y′
if it is useful to a target summary y.

We design the usefulness function u by consid-
ering the summary quality and length: 1) given
the input text t, a target summary y should refer
to another summary y′ with different length only
if the quality of y′ is higher than that of y, i.e.,
q(y′,t) > q(y,t), where q ∈ [0, 1] is a function
that measures the summary quality. 2) A summary
generated for a length l should refer to another
summary with similar length to the target length
l, i.e., the more similar the length, the higher the
relevance. We define the usefulness function u:

u(y, y′, t, l) = [q(y′, t)− q(y, t)]α+ · RL(|y′|, l)

where α ∈ R is a scaling factor, and [ · ]+ repre-
sents max(·, 0). The first term produces a positive
score if q(y′,t) > q(y,t). Similarly, second term
produces a high score if the length of another sum-
mary y′ is close to a target length l of a given sum-
mary y. We consider the summary quality based
on the content preservation and fluency:

q(y, t) = RC(y, t) · RF (y).

Finally, the total reward R⋆ can be written with
multiple summaries and the quality reward RQ:

R⋆(Y, t) =
∑

yl∈Y

R(yl, t, l) +RQ(yl, Y, t, l).

This mechanism makes summaries mutually en-
hance each other during training time, but generates
summaries independently in inference time. Thus,
the complexity of the inference does not increase.

3.4 Pretraining Task
We also devise prompt-based text reconstruction
task (Table 1), and its main goal is to make our
model learn to control the output length. We first
apply perturbations to texts: shuffling, dropping,
and adding words. We then insert the length of the
original text at the beginning of the perturbed text,
called prompt, e.g., ‘20:’ in Table 1. Thus, by in-
serting the prompt to perturbed texts, the model can
be explicitly informed about the target length for
the original text. We train our model to reconstruct
the original text from the perturbed text, which
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Original text
three researchers on monday won the nobel medicine prize for
discovering how nitric oxide acts as a signal molecule

1. Shuffle
nitric three researchers on monday won the nobel prize for
discovering how signal medicine oxide acts as a molecule

2. Drop
nitric three researchers on monday won the nobel prize for
discovering how signal medicine oxide acts as a molecule

3. Add & Prompt
Prompt︷︸︸︷
20: three crashing flight researchers town on 103 won the

down nobel medicine on prize for tiny how this nitric oxide
as a signal molecule

Table 1: Example of text perturbation with a length
prompt. Changes in each step are marked in red.

makes the model learn to control the output length
and reorder, add, and remove words. After pretrain-
ing, we perform the RL training with the pretrained
model. We provide the details in Appendix A.2.

4 Experiments

4.1 Experimental Settings

4.1.1 Datasets

We evaluate MSRP on benchmark datasets for sen-
tence summarization. The Gigaword dataset con-
tains a news headline per news article. The number
of training and evaluation data are 3,803,957 and
1,951, respectively. We only use news articles to
train MSRP so that our model does not draw on
any article-headline pairs. We select 500 validation
data only for tuning the hyperparameters as done
in prior work (Schumann et al., 2020; Liu et al.,
2022). We also use DUC2004 dataset, designed
only for evaluation, consisting of four headlines
per news article, and it contains 500 news articles.

4.1.2 Metrics and Evaluation Protocol

We use ROUGE, a word-overlapping ratio between
generated and human-written summaries: ROUGE-
n for n-gram matching and ROUGE-L for longest
common subsequence matching. We use ROUGE
F-1 (RF) on the Gigaword dataset, but use ROUGE
recall (RR) on the DUC2004 dataset by following
its evaluation protocol. In addition, we measure
the fidelity (i.e., content preservation) of generated
summaries to input texts using SentenceBERT4

(Reimers and Gurevych, 2019) and the fluency of
generated summaries with a language model, i.e.,
GPT-2 (Radford et al., 2019), based on Equation 3.

4We use cosine similarity between input texts and gener-
ated summaries, which are embedded by SentenceBERT.

Besides, since ROUGE gets higher as the sum-
mary gets longer, we group models based on the
average length of the generated summaries for fair
comparisons by following Schumann et al. (2020);
Liu et al. (2022). We consider both settings of sum-
marizing with a condition of a length (i.e., 8, 10,
13 words) and compression ratio (i.e., 50% of the
length of input texts) as done in the prior work. We
also note that the evaluation protocol of DUC2004
truncates summaries that exceed 75 characters for
fair comparisons in terms of the summary length.

