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Abstract

Next-word predictions from autoregressive neu-
ral language models show remarkable sensi-
tivity to syntax. This work evaluates the ex-
tent to which this behavior arises as a result
of a learned ability to maintain implicit repre-
sentations of incremental syntactic structures.
We extend work in syntactic probing to the in-
cremental setting and present several probes
for extracting incomplete syntactic structure
(operationalized through parse states from a
stack-based parser) from autoregressive lan-
guage models. We find that our probes can
be used to predict model preferences on am-
biguous sentence prefixes and causally inter-
vene on model representations and steer model
behavior. This suggests implicit incremental
syntactic inferences underlie next-word predic-
tions in autoregressive neural language models.

1 Introduction

The behavior of large-scale autoregressive neural
language models (ALMs) appears to demonstrate
impressive command of syntax (Wilcox et al., 2019;
Hu et al., 2020; Futrell et al., 2019; Wilcox et al.,
2021; Arehalli and Linzen, 2020; Warstadt and
Bowman, 2020). To what extent can we attribute
this behavior to a model’s maintaining and updating
representations of incremental syntactic structures?

Interpretability work on bidirectional masked
language models suggests that neural models of
language may learn to encode syntactic structure
through the geometry of their word embedding
space. For example, Hewitt and Manning (2019)
demonstrate that the dependency parse tree of a
sentence can be decoded by finding the minimum
spanning tree on pairwise syntactic distances re-
gressed from linearly transformed contextualized
word embeddings.

Unlike the models considered in Hewitt and
Manning (2019), ALMs are unidirectional, and the

Code and materials: https://github.com/
eisape/incremental_parse_probe

decision problem of incrementally deriving global
syntactic structures has several nuances not present
in the bidirectional setting. Sentence prefixes (e.g.
“I watched her duck ...”) can be ambiguous in their
intended meaning in ways that are disambiguated
by their suffixes (e.g. “quack” vs. “under the ta-
ble”). Thus, incremental processors must maintain
a belief state of parses that can be flexibly updated
on the basis of future input. Insofar as language
in the real world (e.g., speech, text, sign) is pro-
cessed sequentially, incremental disambiguation of
structure and meaning is a task humans solve in ev-
eryday cognition, seemingly effortlessly (Jurafsky,
1996; Hale, 2001; Levy, 2008).

ALMs have been shown to recapitulate crucial
features of human sentence processing (Futrell
et al.,, 2019) and their representations moreover
have been shown to align with language processing
in the brain better than their bidirectional counter-
parts (Schrimpf et al., 2021; Caucheteux and King,
2022). We hypothesize that ALMs learn and main-
tain correlates of incremental syntactic structures
which play an important role in mediating model
behavior. We investigate this hypothesis through
the lens of counterfactual probing, i.e., by learning
classifiers over hidden states of pretrained ALMs
to predict linguistic properties, and then using the
probes to intervene on model representations.

We present a suite of probing architectures
for decoding belief states of incremental struc-
tures from pretrained Transformer ALMs given
the model’s hidden state, each of which embodies
a different hypothesis for how incremental parse
states might be encoded. We validate (and adju-
dicate between) our probes by using them to pre-
dict and control model behavior. Our results sug-
gest that ALMs, through pretraining at scale, learn
stack-like representations of syntax and use them
in interpretable and controllable ways.
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Figure 1: (Left) Results of applying the structural probe of Hewitt and Manning (2019) to GPT2. Displayed are the
performances of the distance as quantified in both unlabeled undirected attachment score (UUAS) and Spearman
correlation (Dspr.) across layers. Layer 0 denotes uncontextualized embeddings. The best performing BERT and
ELMo layers as reported in Hewitt and Manning (2019) are shown as horizontal lines. (Right) Dependency graphs
elicited from GPT2 small for the sentences in Figure 2 via Hewitt and Manning (2019)’s structural probe before
(left) and after (right) disambiguation, and then decoding with minimum spanning tree. Visualization is done
by projecting the predicted pairwise distances into two dimensions via PCA. In the zero-complement condition
(bottom), the “went” embedding is emitted between an existent dependency resulting in a new parse, effectively

‘deleting’ the arc in red.

