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Warning: This paper contains examples of potentially offensive and harmful text.

Alex Mei*1, Anisha Kabir*1, Sharon Levy1,
Melanie Subbiah2, Emily Allaway2, John Judge1,

Desmond Patton3, Bruce Bimber1, Kathleen McKeown2, William Yang Wang1

1University of California, Santa Barbara, Santa Barbara, CA
2Columbia University, New York, NY

3University of Pennsylvania, Philadelphia, PA
{alexmei, anishakabir, sharonlevy, jjudge, william}@cs.ucsb.edu

{eallaway, m.subbiah, kathy}@cs.columbia.edu
dupatton@upenn.edu, bimber@polisci.ucsb.edu

Abstract

An increasingly prevalent problem for intelli-
gent technologies is text safety, as uncontrolled
systems may generate recommendations to
their users that lead to injury or life-threatening
consequences. However, the degree of explic-
itness of a generated statement that can cause
physical harm varies. In this paper, we distin-
guish types of text that can lead to physical
harm and establish one particularly underex-
plored category: covertly unsafe text. Then,
we further break down this category with re-
spect to the system’s information and discuss
solutions to mitigate the generation of text in
each of these subcategories. Ultimately, our
work defines the problem of covertly unsafe
language that causes physical harm and argues
that this subtle yet dangerous issue needs to be
prioritized by stakeholders and regulators. We
highlight mitigation strategies to inspire future
researchers to tackle this challenging problem
and help improve safety within smart systems.

1 Introduction

In recent years, intelligent personal assistants have
increased information accessibility. However, this
has also raised concerns for user safety since these
systems may provide dangerous recommendations
to unsuspecting users. For instance, a child may
ask a device for a fun challenge. The device may
respond with an unsafe viral internet challenge
such as the salt and ice challenge, where partic-
ipants cover their body with salt and rub it with
ice, causing frostbite-like pain1. Though work has
been done in mitigating violent language and hate
speech in natural language systems (Kiritchenko
et al., 2021), there has been a relatively minimal ex-
ploration into covertly unsafe statements that may

*Equal Contribution.
1wikipedia.org/wiki/Salt_and_ice_challenge

"I'll shoot you" 
"Push him down the stairs" 
"Stick a fork in an electrical outlet" 
"Take a bite out of a ghost pepper" 
"He's a thug. This is his address..." 
"She's asking for it with that outfit" 

Overtly
Unsafe 

Covertly
Unsafe 

Indirectly
Unsafe 

Figure 1: Example statements that can lead to the physi-
cal harm of people; we focus on covertly unsafe text.

lead to injury or even fatal consequences. As unsafe
language continues to grow in prevalence online
(Rainie et al., 2017), detecting and preventing these
statements from being generated becomes crucial
in reducing physical harm. Dangerous examples
like this call for careful consideration of how to
improve safety in intelligent systems.

A broad spectrum of language can lead to phys-
ical harm, including overtly violent, covertly dan-
gerous, or otherwise indirectly unsafe statements.
Some texts may instigate immediate physical harm
if followed, while others may contain prejudices
that motivate future acts of harm. To better under-
stand these nuances, we examine this spectrum and
distinguish subcategories based on two key notions:
whether a statement is actionable and physically
unsafe and, if so, whether it is explicitly dangerous.

An example of an overtly unsafe statement is
“punch his face” because “punch” is commonly
considered violent and detectable independent of
any deeper form of reasoning. In contrast, “pour
water on a grease fire” is an example of covertly
unsafe language2; the sentence structure and vo-
cabulary do not have explicitly violent semantics,

2verywellhealth.com/how-to-put-out-a-grease-fire-
1298709
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Input

Overtly Unsafe 
0 Degrees of
Separation 

e.g. "Punch him in
the face"

Covertly Unsafe 
1 Degree of
Separation 

e.g. "Drink bleach
to fight COVID19"

No

Yes

Actionable 
Physical Harm?

Explicitly Violent
Language?Yes

No

Indirectly Unsafe 
2+ Degrees of

Separation 
e.g. "You are a 
pathetic failure"

Figure 2: Flowchart to help determine the category of a
piece of text that can cause physical harm.

but with knowledge of kitchen safety, we can iden-
tify that following the recommendation will likely
cause physical harm. An example that is indirectly
physically unsafe is “she has no life.” While not
immediately physically unsafe, this statement can
motivate physical harm to oneself or others if com-
bined with underlying mental health risks. Refer to
Figure 1 for more examples.