4.1.3 Models Compared
Abstractive models Zajic et al. (2004) summa-
rize texts using a syntax tree trimming. Wang and
Lee (2018) train a model with an adversarial and
cycle consistency loss. Févry and Phang (2018)
utilize a denoising autoencoder. Zhou and Rush
(2019) model fidelity and fluency of summaries via
contextual matching. Baziotis et al. (2019) stack
autoencoders to impose the cycle consistency loss.
Extractive models Lead baseline truncates texts
from the beginning to the target lengths. West et al.
(2019) iteratively delete words from a text to gen-
erate a summary based on a fluency score. Schu-
mann et al. (2020) search for the best word com-
bination from texts based on a hill-climbing algo-
rithm. Liu et al. (2022) train a non-autoregressive
transformer using summaries generated by Schu-
mann et al. (2020) with corresponding input texts
in a supervised manner. We also report another
non-autoregressive model (Su et al., 2021) that is
trained similarly to Liu et al. (2022).

4.1.4 Implementation Details
We use sent2vec (Pagliardini et al., 2018) as a
word embedding-based projection function (i.e.,
f in Equation 1) that is trained on the text corpus
(i.e., news articles) by following the prior work
(Schumann et al., 2020; Liu et al., 2022). We also
report the results of MSRP with SentenceBERT as
a BERT-based projection function (Section 4.5).
As a language model, we use pretrained GPT-2 to
obtain the fluency reward (ψ in Equation 2). We
fine-tuned the language model on a target corpus
(i.e., news headlines) as done in prior work (Zhou
and Rush, 2019; Schumann et al., 2020). As a pol-
icy πθ, we use pretrained T5 (Raffel et al., 2020).
For the multi-summary learning mechanism, we
train MSRP with a set of lengths L = {8, 10, 13}
for the length-based evaluation and with a set of
compression ratios L = {30%, 40%, 50%} for the
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Group Type Model RF-1 RF-2 RF-L ∆R Fidelity Fluency Len.

Ext. Lead (8 words) 21.40 7.43 20.04 18.48 0.856 0.723 7.9
Ext. Schumann et al. (2020) 26.01 9.64 23.94 7.76 0.836 0.914 7.9
Ext. Su et al. (2021) 26.88 9.37 24.54 6.56 0.817 0.883 7.7
Ext. Liu et al. (2022) 27.94 9.24 25.51 4.66 0.857 0.760 7.8
Ext. Liu et al. (2022)† 26.94 9.97 24.93 5.51 0.847 0.878 7.9

A
(desired
length 8)

Abst. MSRP 29.09 11.46 26.80 0.0 0.875 0.899 7.9
Abst. MSRP w/o RL 23.54 8.36 21.93 13.52 0.855 0.766 7.8

Ext. Lead (10 words) 23.04 7.96 21.30 16.62 0.884 0.729 9.8
Abst. Wang and Lee (2018) 27.29 10.01 24.59 7.03 − − 10.8
Abst. Zhou and Rush (2019) 26.51 10.04 24.45 7.92 0.850 0.900 9.3
Ext. Schumann et al. (2020) 27.03 10.13 24.61 7.15 0.856 0.914 9.8
Ext. Su et al. (2021) 27.86 9.88 25.51 5.64 0.832 0.889 9.4
Ext. Liu et al. (2022) 28.55 9.97 25.78 4.62 0.873 0.798 9.8
Ext. Liu et al. (2022)† 27.61 10.23 25.04 6.04 0.865 0.848 9.8

B
(desired

length 10)

Abst. MSRP 29.94 11.86 27.12 0.0 0.897 0.886 9.9
Abst. MSRP w/o RL 25.01 8.86 22.95 12.10 0.885 0.751 9.9

Ext. Lead (50% words) 24.97 8.65 22.43 8.72 0.917 0.739 14.6
Abst. Févry and Phang (2018) 23.16 5.93 20.11 15.57 − − 14.8
Abst. Baziotis et al. (2019) 25.49 8.27 22.76 8.25 0.919 0.680 14.9
Ext. Schumann et al. (2020) 27.05 9.75 23.89 4.08 − − 14.9
Ext. Liu et al. (2022) 28.53 9.88 25.10 1.26 0.901 0.789 14.9

C
(desired length

50% of the input)

Abst. MSRP 28.60 11.00 25.17 0.0 0.924 0.795 14.8
Abst. MSRP w/o RL 26.40 9.37 23.76 5.24 0.921 0.715 14.4

Table 2: Automatic evaluation on Gigaword dataset. ∆R: the improvement of total ROUGE of MSRP over each
model, Len: averaged length of summaries, †: Liu et al. (2022) with the same pretrained model used for MSRP.

