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Abstract
An adversarial attack generates harmful text
that fools a target model. More dangerously,
this text is unrecognizable by humans. Exist-
ing work detects adversarial text and corrects
a target’s prediction by identifying perturbed
words and changing them into their synonyms,
but many benign words are also changed. In
this paper, we directly detect adversarial text,
correct the prediction, and suggest perturbed
words by checking the change in the hard la-
bels from the target’s predictions after replacing
a word with its transformation using a model
that we call CHECKHARD. The experiments
demonstrate that CHECKHARD outperforms
existing work on various attacks, models, and
datasets.

1 Introduction

Currently, deep-learning-based models achieve
high performance on many NLP tasks. However,
those models are still sensitive to adversarial at-
tacks. These attacks can only perturb a small
amount of an input text, which is sufficient to fool
the models. More dangerously, the modified text
still preserves its original meaning, and humans
cannot recognize the modification in the text. We
set three objectives for this paper. First, we detect
the adversarial text to recognize an adversarial at-
tack. Second, we correct the prediction to protect
models against adversarial attacks. Last, we sug-
gest perturbed words in the adversarial text. These
suggestions can be used to reduce the effect of
perturbed words in other tasks (e.g., text summa-
rization or opinion mining).

Previous works suggested perturbed words for
downstream tasks including adversarial text de-
tection and prediction correction. These per-
turbed words can be identified by using the
BERT model (Zhou et al., 2019) or word fre-
quency (Mozes et al., 2021). However, many be-
nign words are identified instead, which remark-
ably affects the downstream tasks.
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Figure 1: Generation of adversarial text and conflicting
predictions after changing an individual word in the
adversarial text.

Motivation: Adversarial text must satisfy two
criteria: (1) it fools a target model and (2) preserves
the original meaning. There is little text satisfying
these two criteria. Figure 1 presents an example
from SST-2 in which the CNN model is attacked
by probability weighted word saliency (PWWS).
The CNN model classifies the input text into two
classes, i.e., positive and negative. PWWS perturbs
words in the text until the CNN model is fooled.
During the attack, only the last text becomes adver-
sarial, as it renders the CNN prediction incorrect,
while other perturbed text is still correctly predicted
by the CNN model. Here, we realize another phe-
nomenon as follows: If we continue transforming1

the adversarial text by replacing the perturbed word
(e.g., “charter”) with similar words, many conflicts
appear between the predictions made for the trans-
formed text and the prediction of the adversarial
text. In contrast, the transformed text obtained by
replacing the benign word (such as “film”) presents
no conflict.

Contribution: We propose a simple method,
namely, CHECKHARD, which detects adversarial
text, corrects predictions, and suggests perturbed
words. (1) For adversarial text detection, we first

1We often use “transforming” instead of “synonymyzing”
for CHECKHARD, which is compatible with other operations
(e.g., character modification and word deletion).
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perform transformations for the input text by re-
placing each individual word with similar words.
We then check the conflicts in the predictions for
the input text and its transformations. (2) In terms
of prediction correction, we identify and correct
predictions for misclassified text. The misclassified
text belongs to two cases: adversarial text (which
fools a target model) and original text (which is pre-
dicted incorrectly by the target model). We observe
that both kinds of misclassified text have the same
characteristics. We then identify the two kinds of
misclassified text in a similar way as that used in
(1). Next, we correct the prediction for both mis-
classified texts using the hard labels of the input
transformations. (3) For perturbed word sugges-
tion, we suggest top words that produce the largest
conflicts during the checking performed in (1). Our
main contributions are summarized as follows:

• We propose CHECKHARD for detecting ad-
versarial text, correcting predictions, and de-
tecting perturbed words. To the best of our
knowledge, CHECKHARD is the first method
that addresses all three objectives when de-
fending against ten state-of-the-art attacks.
Other existing methods only reported these
tasks with fewer than five attacks, including
both baselines and previous attacks.

• Since CHECKHARD only uses hard labels
from a target model via a black-box setting, it
is compatible with common pre-trained target
models.

• The evaluation shows that CHECKHARD out-
performs existing work across various attacks,
datasets, and models.