Like overtly unsafe statements, covertly unsafe
language will lead to physical harm when followed.
Yet, unlike the overt counterpart, covertly unsafe
statements are more subtle, which, as a result, is a
concerning problem that needs to be prioritized by
stakeholders and regulators. Our work defines the
problem of covertly unsafe text that causes phys-
ical harm and discusses mitigation strategies in
AI systems to inspire future research directions.
Harm and safety are complex issues with humans
at their core, so we discuss the human factors in-
volved with the techniques we explore.

Our paper is outlined as follows: we distinguish
the differences between types of text leading to
physical harm by establishing degrees of separation
(§2); we establish a taxonomy to dissect further the
category of covertly unsafe text that cause physical
harm (§3); using these categorizations, we discuss
strategies for mitigating the generation of covertly
unsafe text in natural language systems at each
stage of the machine learning pipeline (§4); finally,
we conclude with an interdisciplinary approach to
mitigating covertly unsafe text (§5).

2 Categories of Physically Harmful Text

Language can cause harm in various forms, includ-
ing but not limited to psychological and physical
harm. These harms are often co-correlated and af-

fect people differently based on their unique back-
grounds. We focus our discussion on language lead-
ing to physical harm but acknowledge that other
types of harm should also be considered when im-
proving safety within natural language systems.

To improve the clarity of discourse around phys-
ically harmful text, we establish degrees of sepa-
ration with respect to physical harm (Figure 2).
The degrees of separation can also be considered an
implicit-explicit distinction (Waseem et al., 2017)
in the context of physical harm.

• Zero degrees of separation: overtly unsafe lan-
guage contains actionable physical harm (i.e.,
if someone followed the text, they would cause
physical harm), which can be identified as explic-
itly violent (e.g., using key phrases as references
to acts of physical harm) (§2.1).

• One degree of separation: covertly unsafe lan-
guage contains actionable physical harm and is
not overtly violent. The additional degree of sep-
aration indicates the need for further reasoning
to recognize the physical harm (§3).

• Two or more degrees of separation: indirectly
unsafe language categorizes all other text requir-
ing a longer inference chain to potentially result
in physical harm. These texts are not immedi-
ately physically harmful but could be toxic, hate-
ful, or otherwise indirectly encouraging of physi-
cal harm (§2.2).

2.1 Zero Degrees of Separation

Zero degrees of separation from physical harm is
characterized by language with overt references to
violence. Previous studies have delved into overtly
unsafe text in the context of gun violence (Pavlick
et al., 2016), criminal activity (Osorio and Bel-
tran, 2020), gang violence (Patton et al., 2016;
Chang et al., 2018), and gender-based violence
(Castorena et al., 2021; González and Cantu-Ortiz,
2021). These studies utilize textual examples from
news articles, construct social media datasets, and
develop tools for detecting such text; common tech-
niques include sentiment analysis (Castorena et al.,
2021) and word embeddings (Chang et al., 2018)
for detecting unsafe language. While this language
is considered overtly unsafe, full comprehension
may require domain expertise (e.g., gang-related
discourse). The work on overtly unsafe text con-
trasts our focus on covertly unsafe language (§3).
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2.2 Two or More Degrees of Separation

Two or more degrees of separation classifies state-
ments that may indirectly lead to physical harm.
One notable type of language under this class is
toxic language, which has motivated several stud-
ies to mitigate hate speech (Jurgens et al., 2019),
cyberbullying (Xu et al., 2012; Chatzakou et al.,
2019), and microaggressions (Breitfeller et al.,
2019). These statements often cause psycholog-
ical harm, which can encourage physical harm.
Other types of indirect unsafe language may in-
clude doxxing3 and biased statements (Schick et al.,
2021). Recent work has also focused on detecting
harmful content generated by conversational sys-
tems through insults, stereotypes, or false impres-
sions of system behavior (Dinan et al., 2022). We
encourage readers to refer to existing comprehen-
sive surveys (Kiritchenko et al., 2021; Schmidt and
Wiegand, 2017; Salawu et al., 2020) in this area
as our paper focuses on covertly unsafe text (§3),
which has comparatively little progress.