Group D (desired length 13)
Type Model RR-1 RR-2 RR-L ∆R FD FL

Ext. Lead (75 char.) 22.54 6.52 19.76 12.90 0.88 0.73
Abst. Zajic et al. (2004) 25.12 6.46 20.12 10.02 − −
Abst. Baziotis et al. (2019) 22.13 6.18 19.30 14.11 0.88 0.71
Ext. West et al. (2019) 22.85 5.71 19.87 13.29 − −
Ext. Schumann et al. (2020) 26.13 7.98 22.88 4.73 0.86 0.94
Ext. Su et al. (2021) 26.26 7.66 22.83 4.97 0.84 0.90
Ext. Liu et al. (2022) 26.71 7.68 23.06 4.24 0.54 0.82
Ext. Liu et al. (2022)† 26.28 8.11 22.93 4.41 0.86 0.91

Abst. MSRP 27.88 9.35 24.49 0.0 0.90 0.89
Abst. MSRP w/o RL 24.66 7.69 21.90 7.48 0.88 0.79

Table 3: Automatic evaluation on DUC2004 dataset. FD
and FL stand for the fidelity and fluency, respectively.

compression ratio-based evaluation. During beam
search, we select a summary that maximizes the
rewards (i.e., RC ,RF ,RL) and does not include
predefined patterns. We provide more details in
Appendix A.3.

4.2 Automatic Evaluation

We compare the summary quality of the models
in Table 2 and 3, and make the following observa-
tions. MSRP consistently shows the best ROUGE
scores compared to both abstractive and extractive
models over different groups of summary length.
In terms of the fidelity, MSRP consistently achieves
the best score compared to the baseline models,
although Schumann et al. (2020); Liu et al. (2022)
also consider the fidelity score (RC in MSRP) dur-
ing training time. MSRP achieves competitive flu-

Majority Unanimity
Criteria

Win Tie Lose κ Win Tie Lose

Comparison to Schumann et al. (2020)

Fidelity 52 31 17 0.33 26 10 3
Fluency 32 58 10 0.22 13 9 5

Comparison to Liu et al. (2022)

Fidelity 69 4 27 0.59 53 3 16
Fluency 69 10 21 0.51 50 2 10

Table 4: Human evaluation results. κ denotes Fleiss’
kappa representing inter-annotator agreements.

ency scores, while MSRP is generally better than
the best baseline model (Liu et al., 2022).

Moreover, as Liu et al. (2022) do not use a pre-
trained model, we include another baseline denoted
by Liu et al. (2022)† that uses the same initial
model (i.e., pretrained T5) as MSRP for fair com-
parisons. We observe that MSRP still outperforms
Liu et al. (2022)† with the pretrained model.

To investigate the effect of our RL framework,
we consider MSRP that is not trained under the RL
framework (denoted by MSRP w/o RL). The model
is substantially inferior compared to MSRP and the
baseline models, indicating that our RL framework
is vital to surpassing the recent extractive models.

In a nutshell, MSRP achieves the best ROUGE,
fidelity, and competitive fluency thanks to our RL
framework. We also observe that the inference time
of MSRP is competitively short compared to the
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Dataset Gigaword Gigaword DUC2004
(l = 8) (l = 10) (l = 13)

Ratio 43.1% 51.4% 60.4%

Avg. # words 1.29 1.35 1.43

Top-3 POS
IN 33% IN 38% IN 46%

NNS 17% NNS 17% NNS 18%
TO 14% NN 12% NN 10%

Tag Meaning Tag Meaning

IN Preposition or conjunction NNS Noun, plural
NN Noun, singular or mass TO “to"

Table 5: Statistics of new words in summaries generated
by MSRP (top) and the meaning of POS tags (bottom).
l denotes the target summary length.

state-of-the-art baseline models (Appendix A.4).