2 Motivating Study

Prior work has developed methods for extracting
syntactic parses from neural language models given
global context. In particular, Hewitt and Manning
(2019) learn a distance function parameterized by
a linear transformation (B) of the word embedding
space of BERT,

o5 (hi,hy)" = (B (b~ hy))" (B (h; ~hy)).

such that this distance approximates the distance of
words w;, w; in a dependency tree. After learning
B via regression, i.e.,

dpe <wf,w§) — 0B <h57h§>2‘ )

(here ¢ indexes the sentences in the training set,
|s¢| is the sentence length, and d¢(w;, w;) is the
tree distance between w; and w;), the authors find
that the minimum spanning tree obtained from
0p(-,-) well-approximates the gold dependency
tree in many cases, indicating that the geometry of
contextualized word embeddings captures aspects
of syntax.

In an initial study, we run Hewitt and Manning
(2019)’s structural probe on the hidden states of
GPT2 (Radford et al., 2019), a unidirectional ALM,
and find that GPT2’s hidden states recover gold tree
structures almost as well as similarly-sized bidirec-
tional models (Figure 1). For example GPT2-XL

Z-complement

v\ v\ N
even though the band left the party went on

NP-complement

N N
even though the band left the party I stayed
Figure 2: NP/Z ambiguous sentences and their parses.

matches BERT-base in correlation with syntactic
distances (Dspr.; .85 for both models). We further
observe that this probe can recover the correct struc-
tures even on sentences with ambiguous prefixes,
such as the ‘NP/Z’ ambiguity shown in Figure 2.
In this ambiguity, the shared prefix (“even though
the band left the party”) is consistent with at least
two interpretations: one in which the underlined
span (“the party”) is a direct object noun phrase
(NP) of the verb “left”, and one in which the under-
lined content is the subject of a new noun phrase
and “left” has a zero (Z) complement. This is a
well-studied phenomenon in psycholinguistics, and
humans make rapid and accurate inferences in this
setting (Bever, 1970).

It is not at all obvious how a strictly left-to-right
model, whose representations of the words in con-
text are static (i.e., not affected by future words),
can maintain a prefix representation that are dy-
namic enough to encode global syntactic distances
with high accuracy. We visualize the evolution of
pairwise syntactic distances for the two sentences
in Figure 2 along with the minimum spanning trees
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in Figure 1 (right). We observe that parses probed
from sentence prefixes up until the disambiguators
are consistent with the NP-complement parse (i.e.,
where “party” is attached to “left”), which is in line
with previous work that analyzes GPT2’s behavior
on the NP/Z ambiguity (Futrell et al., 2019). Af-
ter observing “went,” GPT?2 emits a representation
whose distance is interleaved between “left” and
“party” (i.e., 6B(hparty7 hwent) < 5B(hpartya hleft))a
thus altering the minimum spanning tree to be con-
sistent with the zero-complement parse.

This analysis provides an initial hypothesis for
how incremental parsing arises in ALMs from
the perspective of syntactic distance—ALMSs emit
word representations that maintain syntactic uncer-
tainty that can be exploited by later emissions, ef-
fectively editing inferred dependencies and bypass-
ing the need to re-position past emissions. How-
ever, this analysis also reveals several limitations
that preclude it as a viable model of incremen-
tal parsing in ALMs: (1) this method assumes a
spanning-tree and therefore cannot represent parses
with open nodes, and (2) GPT2’s behavior is consis-
tent with a probabilistic parallel parser as it seems
to entertain both possible parses until seeing the
disambiguating words, but such a pure distance-
based probe is not inherently probabilistic.! In the
following section, we develop several parameter-
izations of a probabilistic incremental parser that
can represent incomplete syntactic structures.