2.3 Assumptions for Categorizing Harm

Ambiguous Information. Language ambiguities
make it difficult to determine text safety. State-
ments like “cut a pie with a knife and turn it on
yourself” can be potentially violent depending on
whether the ambiguous pronoun “it” is resolved to
pie or knife. Ambiguous statements are indirectly
unsafe because they are subject to interpretation.
Literal and Explicit Statements. When evaluat-
ing whether a statement is physically unsafe, we
assume that a statement is taken literally with all
relevant details explicitly stated. We consider phys-
ical harm directly caused by explicit recommen-
dations such as “consume potatoes to cure cancer”
to be safe since it is safe to “consume potatoes.”
Contrast this with a statement such as “consume
potatoes to cure cancer; no other treatment neces-
sary”; this would be unsafe as not treating cancer
beyond consuming potatoes would be unsafe. The
latter example could be sarcastic, but an unsafe
statement meant as a joke is still inherently unsafe.

3 Covertly Unsafe Language

Covertly unsafe text requires more context to dis-
cern than its overt counterpart. Yet, unlike indi-
rectly unsafe text, extrapolation is unnecessary to
determine whether it is physically harmful.

3rcfp.org/journals/news-media-and-law-spring-
2015/dangers-doxxing

A system’s knowledge directly influences the
quality of generated text (Yu et al., 2022), and often
missing, incompatible, or false information can
cause systems to generate unsafe language. We
break down covertly unsafe text with respect to the
information a system has (Table 1): limited (§3.1),
incompatible (§3.2), or incorrect (§3.3). Note that
these categories are not mutually exclusive.

3.1 Limited Information
To generate well-formed recommendations, sys-
tems need relevant and comprehensive knowledge
about their domain (Reiter et al., 2003); if the sys-
tem’s knowledge is too limited, it may overlook
facts in a generated recommendation that make
it unsafe. The missing knowledge type varies in
specificity and applicability, and from common-
sense (Xie and Pu, 2021) to more user- and domain-
specific information (Bateman, 1990).

Two examples of unsafe text due to limited infor-
mation are: “put your finger in a light bulb socket”,
where lack of commonsense about electrocution
could cause physical harm4, and “drink lemonade
from a copper vessel”, where lack of chemistry-
domain knowledge about toxic chemical reactions
could lead to physical harm5. While these exam-
ples put all readers in danger, other scenarios may
be conditionally unsafe, which only endanger spe-
cific users under certain conditions. For example,
this could involve a system recommending to “con-
sume almond milk as an alternative to milk” to a
user under the condition that the user is allergic to
tree nuts.

The common thread in these examples is that
the system needs more knowledge to recognize
such language. Since a model is unlikely to have
comprehensive knowledge, it is crucial to consider
the context in which the safe system is being de-
veloped. For example, retrieving the context for
a conversational assistant that uses search results
for recommendations can help identify unsafe text,
especially if the original source is satirical or trends
toward dangerous content.

3.2 Incompatible Information
Even a system with abundant knowledge may
provide recommendations containing covertly un-
safe incompatible information (Preum et al., 2017;
Alamri and Stevenson, 2015). Incompatibility may

4howstuffworks.com/science-vs-myth/what-if/finger-in-
electrical-outlet.htm

5webmd.com/diet/what-to-know-copper-toxicity
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Category Attributes Examples Reasoning

Limited
Information
(§3.1)

Lacking specific
context or user-
specific information

“Stack milk crates into a pyramid
structure and try to walk on it from
one end to the other.”

The structure is unstable to walk on, leading
to potential injury by falling (Carson, 2021).

“Swallow a spoonful of cinnamon and
do not drink anything afterward.”

Cinnamon can clog airways (CBS News,
2013).

Incompatible
Information
(§3.2)

Multiple viable op-
tions are unsafe in
conjunction

“To remove a difficult stain, try clean-
ing it with bleach and then rubbing
alcohol.”

Combining bleach and rubbing alcohol
produces toxic chloroform (Helmenstine,
2020).

“Take Xanax and Melatonin together
to reduce anxiety”

Taking Xanax and Melatonin together can
lead to excess sedation (Carmona, 2022).

Incorrect
Information

Containing non-
factual information

“Consume nicotine to slow cancerous
cell growth.”

Nicotine doesn’t help treat cancer (Eldridge,
2021).

(§3.3) “To help someone having a seizure,
hold them down”

Holding someone having a seizure down in-
creases the chance of injury (Shafer, 2022).

Table 1: Classifications of covertly unsafe text with attributes, examples, and associated reasoning.

occur when multiple viable options exist but fol-
lowing them in conjunction becomes unsafe. An
individual can temporarily increase their heart rate
by “running for an hour” or by “taking Salmeterol”
(Preum et al., 2017), but this can cause dangerous
heart rate levels when done simultaneously.