4.3 Human Evaluation

We perform human evaluations to compare the
summary quality between MSRP and the baseline
models, i.e., Schumann et al. (2020) and Liu et al.
(2022), on Gigaword data with 10 words as the
summary length (Table 4). We provide the sum-
maries generated by MSRP and each baseline model
along with the corresponding input texts to annota-
tors, who are asked to choose a better summary in
terms of fidelity and fluency. We ask a global anno-
tation corporation to have three native speakers an-
notate 100 summaries. We use majority voting and
unanimity to consolidate the annotators’ responses.
We analyze the inter-annotator agreement based on
Fleiss’ kappa κ,5 indicating fair agreement for the
comparison between MSRP and Schumann et al.
(2020) and moderate agreement for the comparison
between MSRP and Liu et al. (2022).

In Table 4, MSRP substantially outperforms the
baseline models in both criteria. Particularly, the
annotators indicate that MSRP generates more flu-
ent summaries than Schumann et al. (2020), de-
spite their highest fluency score in Table 2. Such a
discrepancy between automatic and human evalua-
tion results has been also observed in recent work
(Kuribayashi et al., 2021), and thus we argue that
human evaluations are crucial for accurately eval-
uating the fluency of generated summaries. From
this experiment, we conclude that MSRP is indeed
superior to the baseline models based on both auto-
matic and human evaluations.

5We follow Landis and Koch (1977) to interpret kappa κ.

Dataset
Gigaword Gigaword DUC2004

(l = 8) (l = 10) (l = 13)

Metric RF-1 RF-L RF-1 RF-L RR-1 RR-L

MSRP 29.09 26.80 29.94 27.12 27.88 24.49
−MSL 28.49 26.33 29.79 27.03 27.57 24.20
− PTR 28.02 25.91 29.20 26.55 28.02 24.32

−RF 27.28 25.23 27.99 25.34 26.30 23.22
−RC 26.31 24.49 27.82 25.52 25.97 22.80

−RC +RAE 26.26 24.41 27.79 25.44 26.28 22.91
SBERT as f 29.99 27.56 30.76 27.93 28.92 25.25

Table 6: Ablation study.

4.4 Frequency Analysis of New Words

We demonstrate the benefit of MSRP as an abstrac-
tive model in Table 5. In this experiment, we ex-
amine the generated summaries that contain new
words, i.e., words that do not appear in input texts.
We observe that the ratio of summaries that contain
new words is around 50%, and roughly 1.3 new
words appear per summary. This result indicates
that MSRP frequently performs the abstractive op-
eration (i.e., generating new words) so that MSRP
achieves higher summary quality than the extrac-
tive baselines, which merely select words from the
input texts. We also report POS tags of new words,
and observe that MSRP mainly generates preposi-
tions and nouns as new words. We illustrate the
generated summaries with new words in the follow-
ing section 4.8.

4.5 Ablation Study

This section provides an ablation study to inspect
the effect of each component in MSRP (Table 6).
We first train MSRP without the multi-summary
learning mechanism (− MSL) and the prompt-
based text reconstruction task (− PTR), and ob-
serve that the performance generally degrades.
Thus, both components are necessary to enhance
the summary quality. In the following section 4.6
and 4.7, we provide in-depth analyses on each com-
ponent. We then train MSRP without the fluency
(−RF ) and content preservation (−RC) reward,
and observe that both rewards are essential to gen-
erating high-quality summaries.

We further compare the semantic similarity and
a word-level similarity adopted by prior abstractive
models (Wang and Lee, 2018; Baziotis et al., 2019).
By following their approaches, we build an autoen-
coder with an additional seq2seq model (i.e., pre-
trained T5). We then design a reward to minimize
the reconstruction loss LAE with a scaling factor,
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Figure 3: Effect of multi-summary learning mechanism.

Figure 4: Learning curve of rewards.

i.e., RAE = exp (−LAE/σAE) ∈ (0, 1]. MSRP
with the word-level reward, i.e., −RC +RAE , sub-
stantially decreases ROUGE scores, indicating that
the semantic similarity is more effective in captur-
ing the core contents than the word-level similarity.
From the result, we show that the semantic simi-
larity is a reason for the superior performance of
MSRP compared to prior abstractive models.