3 An Incremental-Parse Probe for
Autoregressive Language Models

We argue that the stack representation of shift-
reduce parsers provides a natural way to represent
incomplete tree structures. In this paper, we work
with the generative arc-standard dependency for-
malism (Nivre, 2004), which maintains a stack of
generated subtrees S = [s1, s2, S3, ...] (Where the
root of subtree s; is a word), and makes one of the
following actions at each time step:

LEFT-ARC: pop the top two nodes, create a
new subtree by adding an arc s; — s2, and
push the new subtree onto the stack,

RIGHT-ARC: pop the top two nodes, create
a new subtree by adding an arc so — s, and
push the new subtree onto the stack,

GEN: generate the next token.
"Though it is possible to derive a probabilistic parser by

interpreting the summed distances as the energy of a globally
normalized model.

Generation starts with only ROOT (an embedding
learned independently for each probe) on the stack,
S = [ROOT], and terminates when only ROOT is
left on the stack and the period token has been gen-
erated. Note that an action sequence a fully spec-
ifies a projective dependency structure.” Hence,
letting a<,,(4) be the sequence of actions up to (and
including) the generation of w;, we use a<,(y) to
represent the incremental (i.e., incomplete) tree
structure state after emitting w;.> We design several
probes that place distributions over action trajecto-
ries - P (agn(wt) | w<t) given ALM embeddings
h,.

3.1 Probe architectures

We explore three probing architectures for param-
eterizing the action probabilities, each of which
embodies a different hypothesis for how incremen-
tal parse states might be represented in ALMs.

Geometric Action Probe (GAP). Our first archi-
tecture leverages the geometry of the embeddings
and links the syntactic distances and depths derived
from Hewitt and Manning (2019) to action proba-
bilities (Figure 3, left). The action probabilities are
parameterized as below (where for brevity we omit
the conditioning variables w; and the previously
generated actions):

P (GEN) = o (53 (hs“ﬁhSQ) _T> ,

P (LEFT-ARC) = (1 — P(GEN)) X

” <!h51IIB - Hh52||3> ,
B

P (RIGHT-ARC) = (1 — P (GEN)) X

o <’h52”B - Hh51HB> ,
B

where 7 is a threshold parameter, § is a temper-
ature term, o(-) is the sigmoid to turn distances
into probabilities, and h, is the ALM’s representa-
tion for the root word of subtree s;. Note that the
probability of GEN increases as the predicted syn-
tactic distance between (the root words of) s; and
so increases, which intuitively captures the notion
that there is less likely to be a link between s; and
s9 if their predicted distance is large. The action

*Because ArcStandard can only recognize projective de-
pendency trees, we exclude non-projective structures from
training and evaluation in the sections to follow.

3We omit the generation of the next word (from GPT2’s
next word distribution) after predicting GEN, as we assume
that sentences are given for probing purposes.
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Figure 3: Schematics of each of the incremental parse probes parsing the sentence “the dog bit the vet”. (Top)
Incremental parse states (i.e., stacks of subtrees rooted by head words) are shown between the action transitions
(LEFT-ARC, RIGHT-ARC) that connect the parse states. (Dotted) Visualizations of how each probe decides on
the next actions. (Left) Geometric action probe (GAP) links action probabilities with its learned distance function
dp. The distance from the top node on the stack (“vet” and “the” in the LEF T-ARC case) affects whether an arc is
chosen. If the distance between the top two stack nodes is above a threshold 7, then then we GEN with increasing
probability. Relative depth (blue = shallow relative to “vet”, green = deeper) predicts arc directionality probability.
(Center) MLP Action probe (MAP) directly classifies each action by running the contextualized word embeddings
for the top two nodes on the stack through an MLP. (Right) No-Stack Action Probe (NAP) classifies by attending
over the entire prefix without maintaining an explicit stack.

probabilities for LEFT-ARC and RIGHT-ARC are
based on comparing the predicted depths, which
we define to be the norm of the word embedding
after a linear transformation as in Hewitt and Man-
ning (2019). For example, the probability of the arc
S1 — sg increases as sg is predicted to be further
away from the root than s; (i.e., relatively deeper
nodes are the dependants of shallower nodes; see
Figure 3). We initialize B by pretraining on the
distance and depth regression task from Hewitt and
Manning (2019). Because we also use a linear
projection our probe can also be interpreted as a
learned distance function on word representations.