• CHECKHARD is directly compatible with all
current and future attacks from the TextAt-
tack (Morris et al., 2020) without changing its
source code2 or other attacks up to the word
level without changing its architecture.

2 Related Work

Adversarial attack: Most of the major attacks
are implemented by the TextAttack framework.
This framework also builds a general architec-
ture in which many strong attacks are added
(e.g., BAE (Garg and Ramakrishnan, 2020), and
IGA (Wang et al., 2021)). Table 1 summarizes

2The source code is available at https://github.
com/quocnsh/CheckHARD

representatives from the current sixteen attacks3

that are related to text classification from TextAt-
tack in terms of three major aspects: level, trans-
formations, and constraints. Other similar attacks
reach equivalent performance with the correspond-
ing representatives: Alzantot (Alzantot et al., 2018)
and Fast-Alzantot (Jia et al., 2019) use the same
core, A2T (Yoo and Qi, 2021) and TextFooler (Jin
et al., 2020) transform a word from a word embed-
ding, and both BERT-Attack (Li et al., 2020) and
CLARE (Li et al., 2021) extract synonyms from the
same masked language model as in BAE (Garg and
Ramakrishnan, 2020). The two remaining attacks
are restricted in some models or datasets: Hot-
Flip (Ebrahimi et al., 2018) only supports LSTM,
and Checklist (Ribeiro et al., 2020) attacks short
text as in SST-2 with a mere 2.3% success rate.

Adversarial text detection: Although adver-
sarial text resembles original text, some abstract
features from transformer-based models can dis-
tinguish them, such as attention input (Biju et al.,
2022), PCA eigenvector (Raina and Gales, 2022),
and density (Yoo et al., 2022). Mosca et al. (2022)
estimated the change in prediction before and after
deleting important words. Wang et al. (2022) voted
on the fixed k text after replacing some words with
their synonyms. Zhou et al. (2019) used BERT
to detect adversarial text by identifying perturbed
words. Mozes et al. (2021) claimed that adversarial
text contains many low-frequency words.

Most of recent works (Raina and Gales, 2022;
Biju et al., 2022; Yoo et al., 2022) are limited on
target models derived from transformers. Mosca
et al. (2022) restrictively detect parallel pairs of the
adversarial and original text and ignore the origi-
nal text that a target model incorrectly classifies.
Wang et al. (2022) elaborately select optimal sub-
stitution rate p, number of votes k, and stop word
selection s to optimize their model. While these
hyper-parameters are hard to optimize via a valida-
tion set, Mozes et al. (2021)’s work automatically
optimizes a frequency threshold only, which out-
performs the Zhou et al. (2019)’s work. In this
paper, we thus compare CHECKHARD with the
Mozes et al. (2021)’s work.

Prediction correction: Several previous works
correct predictions after a text is modified by per-
turbed words. In one approach, these perturbed
words are disabled by replacing them with similar
words in various ways. Zhou et al. (2019) chose

3https://github.com/QData/TextAttack
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Attack LevelMain transformations Main constraints
DeepWordBug(Gao et al., 2018) C Add, delete, swap, replace Levenshtein distance
Pruthi(Pruthi et al., 2019) C Add, delete, swap, replace, keyboardMaximum perturbation
TextBugger(Li et al., 2019) C+W Insert, delete, swap, replace Cosine similarity
TextFooler(Jin et al., 2020) W Word embedding Cosine similarity
IGA(Wang et al., 2021) W Word embedding Embedding distance
Fast-Alzantot(Jia et al., 2019) W Word embedding Language perplexity
Kuleshov(Kuleshov et al., 2018) W Word embedding Language probability
BAE(Garg and Ramakrishnan, 2020)W Masked language Cosine similarity
PSO(Zang et al., 2020) W HowNet Unchanged premise
PWWS(Ren et al., 2019) W WordNet Stop words

Table 1: Representative attacks at the char (C) or word (W) levels related to text classification from the TextAttack.

the nearest synonyms for similar words using a
kNN search. Mozes et al. (2021) selected high-
frequency synonyms for such words. In another
approach, Rusert and Srinivasan (2022) randomly
replaced some words, which were both perturbed
and non-perturbed, and integrated the predictions
from a few instances of replaced text.