Lastly, we replace the projection function f from
sent2vec with SentenceBERT (SBERT as f ) and
observe further improvements in ROUGE. This
result implies that an accurate projection function
f can enhance the summary quality of MSRP.

4.6 Effect of Multi-Summary Learning
We investigate which summary length benefits
from the MSL mechanism in Figure 3. MSRP tends
to generate higher-quality summaries in the short
length, i.e., 8 words, than our model not trained
under the MSL mechanism (MSRP w/o MSL). This
result connotes that MSRP can better learn to gen-
erate short summaries by referring to correspond-
ing long summaries than independently generating
short summaries.

4.7 Effect of Pretraining Task
In Figure 4, we inspect the effect of the PTR task.
MSRP more quickly optimizes the rewards (partic-
ularly the length reward RL) than the model not

Input: israeli prime minister shimon peres said monday he was con-
fident the ceasefire in lebanon would hold because it was in the best
interests of both countries as well as syria .

Reference: peres confident ceasefire will hold

MSRP: israeli pm confident ceasefire in lebanon will hold

NAUS: israeli minister shimon peres confident ceasefire in Lebanon

HC: israeli prime minister shimon peres confident in syria

Input: president bill clinton announced reforms of the central intel-
ligence agency aimed at restoring credibility in an espionage agency
tarnished by the discovery of a russian mole in its midst .

Reference: clinton announces us intelligence reforms

MSRP: president bill clinton announces reforms of intelligence agency

NAUS: bill reforms intelligence agency aimed at restoring credibility

HC: clinton reforms intelligence agency aimed at restoring credibility

Table 7: Case study with generated summaries. NAUS:
Liu et al. (2022), HC: Schumann et al. (2020).

pretrained (MSRP w/o PTR). This result implies
that PTR task enables the model to learn how to
control the summary length and summarize before
RL training. We thus posit that PTR task improves
the summary quality as RL training takes advantage
of the well-initialized model parameters.

4.8 Case Study

We study the generated summaries to deeply under-
stand the behavior and benefits of MSRP compared
to the best-performing baseline models (Table 7).
In the top example, MSRP generates an acronym pm
to replace prime minister, a new word that does not
appear in the input text. Similarly, MSRP generates
another new word, will, resulting in a similar sum-
mary to the human-written summary that cannot be
generated only by the extractive operation.

In the bottom example, MSRP changes the past
tense of the word announced to the present tense
announces, which is more appropriate for news
headlines than the past tense (Chovanec, 2003).
In contrast, the baseline models use reforms as a
verb, which can be reasonable. However, MSRP
preserves both important words announces and re-
forms so that the summary of MSRP is more similar
to the referential summary. We thus affirm that
MSRP surpasses the state-of-the-art extractive mod-
els by performing the abstractive operations for
summarization.

5 Conclusion

This work employs the RL for unsupervised ab-
stractive sentence summarization with the rewards
representing the summary quality and length. We
invent the multi-summary learning mechanism to
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make the summaries with varying lengths mutu-
ally enhance each other. In addition, we design the
prompt-based text reconstruction task to further im-
prove the RL training. Experimental results show
that MSRP achieves the state-of-the-art summary
quality on both automatic and human evaluation.

Limitations

RL enables summarization models to learn how
to summarize with rewards representing the sum-
mary quality even though the rewards are non-
differentiable. However, RL requires the word-
sampling process to generate summaries in the
training time. Thus, the computation time per
input text is inherently longer than the sequence-
to-sequence training with the cross-entropy loss,
which the best baseline adopt (Liu et al., 2022).

As a remedy, we expect non-autoregressive mod-
els can enhance the training efficiency of the RL
framework by generating words in parallel instead
of sequentially generating words, i.e., autoregres-
sive generation. An issue of non-autoregressive
models is the inferior quality of generated texts
compared to the autoregressive models (Su et al.,
2021), as non-autoregressive models are limited
to consider the previously-generated words. Thus,
future work can study non-autoregressive models
in the RL framework to enhance training efficiency
while maintaining the summary quality.

It is worth noting that the total training time of
MSRP is shorter than the one of the best baseline
(Liu et al., 2022) despite the RL training. The
best baseline depends on the summaries generated
by Schumann et al. (2020), while their inference
time is excessively long due to the search operation.
Based on the inference time in Appendix A.4, 27
hours are required to generate summaries for 3M
texts that are used by Liu et al. (2022), while the
training time of MSRP with the pretraining task
is about 8 hours. Thus, MSRP is more efficient
in terms of the total training time than the best
baseline if we consider its data-generation time.
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A Appendix

This appendix provides the details of our work.