MLP Action Probe (MAP). The geometric ac-
tion probe makes strong assumptions about the
underlying geometry of the representation space,
i.e., that syntactic distances and depths are well-
captured by linear transformations of the ALM’s
representations and that these measures can more-
over be monotonically transformed to action prob-
abilities via a sigmoid link function. This next
variant relaxes this assumption and replaces the
distance and depth-based linking function in GAP
with a learned multilayer perceptron,

P (a) xexp (eZMLP ([hs,, hs,]) + ba)

where a € {GEN, LEFT-ARC,RIGHT-ARC}. As
in the geometric version, we still make use of an
explicit stack, but this variant allows for an arbi-
trary link function from features of the model’s
representations to action probabilities.

No-Stack Action Probe (NAP). Our final variant
relaxes assumptions about both the linking func-
tion and the existence of an explicit stack. This
approach, which is closely related to Qian et al.
(2021), simply predicts the sequence of actions
between two words wy and w1 using the action
history and the hidden representations h .,

v; = Action-LSTM(v,_1, a;),
h = Attention(h, v;),

P (a) x exp <€;|—MLP ([fy vj]) + ba) .

Here the action LSTM’s hidden state v is used to
attend over the previous word representations h,
to obtain a context vector fl, which is combined
with the hidden state to produce a distribution over
the following action.

We train each of these architectures* on the
ground truth action trajectories in the Penn Tree-
bank (PTB) (Marcus et al., 1993) and use gpt2
and gpt 2-x1 model checkpoints from Hugging-
Face (Wolf et al., 2019) as our ALM text encoders.
All hyperparameters are reported in Appendix A.1.

4 Experiments

We evaluate each of our probes on their parsing
performance over the PTB test split as well as their
ability to predict and control model behavior.

*Due to resource constraints we only train NAP on GPT-2
small.
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Algorithm 1: Probe-Based Word-Synchronous Beam Search

Input: w : Words in sentence.
Birobe: Incremental parse probe.

Kaction: Number of action n-grams to consider between words.
kword: Max number of parses to consider for each word.

kour: Number of parses to output.
Output: B°": beam of terminal action sequences

1 B,B* « [[ROOT]], []
2 while |B®"| < koy do

// get hidden states from GPT2

// search until GEN or termination

3 forn € [1,...,|w|] do

4 Bword — []

5 h., « GPT2 (W<n)

6 while B not empty do

7 a + pop (B)

8 {al, aZ, .., ak“‘“’"} < BeamSearch ( Byrobe, &, W<, Kaction)
9 for ane, € {a',a?, ..., a"win} do

10 if n = |w|: push (B, a.append (amew))

1 else : push (B, a.append (anew))

12 B « top-k (B, kyora)

13 return B

// synchronize beam at word-level

// return beam with complete parse trees

Algorithm 1: Probe-based word-synchronous beam search. We use beam search (line 8) as a subroutine to extend
action sequences in the beam with action n-gram continuations. After the generation of each word the beam is

pruned to the top-kyora best parses (line 12).

4.1 Parsing Performance

For parsing performance, we evaluate with ac-
tion perplexity (PPL) and unlabeled attachment
score on the PTB test set. For the latter, we ex-
tend the word-synchronous beam search algorithm
for decoding from generative neural parsers (Stern
et al., 2017) to the incremental probe setting. This
probe-based word-synchronous beam search algo-
rithm uses an incremental parse probe to decode
action sequences between word emissions with
beam search. Because the word emissions from the
ALMs we consider are contextualized, this quan-
tity implicitly conditions on the previous action
sequence including all of the words generated in
the prefix so far’ thus allowing us to predict the
likelihood: H P(a) (where 7\w are the actions
aEm\W

in any parse 7 excluding the likelihoods of words
conditioned on actions).

This algorithm is an interesting testbed for
ALMs because it relies only on the syntactic dis-
ambiguation implicit in the ALMs hidden states
to update its beam of parses (compared to models
such as RNNGs (Dyer et al., 2016) whose next-
word distribution is explicitly conditioned on the
stack states). This decoding scheme is shown in
Algorithm 1 where k,ction is the the number of ac-

5That is, even though our incremental-parse probes only
predict GEN, action likelihoods in our probes are conditioned
on GEN(w) for words in the prefix: w € w<;.

tion n-grams to consider between model emissions,
and Kky,org 1S number of parses to consider at word
boundaries. During decoding we only consider the
valid set of actions for a given parse state given the
rules of ArcStandard.