In another direction, previous work directly de-
fended against adversarial text using boundary esti-
mation (Jia et al., 2019; Huang et al., 2019; Zhou
et al., 2021), word normalization (Wang et al.,
2021; Jones et al., 2020), masked language mod-
els (Zeng et al., 2021), multi-expert patchers (Le
et al., 2022) or adversarial training (Goodfellow
et al., 2014; Yoo and Qi, 2021).

Although the prediction of adversarial text is cor-
rected, most previous works downgrade the predic-
tion on clean text. Other works keep or slightly in-
crease a few clean predictions. In contrast, CHECK-
HARD efficiently improves the prediction on all
adversarial text and most of the clean text.

Perturbed word suggestion: Zhou et al. (2019)
fine-tuned a BERT model to suggest perturbed
words. Mozes et al. (2021) suggested low-
frequency words as perturbed words. However,
many benign words are also suggested in addition
to the perturbed words. This redundant suggestion
affects the adversarial text detection and prediction
correction in downstream tasks.

3 CHECKHARD

Problem statement: Given N text X =
{X1, · · · , XN} and labels Y = {Y1, · · · , YN} cor-
respondingly, a target model F : X → Y maps
the input space X to the label space Y . According
to TextFooler (Jin et al., 2020), a valid adversarial
text Xadv that is generated from original text Xorg

must satisfy the two criteria:

F (Xadv) ̸= F (Xorg) and Sim(Xadv, Xorg) ≥ ϵ,
(1)

where Sim(Xadv, Xorg) is the similarity between
Xadv and Xorg, and ϵ is the minimum similarity
between them. ϵ is a threshold that causes Xadv

and Xorg to be closer together in the meaning (e.g.,
via semantic and syntactic criteria).

We set three objectives to process input text
Xinput: (1) we determine whether Xinput is ad-
versarial or original text, (2) we correct the labels
distorted by adversarial attacks while maintaining
the accuracy of benign text, and (3) we suggest
the top k perturbed words in Xinput that are likely
modified by the attack. Figure 2 and Algorithm 1
summarize our proposed method.

Model details: To process input text Xinput with
one of three objectives, “adversarial detection”,
“prediction correction”, or “perturbation detection,”
CHECKHARD first predicts a hard label Yinput for
Xinput using a target model F (e.g., a CNN). Then,
it transforms the text using an auxiliary attack A
(e.g., PWWS). An adversarial threshold λadv, a
misclassification threshold λmis, and a suggestion
number k are used for “adversarial detection, “pre-
diction correction,” and “perturbation suggestion,”
respectively. CHECKHARD allows the use of an
optional word proportion τ < 100% and support
models Fsup, which accelerate the processing and
improve the performance, respectively. Support
models should solve the same task as the target
model such as sentiment analysis.

First (line 4), we formWrand by selecting ran-
dom words from Xinput with the proportion τ .
Since τ is 100% by default when processing all
of the words, a smaller τ can significantly speed
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Algorithm 1: CHECKHARD
Required input :Input text Xinput = {w1, w2 · · · }; Target model F ; Auxiliary attack A.
Optional input :Word proportion τ (100% as default);

Support models Fsup = {F1, F2 · · · } (empty as default).
Objective (select one) :Adversarial threshold λadv ( ̸= NULL for “adversarial detection”);

Misclassified threshold λmis ( ̸= NULL for “prediction correction”);
Suggestion number k (> 0 for “perturbation suggestion”; 1 as default).

Corresponding output :“adversarial” / “original” if λadv ̸= NULL;
“corrected label’’ if λmis ̸= NULL;
“k suggested words” if k > 0.