A.1 Shape of scaling factors
In Figure 5, we provide the shape of the fluency and
length reward functions (RF ,RL) over different
values of the scaling factors. By tuning the scaling
factors (Section A.3.1), we observe that σF = 1000
and σL = 10 produce the best result. This result
indicates that smoother functions are desirable to
train MSRP than the original and steep functions,
i.e., σF = 1, σL = 1. We note that the mean of
the perplexity of GPT-2 on summaries is around
3,000. Low perplexity means high fluency. In
addition, we do not apply the exponential function
to the reward of content preservation (RC) as its
range is bounded into [0, 1] by cosine similarity
with normalization, i.e., (cos(·, ·) + 1)/2.

A.2 Details of Pretraining Task
We provide the details of prompt-based text recon-
struction task (Table 1). First, we shuffle a portion
of words in a given text t to make the model learn
to reorder the shuffled words into the original order.
Second, we drop a small number of words to give
the model the ability of adding words. Lastly, we
add words from another text t′ into the target text t,
which enables the model to learn to shorten a given
text by removing words in it. The resulting text
after the perturbations, i.e., t̃, and its clean text t
act as a text-summary pair. We set the ratio of shuf-
fling, dropping, and adding words to 10%, 10%,
and 100% of the number of words in input text t
after tuning them on the validation data.

To control output lengths, we specify the target
length |t| at the beginning of the perturbed text t̃:

t̃ = [p(|t|), w̃1, w̃2, · · · , w̃n]

where p(|t|) is the prompt in the form of ‘|t|:’ (e.g.,
‘20:’ in Table 1), w̃ is a word in the perturbed text
t̃, and n is the length of the perturbed text t̃. Thus,
by inserting the prompt to texts, the model can be
explicitly informed about the target length for the
original text.

A.2.1 Comparison with BART
In contrast to our task, BART (Lewis et al., 2020)
considers general language modeling, and thus it
only covers the deletion operation among the three
perturbations. We inspect the output of BART, and
observe that BART shortens only 3% of given texts,

Figure 5: Reward over different scaling factors.

while the model pretrained on our proposed task
can shorten all the given texts (100%). What’s even
worse is that BART mostly generates the same texts
with input texts (82% of input texts). Thus, we
claim that the proposed pretraining task is better at
summarization than the pretraining task of BART.
In addition, our pretraining task trains a model
to control the output length based on the length
prompt, whereas the pretraining task of BART does
not include the length information.

A.3 Implementation Details

A.3.1 Hyperparameters and Models
We tune the hyperparameters of MSRP based on RF-
1 on the validation data such as the learning rate
in {0.0001, 0.00005, 0.00001}6 with AdamW opti-
mizer, the batch size in {16, 24, 30}, and the num-
ber of training data in {100K, 500K, 1M, 3.8M}.
We set the weight for L2 regularization to 0.01. For
rewards, we tune the scaling factors such as σF
in {100, 1000, 10000} and σL in {1, 10, 100}. We
also tune λ in {0.001, 0.005, 0.01, 0.05, 0.1} and
α in {0.0, 0.3, 0.5, 1}.

For transformer models, we use HuggingFace li-
brary (Wolf et al., 2020). As a language model, we
use pretrained GPT-2 (Radford et al., 2019), which
consists of 6 layers, to obtain the fluency reward (ψ
in Equation 2).7 As a policy πθ, we use pretrained
T5 (Raffel et al., 2020), which consists of 6 layers
for each encoder and decoder.8 We select the small
architectures to save GPU memory. We also use
SentenceBERT in the public repository.9

A.3.2 Beam Search
We perform beam search to generate summaries
where the beam size is 20. We then select the best