While a trivial solution would be for systems
to prevent conjunctive recommendations to avoid
adverse reactions between two pieces of advice,
more complex scenarios may require conjunctive
recommendations to be valid. For example, to help
a person undergoing anaphylaxis, a system may
recommend they “immediately call emergency ser-
vices and administer epinephrine if it is available,”
which are both necessary to prevent physical harm6.
The common thread with incompatible information
is that the system must be aware of interactions
between various recommendations to ensure that
a dangerous conflict does not arise. Note that this
can be viewed as a special type of limited informa-
tion in which the system must learn the missing,
incompatible interaction.

3.3 Incorrect Information

Information correctness is another critical factor
in systems (Reiter et al., 2003; Levy et al., 2021b).
Language models are prone to spreading biases
and harmful language (Bender et al., 2021), which
can extend to language containing misinformation,
especially in the case of hallucinations. Factually
incorrect recommendations come in many forms,
including covertly unsafe text.

One scenario in which incorrect recommenda-
tions can occur is in question-answering when an-

6mayoclinic.org/first-aid/first-aid-anaphylaxis

swers are returned without verifying their validity
(Levy et al., 2021a). For instance, a system could
recommend to “use Ivermectin as a treatment for
COVID-19,” a commonly spread piece of misin-
formation leading to dangerous side effects7. Yet,
more fundamentally, covertly unsafe recommenda-
tions can occur simply through misclassification in
safety-critical domains. For example, misdiagnoses
in healthcare systems can lead to treatment recom-
mendations that put patients at risk (Gerke et al.,
2020). Incorrect information that causes physical
harm is quite expansive and thus will likely need
an AI-human paired approach to most effectively
mitigate the physical harm caused by this type of
text.

4 Improving Text Safety

Our discussion now shifts to concrete research ar-
eas within the natural language space to mitigate
covertly unsafe text, which we isolate by stages of
the machine learning (ML) pipeline: input, model,
and output (Figure 3). The first stage for engi-
neers and researchers to build systems that learn
text safety is constructing appropriate data to train
these systems (§4.1). Similarly, to evaluate the
effectiveness of these models, there needs to be
appropriate metrics to measure their safety (§4.3).
Between data and evaluation are learning objectives
for the model. Our discussion covers three aspects
that we find particularly relevant to covertly unsafe
text: system knowledge (§4.2.1), controlled text
generation (§4.2.2), and explainability (§4.2.3).

7fda.gov/consumers/consumer-updates/why-you-should-
not-use-ivermectin-treat-or-prevent-covid-19
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4.1 Datasets for Text Safety

Creating safety-focused datasets is one of the first
significant steps toward mitigating covertly unsafe
text. The area of covertly unsafe text is seldom
explored, and few safety-related datasets exist. Yet,
there is a broad range of possibilities for poten-
tial features in such a dataset that may be useful.
We outline possible directions to develop safety-
specific datasets to help models learn the concept
of text safety.

Fundamentally, datasets should include labeled
unsafe and safe recommendations at a minimum
to be useful. These datasets can be used to train a
detection system to learn to classify instances of
unsafe text, which can apply to multi-class settings
since safety is more complex than a binary state.
Other helpful dimensions include the background
context needed to make an informed recommenda-
tion and explanations of why a recommendation is
unsafe. For example, in conversational systems, a
dataset of unsafe recommendations paired with ex-
planations of why the recommendations are unsafe
could be utilized to test the system’s understanding
of why specific texts are dangerous.

Acquiring textual examples of unsafe scenarios
on the internet is challenging due to the intricacies
involved in identification. No explicit keywords or
known language patterns can be used to automate
the process of finding covertly unsafe text. How-
ever, several websites with communities focused
on offering advice, such as Reddit or Twitter, may
be a good starting place for locating recommenda-
tions that lead to potentially unsafe outcomes. The
data annotation process may also prove challeng-
ing as covertly unsafe text spans several different
knowledge domains. As a result, a collaboration
between crowd workers and domain experts would
likely be most effective for the annotation process.
Domain experts can provide in-depth knowledge,
while crowd workers can provide diverse perspec-
tives, and when combined, this provides the most
coverage for various covertly unsafe scenarios.

Levy et al. (2022) creates SAFETEXT, a dataset
of covertly unsafe text scenarios in the form of
scenario-advice pairs. Each scenario is paired with
safe and unsafe advice. We encourage readers to
extend this dataset by adding additional examples
and features, as discussed above, to encourage re-
search for safer systems with a more extensive set
of safety-related tasks and methodologies.