1 Different rate listRdiff ← {}
2 Correction labels list Ycorrect ← {}
3 Yinput ← F (Xinput)
4 Wrand ← selects random words from Xinput with proportion τ
5 for each word wi inWrand do
6 Transformation label list Ytrans ← {}
7 Create transformation setWtrans of wi by using A
8 for each word wj inWtrans do
9 Xtrans = replace wi with wj in Xinput

10 if checking Sim(Xtrans, Xinput) ≥ ϵ using A then
11 Add F (Xtrans) to list Ytrans
12 if F (Xtrans) ̸= Yinput then
13 Add F (Xtrans) to list Ycorrect
14 end if
15 if k > 0 then
16 for each Fl in Fsup do
17 Add Fl(Xtrans) to list Ytrans
18 if Fl(Xtrans) ̸= Yinput then
19 Add Fl(Xtrans) to list Ycorrect
20 end if
21 end for
22 end if
23 end if
24 end for
25 R← is the ratio of hard labels in Ytrans, which are different from Yinput
26 if λadv ̸= NULL and R > λadv then
27 return “adversarial” ▷ adversarial text
28 end if
29 if λmis ̸= NULL and R > λmis then
30 return hard voting on Ycorrect ▷ correct prediction
31 end if
32 Add R toRdiff

33 end for
34 if λadv ̸= NULL then
35 return “original” ▷ original text
36 end if
37 if λmis ̸= NULL then
38 return Yinput ▷ keep prediction
39 end if
40 Wsort ← sortWrand in descending order ofRdiff

41 return first k words inWsort ▷ perturbed word suggestion
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Figure 2: Given the input text, we generate a transformation set for each word (e.g., “warm” and “charter”). We
then use a target model and optional support models to predict hard labels for each transformation set. Next, we
calculate the rates of the hard labels that are different from the label of the input text resulting from the target model.
The obtained rates are used for three tasks: (1) adversarial text detection achieved by comparing the rates with a
threshold λadv, (2) misclassified text detection achieved by comparing the rates with a threshold λmis, which is
used for prediction correction, and (3) perturbed word suggestions in which the top k input words are output in the
decreasing order of the rates.

up CHECKHARD while maintaining reasonable
performance, as shown in Figure 3, which presents
the experimental results.

Second (line 7), we create a transformation set
Wtrans for each word inWrand by using the auxil-
iary attack A. For example, PWWS uses WordNet
synonyms for Wtrans. The main transformations
from other attacks are listed in Table 1.

Third (line 9), we generate a transformed text
Xtrans by replacing each word inWtrans with the
corresponding input word. To ensure that Xtrans

satisfies Equation 1, we then use the constraints
in the auxiliary attack A to check the similarity
between Xtrans and Xinput with a threshold ϵ. For
example, PWWS prohibits Xtrans from modifying
stop words. The main constraints from other at-
tacks are summarized in Table 1.

Fourth (lines 11-22), the valid Xtrans is input
into the target model F and support models Fsup

to produce hard labels. These labels are added
to a local list Ytrans for each transformation set.
The labels that differentiate Yinput are added into
a global list Ycorrect, which is used to correct the
prediction later. Since adversarial text fools only
the target model, the support models Fsup do not
need to be used for “perturbation suggestion”.

Fifth (lines 25-32), we calculate the difference
rate R, which is the ratio of the number of labels in
Ytrans that conflict with Yinput. R is compared with
λadv or λmis for “adversarial detection” and “pre-
diction correction,” respectively. In “adversarial
detection,” if R is large enough, we determine the
input text as adversarial text. In “prediction correc-
tion,” if the text is determined to be misclassified,
we correct its prediction by voting on Ycorrect. R is

also added to a global list Rdiff for “perturbation
suggestion.”

Finally, (lines 34-41), if the above process does
not determine Xinput as adversarial text, we deter-
mine Xinput to be the original text for “adversarial
detection’’. Similarly, if Xinput is not determined
as misclassified text, we maintain Yinput as the
final prediction for “prediction correction.” For
“perturbation suggestion,” we sort the input words
by Rdiff in descending order and return the top k
words.

Here, λadv and λmis are optimized via valida-
tion sets; k is set to 1 as a default because most
adversarial text only changes one word. For exam-
ple, 49.7% of such text from SST-2 has only one
perturbation, as shown in Figure 4 in Appendix A.