6The best value for each hyperparamter is underlined.
7Model ID in HuggingFace library: distilgpt2
8Model ID in HuggingFace library: t5-small
9
https://github.com/UKPLab/sentence-transformers
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Patterns Words
Ending with in, at, to, on, the, ’s, of, a, for, with, is, into,

by, his, her, when, and, but
Including sunday, monday, tuesday, wednesday, thurs-

day, friday, saturday

Table 8: Undesirable patterns with the detailed words

summary that maximizes the following scores:

s(y) = RC(y, t) +RF (y) +RC(|y|, l)

where s is the score for the generated summaries.
The terms are the content preservation reward, the
fluency reward, and the length reward with a target
length l, respectively. Before computing the score
s, we remove undesirable patterns from generated
summaries. We use two types of patterns: 1) a
preposition, interrogative pronoun, or conjunction
such as to or when at the end of summaries, i.e.,
ungrammatical texts, and 2) a day of week such as
monday, i.e., less essential information. Refer to
Table 8 for the patterns. In table 9, we provide the
effect of beam sizes, which implies MSRP shows
consistently higher ROUGE scores than the base-
line models over different beam sizes, while MSRP
reaches the similar summary length to the that of
baselines with around 20 beams.

A.4 Analysis on Inference Time
Table 9 tabulates the inference time of MSRP and
the baseline models. We note that the number
of beams used by Liu et al. (2022) is 6. Schu-
mann et al. (2020) require the excessively-long
generation time due to the exhaustive search in
the inference time. Liu et al. (2022) reduce the
generation time by training a model based on
the outputs of Schumann et al. (2020) and using
a non-autoregressive model. Similarly, we train
MSRP based on the rewards, and thus it generates
summaries in short times while producing higher
ROUGE scores than the baseline models. It is
worth noting that the generation time of MSRP is
competitive to Liu et al. (2022) when we consider
that 1) the model size of MSRP is double of Liu et al.
(2022) and 2) MSRP is an autoregressive model
while Liu et al. (2022) use a non-autoregressive
model, which is faster than autoregressive models.

A.5 Pseudocode of MSRP

Algorithm 1 describes the pseudocode of MSRP dur-
ing the training time. We note that MSRP generates
summaries without referring to other summaries
with varying lengths in the inference time.

Model RF-1 RF-2 RF-L Len. Inf. Time

Schumann et al. (2020) 27.03 10.13 24.61 9.8 33.214
Liu et al. (2022) 28.55 9.97 25.78 9.8 0.043

MSRP (|B| = 1) 29.63 11.83 26.88 11.0 0.004
MSRP (|B| = 2) 30.29 12.28 27.56 10.2 0.018
MSRP (|B| = 5) 30.08 12.08 27.35 10.1 0.031

MSRP (|B| = 10) 30.03 12.00 27.25 10.0 0.060
MSRP (|B| = 20) 29.94 11.86 27.12 9.9 0.095
MSRP (|B| = 25) 29.80 11.83 26.99 9.8 0.121

Table 9: Evaluation with inference time per text in sec-
ond on Gigaword with a length of 10. |B|: beam size.

A.6 Reproducibility

Type MSRP trained with Sent2Vec as f

Length anonsubms/msrp_length
Ratio anonsubms/msrp_ratio

Type MSRP trained with SentenceBERT as f

Length anonsubms/msrp_length_sb
Ratio anonsubms/msrp_ratio_sb

Table 10: Model ID of MSRP in HuggingFace library.

We provide our source codes and data in
msrp.zip for reproducing the experimental results.
We also upload our models to HuggingFace library,
enabling anyone to use MSRP with a few lines of
code. Refer to the uploaded model in Table 10.
The type Length indicates MSRP trained for length-
based evaluation (Group A, B, and D in Table 2 and
3) and type Ratio is MSRP trained for compression
ratio-based evaluation (Group C in Table 2).

Algorithm 1: Pseudocode of MSRP
Input :A policy πθ , a set of texts T , a set of lengths

L, a learning rate η, a training type Type
Output :A trained policy πθ

1 while Convergence do
2 foreach t ∈ T do
3 if Type = multi-summary learning then
4 Y = {∅}
5 foreach l ∈ L do
6 yl ∼ πθ(·|l, t)
7 Y = Y ∪ {yl}
8 end
9 J (θ) = −EY ∼πθ(·|L,t)R⋆(Y, t).

10 end
11 else
12 l ∼ L ▷ Sample a length

13 yl ∼ πθ(·|l, t)
14 J (θ) = −Eyl∼πθ(·|l,t)R(y

l, t, l).
15 end
16 θ ← optimizer(θ,▽θJ (θ), η)
17 end
18 end
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