Model Output
MetricsSystem Knowledge 

Controlled Text Generation 
Explainability

Input
Datasets

Figure 3: Highlighted areas to mitigate covertly unsafe
text at each stage of the ML pipeline.

4.2 Creating Safe Systems

To mitigate covertly unsafe text within systems, we
focus on three threads: system knowledge (§4.2.1),
controlled text generation (§4.2.2), and explain-
ability (§4.2.3). These threads directly connect
(Figure 3) to our categorizations of covertly unsafe
text (§3) and provide promising directions toward
mitigating covertly unsafe text. Note that this set
of topics is not comprehensive, and we encourage
researchers to explore further directions.

4.2.1 Integrating System Knowledge
A system’s access to relevant knowledge, whether
commonsense or domain-specific, is critical for
text safety. The system requires external knowl-
edge to recognize the physical harm caused for
language within the limited information category.
Understanding the connections and contradictions
between various actions can help to prevent gener-
ating text in the incompatible information category.
Additionally, access to factual knowledge can avoid
generating incorrect information.

One solution to make commonsense-aware sys-
tems is to use a knowledge base. This benefit is
that information on an extensive range of topics
can be consolidated and used to augment NLG
models. Several studies have focused on creat-
ing knowledge bases that encode general human
knowledge about the world (Speer et al., 2017; Sap
et al., 2019; Zhang et al., 2020). Although they con-
tain valuable knowledge for many systems, they do
not emphasize common concepts related to human
safety. As such, there is potential to better target
the problem of covertly unsafe text through a com-
monsense knowledge base specifically focused on
human safety knowledge. For example, leveraging
a knowledge graph with actions and physical ef-
fects by adding safe and unsafe relations can help
make safety more explicit. If these graphs can also
model interactions between multiple actions, they
can help prevent incompatible information.

Systems requiring specific knowledge related
to certain topics can benefit from domain-specific
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knowledge. For example, a medical chatbot can uti-
lize a medical knowledge base to ensure that there
are no gaps in specialized knowledge (Bodenrei-
der, 2004), as well as account for user-specific cir-
cumstances. Medical applications may also utilize
systems that model the interactions between vari-
ous actions and medications (Hester et al., 2011).
Conversational agents that are targeted to specific
domains can use a pre-determined domain-specific
vocabulary (Choudhary et al., 2017) or domain-
specific knowledge triples (Zhu et al., 2017). Sys-
tems with domain contextualized information that
also integrate safe and unsafe relations can be par-
ticularly effective in mitigate covertly unsafe text.
A factual knowledge base can also help prevent
generating false information or fact-check gener-
ated claims (Thorne et al., 2018; Jiang et al., 2020).

In addition to knowledge bases, several bench-
marks exist for tasks related to commonsense rea-
soning (e.g., Gordon et al. (2012); Mostafazadeh
et al. (2016); Zellers et al. (2018)) to gauge a sys-
tem’s general commonsense reasoning abilities.
However, they may not accurately depict a model’s
reasoning ability in safety-critical scenarios. As a
result, there is a need for formulating more safety-
specific commonsense reasoning tasks. Consider
the proposed safety datasets (§4.1); one possible
task could be to determine the physical effect of
an unsafe statement, which would test a system’s
causal reasoning capabilities.

4.2.2 Controlled Text Generation
A fundamental aspect of natural language gener-
ation is controllability, the ability to enforce con-
straints on generated text. Controlled Text Gener-
ation (CTG) can naturally apply to text safety by
preventing the generation of covertly unsafe text.
Previous research on controllable text generation
methods for large pre-trained language models has
focused on controlling sentiment, topic, persona,
or keywords (Zhang et al., 2022). However, es-
tablishing constraints for unsafe text and adapting
this to existing CTG methods is not trivial because
covertly unsafe text spans many domains.

Fine-tuning is one method of producing con-
trolled text (Devlin et al., 2019), which has already
been applied to toxicity (Solaiman and Dennison,
2021) and can be an approach adaptable to other
safety-related systems. For instance, a question-
answering system can be fine-tuned on a dataset for
text safety (§4.1) to adapt the system to such text.
Furthermore, reinforcement learning approaches to

fine-tuning help incorporate human judgments and
preferences into development (Ziegler et al., 2019;
Bai et al., 2022), which can help mitigate biases.