4 Evaluation

4.1 Adversarial Text Detection and Prediction
Correction

We follow the same experimental settings as in
frequency-guided word substitutions (FGWS)’s
paper (e.g., the number of train/development/test
data and evaluation metrics). In particular, we con-
ducted experiments on adversarial text targeting a
CNN model4 on SST-2 (8.7 words/text) as shown
in Table 2. Experiments with other models and the
IMDB are conducted later. Adversarial text was
generated with ten representative attacks5, which
are listed in Table 1. The ten attacks were clustered
into three groups based on the extent. Character-

4We reused pre-trained models from TextAttack for all
models mentioned in this paper.

5The attacks from the TextAttack framework are run with
their default settings.
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based attacks include DeepWordBug and Pruthi.
TextBugger is a hybrid attack at the character and
word levels. The remaining attacks are word-based
attacks. CHECKHARD uses RoBERTa as a sup-
port and the same attack that generated adversarial
text as the auxiliary attack. We used five metrics to
evaluate the first two objectives: the true positive
rate (TPR), false positive rate (FPR), and F-score
(F1) were used for adversarial text detection; and
the original accuracy under attack (Adv) and cor-
rected accuracy from attacking (Adv correction)
were used for prediction correction.

In character-based and hybrid attacks, since
FGWS was originally designed for word-based at-
tacks, FGWS only reaches up to 50.6% and 59.2%
of the F1 and adversarial correction, respectively,
In word-based attacks, while FGWS processes
original text nearly the same way (FPR = 11.0%
∼ 11.1%), adversarial text is detected differently
when under various attacks. Since FGWS detects
adversarial text based on low-frequency words, it
is most applicable with PWWS, which replaces
words from WordNet without context checking.
The detection also affects the prediction correction
of FGWS. CHECKHARD outperforms FGWS in
terms of both adversarial text detection and pre-
diction correction. In particular, CHECKHARD
achieves noteworthy improvement when detect-
ing adversarial text with F1 in the range of 66.1%
and 88.9%. The lowest prediction correction of
CHECKHARD is 78.6%, overcoming the highest
prediction correction of FGWS, which is 65.5%.

Ablation studies: We conducted experiments
with two scenarios, which are shown in Table 3.
The first scenario is that CHECKHARD’s aux-
iliary (indicated in brackets such as CHECK-
HARD(DeepWordBug)) is different from the at-
tack. In the second scenario, the auxiliary and the
attack are the same. Adversarial text in both scenar-
ios was generated by PWWS and targeted a CNN
on SST-2.

In the first scenario, we report DeepWordBug
and TextFooler as auxiliaries, while other auxil-
iaries reach similar results, as presented in Ap-
pendix B. Since CHECKHARD without support
attains approximately 70% on F1 and correction
scores, RoBERTa support remarkably boosts both
scores up to 93.3%.

In the second scenario, CHECKHARD without
support overcomes FGWS, especially on the cor-
rection score. CHECKHARD is improved by using

a support, and a strong support such as RoBERTa
improves the results more than a conventional
support such as LSTM. Their combination also
achieves reasonable results. Other supports pro-
duce similar results as shown in Appendix C.

Evaluation on other target models and
datasets: We conducted similar experiments on
other models and datasets. In particular, we eval-
uated CHECKHARD and FGWS on adversarial
text generated from PWWS targeting four com-
mon models (CNN, LSTM, BERT, and RoBERTa)
on SST-2 and the IMDB (235.72 words/text), as
shown in Table 4. Following the suggestion
from the FGWS paper (Mozes et al., 2021), we
chose 1000 training and 2000 testing samples from
the IMDB for validation and testing, respectively.
These numbers are a similar ratio with 872 and
1821 from SST-2. We added the correction accu-
racy from clean text to demonstrate the influence
of CHECKHARD and FGWS on unattacked text.
CHECKHARD used RoBERTa as a support for the
CNN, LSTM, and BERT target models; XLNet
supported the RoBERTa target.

CHECKHARD outperforms FGWS when de-
tecting adversarial text on both SST-2 and the
IMDB as well as when correcting its prediction
on the IMDB. In SST-2, while FGWS decreases
the clean accuracy, CHECKHARD with RoBERTa
as support increases the accuracy for the CNN and
LSTM. CHECKHARD balances the correction on
clean and adversarial text for transformer-based
models, i.e., BERT and RoBERTa.

4.2 Perturbed Word Suggestion
We evaluated perturbed word suggestions on ad-
versarial text generated by PWWS as shown in
Table 5. In particular, CHECKHARD, FGWS,
and a random approach (RD) suggested k words
(k ∈ {1, 3, 5}). We then checked whether or not
any real perturbed word belongs to the suggested
words. While RD and FGWS are affected by text
length, CHECKHARD outperforms both and main-
tains stable results across all experiments with large
margins from 8.1% (SST-2, CNN, k=1) to 83.2%
(IMDB, LSTM, k=3).

4.3 Run Time
We compared the run time between PWWS attack,
FGWS and CHECKHARD when detecting adver-
sarial text generated by a corresponding attack tar-
geting a CNN model as shown in Table 6. Other
attacks, target models, and other objectives (pre-
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Attack
TPR (FPR) F1

Adv
Adv correction

FGWS CHECKHARD FGWS CHECKHARD FGWS CHECKHARD
DeepWordBug 17.5 (10.2) 75.3 (14.9) 27.4 77.2 6.0 41.4 80.8
Pruthi 22.6 (11.3) 68.4 (12.9) 33.8 66.1 48.4 59.2 78.6
TextBugger 37.6 (11.0) 85.4 (12.5) 50.6 83.7 15.4 53.9 86.9
TextFooler 43.2 (11.0) 88.3 (11.9) 56.1 87.0 1.0 51.0 94.9
IGA 48.5 (11.0) 91.5 (11.3) 60.8 88.9 3.7 53.7 95.8
Faster Alzantot 53.2 (11.0) 87.4 ( 9.3) 64.8 86.0 23.0 61.6 95.4
Kuleshov 49.5 (11.0) 84.9 ( 9.4) 61.7 83.7 29.5 56.6 86.8
BAE 22.0 (11.1) 80.2 (12.1) 33.1 79.1 25.3 45.4 85.4
PSO 40.3 (11.1) 78.6 (15.7) 53.3 79.2 2.7 45.8 93.3
PWWS 68.5 (11.1) 89.2 (12.5) 76.3 86.9 4.5 65.5 95.6

Table 2: Detection of adversarial text and prediction correction on adversarial text targeting a CNN model on SST-2.

Scenario Method F1 Correction

Auxiliary ̸= Attack

CHECKHARD(DeepWordBug) without support 68.9 73.3
CHECKHARD(TextFooler) without support 68.6 72.3
CHECKHARD(DeepWordBug) with RoBERTa as support 80.7 87.4
CHECKHARD(TextFooler) with RoBERTa as support 83.6 93.3

Auxiliary = Attack

FGWS 76.3 65.5
CHECKHARD without support 77.2 82.4
CHECKHARD with LSTM as support 78.3 87.3
CHECKHARD with RoBERTa as support 86.9 95.6
CHECKHARD with LSTM+RoBERTa as supports 84.3 92.1

Table 3: Ablation studies of adversarial text generated by PWWS targeting a CNN model on SST-2.

Dataset Model
F1

Adv
Adv correction

Clean
Clean correction

FGWS CHECKHARD FGWS CHECKHARD FGWS CHECKHARD

SST-2

CNN 76.3 86.9 4.5 65.5 95.6 81.9 76.3 88.3
LSTM 75.7 85.3 4.7 69.0 94.5 83.5 76.2 88.1
BERT 84.6 86.1 13.6 75.5 90.5 93.3 91.3 89.2
RoBERTa 84.4 87.3 15.0 76.7 89.1 95.3 92.0 89.0

IMDB

CNN 84.4 91.6 0.0 71.6 97.6 86.1 85.4 90.3
LSTM 80.9 92.4 0.0 75.1 97.4 87.9 88.6 90.9
BERT 89.3 94.9 0.6 77.5 96.4 92.0 92.0 93.2
RoBERTa 91.8 95.9 0.5 86.8 97.0 95.1 95.3 95.3

Table 4: Detecting adversarial text generated by PWWS and prediction correction.

diction correction and perturbed word suggestion)
reach similar ratios. We separated the detection
time of CHECKHARD between adversarial and
original text, while FGWS consumes the same
time for both.