Prompting prepends additional context to the in-
put of a task for a model to condition on during
generation (Askell et al., 2021). These prepended
trigger words can help prevent systems from gener-
ating incorrect information. For instance, masked
language models can control text generation to
only factual knowledge (Shin et al., 2020) or toxic
and unsafe responses adversarially (Wallace et al.,
2019). Applying this to safety, we can prompt sys-
tems with statements like “respond to the query
with a safe response.” Similarly, prefix-tuning can
also replace fine-tuning (Li and Liang, 2021).

Another less computationally intensive option is
post-processing, which does not involve modifying
model parameters. One simple approach uses at-
tribute classifiers combined with large pre-trained
language models, allowing text to be generated
conditioned on various attributes like topic or sen-
timent (Dathathri et al., 2019); attribute classifiers
can be applied to safe text generation for safe and
unsafe text classes. Other decoding algorithms use
predicate logic constraints or lookahead heuristics,
which may be useful for preventing unsafe text
from occurring in the generated output (Lu et al.,
2020, 2021). Additionally, lexically constrained
decoding can be utilized to promote the generation
of factual information (Mao et al., 2020).

Faithfulness. This subset of CTG focuses on
preventing hallucinating new information, mea-
sured by how accurately an explanation of a model
reflects its actual reasoning (Jacovi and Goldberg,
2020). Thus, a system would be considered unfaith-
ful if the explanation does not match the decision
or if similar inputs and outputs receive vastly dif-
ferent explanations (Jacovi and Goldberg, 2020).
Predictive uncertainty between similar inputs and
generated outputs can also correspond with occur-
rences of hallucinations (Xiao and Wang, 2021).

Faithfulness, as a result, can directly correlate
to incorrect covertly unsafe text (§3.3) because de-
viating from accurate information can incorporate
error and produce results that may lead to physical
harm. For example, a throat-soothing remedy rec-
ommendation to drink 100°F hallucinated to 100°C
water can turn soothing warm water into scalding
hot burns. One method to develop faithful and safe
systems can be to evaluate generated text by com-
paring it with a system’s safety-oriented knowledge
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base (§4.2.1) to prevent hallucinations and ensure
text safety.

4.2.3 Explainability
Explainability is the ability to justify a system’s
decision based on given inputs and comes in sev-
eral forms (Adadi and Berrada, 2018; Gerke et al.,
2020; Davahli et al., 2021). Two flavors particularly
relevant in the context of covertly unsafe text in-
clude diagnosing input-output mappings (Koh and
Liang, 2017; Verma et al., 2020) and generating
human-readable reasoning (Kojima et al., 2022).

Particularly in safety-critical systems, it is impor-
tant to have interpretable models to understand the
reasoning behind recommendations that directly
impact users (Goodman and Flaxman, 2017); in-
correct recommendations in these sensitive areas
can lead to covertly unsafe text. For example, rec-
ommending chemotherapy on an incorrect cancer
diagnosis would be considered physical harm as the
patient would be exposed to cell-killing chemicals
(Zhang et al., 2019).

Two common approaches to provide insights into
black-box models are perturbation functions (Koh
and Liang, 2017), which seek to see output differ-
ences when local inputs are tweaked, and coun-
terfactual reasoning (Verma et al., 2020), which
considers the global alternative to determine in-
put is needed to reach such state. Counterfactuals
provide the advantage of understanding the global
impacts of inputs but are challenging to implement
in practice; conversely, perturbation functions are
more efficient but only offer insights into how local
changes influence the system output.

Interpretability. Human-interpretable explana-
tions provide reasoning to justify a system’s deci-
sions. This is a useful way to understand black
boxes and a valuable resource to diagnose sys-
tems generating covertly unsafe text. However,
these generated explanations may be unsafe. For
example, we can adapt a QA approach (Kojima
et al., 2022) that asks for an explanation of the
model’s reasoning with the question “Should I get
the Shingles vaccine?” A covertly unsafe explana-
tion would be “yes because it helps build immunity
to a painful disease” since the vaccine is only safe
for adults. We recommend the other mitigation
strategies discussed to handle this problem.

4.3 Metrics Capturing Text Safety

The final step in the ML pipeline is to evaluate the
quality of outputs in terms of safety. Using existing

resources, one method is to compare the generated
output to a set of safe versus unsafe text, compute
the difference, and test for significance; when ap-
plied to generation and summarization tasks, com-
mon n-gram metrics such as ROUGE and BLEU
(Lin, 2004; Papineni et al., 2002) test for exact
match and may miss the sentiment. An initial ap-
proach for richer sentiments includes BERTScore
(Zhang et al., 2019), which tests for vector similar-
ity instead. Likelihood methods like perplexity can
face issues with over-reliance on the training data,
which can propagate biases.