FGWS runs in less than 0.1 s. CHECKHARD
without support runs at most 0.054 s and 3.146 s for
SST-2 and the IMDB, respectively, which is faster
than the 0.095 s and 4.298 s attack times. CHECK-
HARD with RoBERTa as support can accelerate

the run time by reducing the word proportion τ
in Algorithm 1 as shown in Figure 3. With a τ of
30% and 3% for SST-2 and the IMDB, respectively,
CHECKHARD speeds up 3.9x and 39.2x from a
full τ of 100%. CHECKHARD maintains 80.0%
and 85.7% F1 scores with these τ , which are higher
than the 76.3% and 84.4% produced by FGWS.
While SST-2 steadily increases the F1 scores with
τ greater than 30%, the IMDB slightly improves
the F1 scores when compared to run time when τ
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Dataset Model
Top 1 Top 3 Top 5

RD FGWS CHECKHARD RD FGWS CHECKHARD RD FGWS CHECKHARD

SST-2

CNN 12.8 69.2 77.3 34.2 83.3 95.8 50.9 86.0 98.8
LSTM 13.5 65.4 77.8 35.1 81.0 96.2 51.4 83.8 98.5
BERT 15.1 67.3 80.1 38.4 81.5 97.0 55.1 84.6 98.7
RoBERTa 16.4 68.4 79.5 41.0 83.0 97.5 58.2 85.3 99.0

IMDB

CNN 1.7 2.4 79.2 5.0 15.7 96.8 8.2 31.8 98.3
LSTM 1.9 2.2 79.9 5.6 13.2 96.4 9.1 27.0 98.2
BERT 3.4 7.7 70.4 9.3 23.5 90.4 14.2 40.6 95.3
RoBERTa 4.8 6.9 64.2 12.9 28.0 89.4 19.7 48.6 94.9

Table 5: Perturbed word suggestion on adversarial text generated by PWWS.

Category SST-2 (Adv/Org) IMDB (Adv/Org)
PWWS attack time 0.095 4.298
FGWS 0.014 0.097
CHECKHARD without support 0.044 (0.032 / 0.054) 2.330 (1.381 / 3.146)
CHECKHARD with RoBERTa as support 0.731 (0.376 / 1.006) 11.411 (4.877 / 17.037)

Table 6: Run time for attacking the original text with PWWS and detecting adversarial text generated by PWWS
targeting the CNN model.
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Figure 3: Correlation between the detection time and
F1 scores of CHECKHARD with RoBERTa as support
when detecting adversarial text generated by PWWS
targeting the CNN model and changing the word pro-
portion τ . The time is averaged for all original and
adversarial detections.

is greater than 10%. These results demonstrate the
impact of τ in terms of accelerating CHECKHARD,
especially with long text, as in the IMDB.

4.4 Discussion

Direct attack: We evaluated CHECKHARD and
FGWS under a direct attack. In particular, we
used PWWS to attack SST-2 text targeting the CNN,

which is protected by CHECKHARD and FGWS.
CHECKHARD achieves 37.0% accuracy under the
PWWS attack, which is higher than the 15.2% from
FGWS. These results demonstrate that CHECK-
HARD is better than FGWS in terms of defending
against adversarial text.

Parallel processing: Adversarial attacks opti-
mize each step in a sequence until a target model
is fooled. Conversely, CHECKHARD can generate
all transformed text at once and predict them in
parallel. CHECKHARD can thus be accelerated
with parallel or distributed computing.

5 Limitations

Beyond word-based attack: CHECKHARD is
currently suitable for all current attacks from the
TextAttack framework at the character, word, and
hybrid levels. To the best of our knowledge, there
is no work that detects adversarial text beyond the
word level, such as the phrase level as in (Lei et al.,
2022) and sentence level as in (Iyyer et al., 2018),
so it is still an open problem.

Beyond text classification: CHECKHARD can
be directly applied to text classification tasks, for
which it is easy to estimate the change in prediction.
To apply CHECKHARD to other tasks (such as
question answering and translation), we need to
define a similar metric to measure the change in
prediction.
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CHECKHARD with a strange auxiliary and
without support: CHECKHARD without support
is still unstable when the auxiliary attack is differ-
ent from the attack used to generate adversarial
text, as shown in Table 7 in Appendix B. This limi-
tation can be remedied with support, but it requires
a trade-off in run time.

6 Conclusion

In this paper, we propose CHECKHARD by check-
ing the change in the hard label before and after
replacing the word with its transformation. Check-
ing is used to detect adversarial text, correct pre-
dictions, and suggest perturbed words. The exper-
iments on various attacks, models, and datasets
demonstrate that CHECKHARD outperforms exist-
ing work.
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A Perturbed Word Ratio

We calculated the ratio of the number of perturbed
words in adversarial text from the SST-2 and IMDB
testing sets as shown in Figure 4. One-word per-
turbation is more prominent than others, especially
with SST-2.

B Other Auxiliary Attacks

In addition to DeepWordBug and TextFooler, as
reported in Table 3, we conducted other auxiliary
attacks for CHECKHARD with and without sup-
port as shown in Table 7. Similarly, CHECKHARD
with RoBERTa support is better than that without
support across all of these auxiliary attacks.
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Figure 4: Ratio of the number of perturbed words in adversarial text generated by PWWS targeting the CNN model.

Method F1 Correction
CHECKHARD(Pruthi) without support 73.1 77.4
CHECKHARD(TextBugger) without support 73.1 77.6
CHECKHARD(IGA) without support 67.3 70.7
CHECKHARD(Faster-Alzantot) without support 66.7 67.4
CHECKHARD(Kuleshov) without support 68.6 71.2
CHECKHARD(BAE) without support 72.5 73.6
CHECKHARD(PSO) without support 67.1 69.5
CHECKHARD(Pruthi) with RoBERTa as support 79.8 80.7
CHECKHARD(TextBugger) with RoBERTa as support 82.0 88.8
CHECKHARD(IGA) with RoBERTa as support 82.3 88.6
CHECKHARD(Faster-Alzantot) with RoBERTa as support 80.5 88.3
CHECKHARD(Kuleshov) with RoBERTa as support 83.6 93.4
CHECKHARD(BAE) with RoBERTa as support 80.1 92.1
CHECKHARD(PSO) with RoBERTa as support 81.4 92.8

Table 7: Other auxiliary attacks for which CHECKHARD detected adversarial text and corrected the predictions
from adversarial text generated by PWWS targeting the CNN model on SST-2.

Method F1 Correction
CHECKHARD with ALBERT as support 84.6 93.1
CHECKHARD with DistilBERT as support 85.3 93.5
CHECKHARD with BERT as support 86.3 93.7
CHECKHARD with ALBERT + DistilBERT as support 84.1 92.3
CHECKHARD with ALBERT + BERT as support 85.0 92.6
CHECKHARD with DistilBERT + BERT as support 84.9 93.0
CHECKHARD with ALBERT + DistilBERT + BERT as support 85.1 93.5

Table 8: Other supports for CHECKHARD used to detect adversarial text and correct the predictions from adversarial
text generated by PWWS targeting the CNN model on SST-2.

C Other Support Models

In addition to LSTM and RoBERTa, as reported
in Table 3, we conducted experiments to evalu-
ate other supports6 as shown in Table 8. Similar

6These remaining support models are directly
mentioned in TextAttack’s source code at https:
//github.com/QData/TextAttack/blob/
master/textattack/model_args.py

to LSTM and RoBERTa, when CHECKHARD is
combined with these individual supports and their
combination, it achieves stable performances rang-
ing from [84.1%, 86.3%] and [92.3%, 93.5%] in
terms of F1 and correction scores, respectively.
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