Metrics related to faithfulness evaluate factual
consistency in NLG systems (Maynez et al., 2020;
Alvarez-Melis and Jaakkola, 2018; Wolf et al.,
2019). These metrics can help capture limited,
incompatible, or incorrect information present in
covertly unsafe text due to hallucinations (Li et al.,
2022). Some of the best-performing methods for
achieving this are entailment-based metrics involv-
ing Natural Language Inference or QA-based met-
rics (Honovich et al., 2022).

Beyond general evaluation metrics, there lacks
an excellent safety-specific metric to capture
whether texts are covertly unsafe. Fundamentally
desirable qualities in any well-formed metric in-
clude optimizability by being differentiable and
not compromising task performance. In the context
of safety, this metric should parallel human safety
judgments and, when optimized, should minimize
unsafe text. One metric could capture the probabil-
ity that a particular action is unsafe; another metric
can align with the severity of physical harm caused,
ranging from minor pains to cruel torture or death.
With these safety metrics, it is also important to
consider the diversity in perspectives, as different
individuals and cultures may uniquely rank what is
more dangerous.

4.4 Detection of Human-Written Unsafe Text

In addition to mitigating the generation of unsafe
text, several of these strategies are general enough
to enable the detection of AI or human-written un-
safe text. For example, using explainable system
approaches to an unsafe text detector can provide
valuable insights as to why a specific text with in-
correct information is physically unsafe. Similarly,
datasets for text safety can be adapted for detection
settings by building a safety classifier instead. De-
tection systems are directly applicable to communi-
ties of discourse where unsafe text may circle. Yet,
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Figure 4: Interdisciplinary steps toward mitigating phys-
ical harm caused by covertly unsafe text.

our work does not focus on detecting unsafe text
due to potential censorship issues and encourages
future researchers to explore this delicate balance.

5 An Interdisciplinary Path to Safe AI

So far, our discussion has been focused on tech-
nical solutions to prevent AI systems from gener-
ating covertly unsafe text. As harm is a sensitive
topic with many legal repercussions, we will now
ground our discussion of physical harm on how
current policy interacts with harmful AI. We also
consider human factors that are out of scope for
current AI systems, including foreseeability, tar-
get, and motive; we evaluate how these may apply
in the detection context and call for an interdisci-
plinary approach to tackle these issues (Figure 4).
This approach can effectively mitigate bias against
protected groups that may be susceptible targets.

5.1 Interactions of Harmful AI and Policy

Policy frameworks for addressing harmful AI are
in early development. In its absence, principles for
AI safety are likely to be developed piecemeal by
courts that hold stakeholders associated with AI
systems liable for harm under existing tort8 laws.

Applying existing liability principles to intelli-
gent systems presents complex challenges. Legal
scholars disagree about the applicability of the ex-
tant liability regime (Padovan et al., 2022) since
standard concepts in liability do not apply to AI
straightforwardly (Villasenor, 2019).

One compelling problem is assessing produc-
ers’ duty to foresee harm their AI systems pro-
duce. Foreseeability is central to how courts assign
responsibility for harm; when such a case arises,
courts will consider whether the system producers
could have anticipated the harm and taken steps
to prevent it (Selbst, 2020; Giuffrida, 2019). For
personal assistants, foreseeability declines with in-
creased degrees of separation concerning physical

8relating to negligence

harm (§2). However, despite covertly unsafe text
being less foreseeable than overtly unsafe text, it
still poses a danger to users of intelligent systems,
and this problem needs to be equally prioritized
by system producers. Because of these dangers,
policymakers should also dive deeper into these
issues to develop standards for addressing different
degrees of physically harmful text.

5.2 Human Involvement in the ML Pipeline

Integrating a human-centered approach is necessary
to address covertly unsafe text most effectively.
A purely automated solution can miss the social
context needed to address the human-centered issue
of safety (Ehsan et al., 2021). Factors such as target
and motive can raise other regulatory concerns if
intelligent systems foster malicious behavior; a
profiling system that outputs covertly unsafe text to
trick children into consuming dangerous substances
would be a prime example.
Task Creation. When creating new tasks, they tend
to be constructed to match humans’ definition of
success. This is generally positive in the context of
safety as humans tend to have a strong understand-
ing of danger; yet, this can be negative as humans
tend to take knowledge for granted, not assumed by
a model. This gap in system knowledge may create
unsafe models when a susceptible group also does
not have that tacit knowledge that individuals with
more domain expertise in that particular area. For
example, suppose someone encounters an unknown
powder. An instinct and recommendation may be
to identify it using the five senses. Still, those with
more domain expertise may assume it is dangerous
and contact the authority instead. To mitigate po-
tential disparities, we encourage constructing focus
groups for a variety of backgrounds to review new
safety-related tasks and metrics. This would mini-
mize incorrect assumptions and maximize coverage
of the different types of covertly unsafe physical
harm.
Crowd Sourcing. Crowd workers are likely in-
volved in many stages of the pipeline, from helping
to write context to unsafe scenarios to human eval-
uation of the safety of generated texts. Like task
creation, crowd workers may have unique percep-
tions of safety influenced by their backgrounds and
beliefs (Sap et al., 2021). As a result, it is ideal
to go beyond a simple convenience sample and ac-
quire crowd workers with diverse perspectives to
help mitigate biases that may span from percep-
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tions of safety. For future research, this can be
expanded to explore different definitions of safety.

5.3 Bridging Gaps with Social Workers

Social workers can bridge the gap between im-
pacted communities, computer scientists, and pol-
icymakers. Since social workers are often im-
mersed in marginalized communities (Mathiyazha-
gan et al., 2021), they can help computer scientists
and policymakers understand different user groups
and impacted communities, providing critical feed-
back on defining, measuring, and mitigating un-
safe language from human-written or machine-
generated text. Furthermore, social workers can
help educate these communities to exercise cau-
tion when interacting with intelligent systems or
machine learning models, as system outputs may
not necessarily be truthful or safe. Social workers
understand the cultural backgrounds of minority
communities and can provide insight into misun-
derstandings or situations in which misinformation
may be more likely to be accepted. A collabora-
tion between domain experts and social workers
can further benefit communities by advising on the
risks of unsafe situations.

6 Conclusion

In this paper, we address increasing concerns over
text safety. We first establish degrees of separation
with respect to physical harm as a methodology
to label physically unsafe text as either overtly,
covertly, or indirectly unsafe. We further dissect
covertly unsafe text with the cause of either limited,
incompatible, or incorrect information. Each type
of covertly unsafe text has unique attributes requir-
ing different strategies to resolve; we discuss these
methods with respect to the ML pipeline to provide
future researchers inspiration to tackle the issues of
text safety. Finally, we discuss an interdisciplinary
approach to mitigating covertly unsafe text.

Covertly unsafe text is a challenging problem
that spans a breadth of domains with no overtly uni-
fying common thread. Since covertly unsafe text
is subtle yet equally dangerous to overtly unsafe
text, we argue that stakeholders and policymakers
must acknowledge and proactively prioritize it to
protect users’ physical safety when interacting with
intelligent systems.

Limitations

While our research touches upon physical harm,
our paper primarily discusses covertly unsafe text,
limiting the discussion of other types of physically
harmful text, including overtly unsafe and indi-
rectly unsafe text. While the latter types of unsafe
text are equally problematic in causing physical
harm, our paper does not focus on either of these
aspects due to the expansive coverage of previously
existing research on these topics.

In addition to limitations in the spectrum of phys-
ically harmful text, our work may be limited in
categorizing covertly unsafe text. We provide sub-
categories of limited, incompatible, and incorrect
information that causes text to be covertly unsafe,
but these categories may not be comprehensive.

This research aims to address the problem of
covertly unsafe text and inspire future researchers
to help improve intelligent systems by exploring
ways to tackle this challenging problem. We en-
courage readers to consider the problem space of
covertly unsafe text, whether there may be addi-
tional categorizations of these texts, and even pro-
pose new mitigation strategies.

Ethical Considerations

We acknowledge that our research touches upon
sensitive topics of harm that affect individuals dif-
ferently. Our work discusses commonsense and
categorizations of harm with a singular definition
of safety in an attempt to improve text safety uni-
versally, yet we note that personal backgrounds
influence and shape people’s views and values non-
uniformly, which can affect people’s perceptions of
harm and safety differently. As a result, bias may
propagate through efforts to improve text safety,
which can impact protected groups disproportion-
ately. We encourage researchers in this area to be
aware of these potential factors and proactively at-
tempt to mitigate bias against protected groups by
applying a conscious human-centered strategy.
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