The results of these experiments are shown in
Figure 4, where we set kuyction = Kwora = 10.
MAP outperforms GAP as expected (since it makes
weaker assumptions). Interestingly, while NAP out-
performs the other probes in terms of PPL, when
evaluated as an incremental parser, it has worse
UAS than MAP. This is significant because while
MAP makes explicit use of a stack (i.e., the em-
beddings it uses to make decisions are entirely de-
termined by the stack), NAP does not and instead
uses the attention distribution over the prefix at
each time step to implicitly encode the stack. We
take these results as an important data point in adju-
dicating between representational hypotheses of in-
cremental syntax in ALMs. Under the assumption
that high-performance ALMs are adept incremen-
tal parsers—as has been previously demonstrated
(Marvin and Linzen, 2018; Hu et al., 2020)—the
high performance of MAP suggests our best cur-
rent model of syntactic parsing in ALMs may be
stack-based but not necessarily geometry-based.

Probe performance to an extent implies the ex-
istence of implicit representaitons of syntax with
ALMs. However, it does not necessarily imply that
these structures mediate model behavior. In the
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Figure 4: Action perplexity (left) and UAS (right) for each of the incremental-parse probes.

following section, we conduct experiments to see
whether we can predict and control model behavior
with our probes.

4.2 Probing Incremental Disambiguation

We evaluate our probes to predict model behavior.
For this purpose, we extend the dataset of NP/Z
ambiguous sentences of Futrell et al. (2019) by
augmenting it to include continuations that disam-
biguate toward the Zero- and NP-complement inter-
pretations (Figure 2 shows an example data point).
We also include continuations that are consistent
with both parses (“Even though the band left the
party that was raging [...]”) or neither parse (we
use the period token, which is ungrammatical in ei-
ther case, i.e., “Even though the band left the party
.””) for a more complete comparison of the effects
of disambiguation. Concretely, the likelihoods of
‘Both’ and ‘Neither’ continuations are expected to
increase and stay the same, respectively, regardless
of the direction of disambiguation.

Predicting Behavior. First, we replicate Futrell
et al. (2019)’s result showing that ALMs are sen-
sitive to verb transitivity and use it to guide next-
word predictions, resulting in incremental parser-
like behavior. Specifically, we show that changing
the verb in NP/Z-ambiguous prefixes from intran-
sitive (unambiguously Z-complement favoring) to
transitive (ambiguous), e.g.,:

(D) Even though the band left [ambiguous],
Even though the band performed [unam-
biguous],

causes ALMs to prefer the continuation consis-
tent with the zero-complement parse. Following
Futrell et al. (2019) we use the ALM’s surprisal
over the words in the continuation® to quantify

®Note that as the sentence is not fully disambiguated until
the period is reached. We include the period token in our
surprisal estimates.

the ALM’s expectations, i.e., S(“wenton.”) =
— log Prodel (“went on.”|prefix). In Figure 5 we
show the change (difference) in surprisal from the
unambiguous to the ambiguous case and observe
that GPT2 and GPT2-XL both find the Z continu-
ation more surprising in the presence of a transi-
tive verb (Figure 5, right). Somewhat surprisingly,
the surprisal of the NP continuation is unchanged
by verb transitivity. As expected, the surprisal of
the ‘Both’ and ‘Neither’ conditions are largely un-
changed between conditions.

We find that our probes can predict model be-
havior in this setting. We target the first action that
differentiates the NP and Z parses, which corre-
sponds to the decision to place and arc from the
verb to the head of the noun phrase (Figure 2) and
plot the difference in surprisal of this decision from
the intransitive condition to the transitive condition
(Figure 5, left). This probe illustrates a preference
for the Z-complement parse in the presence of an
intransitive verb which provides representational
evidence for incremental parse disambiguation on
the part of the model.

In a further study, we present each of the probes
with the two NP/Z parses in two conditions: 1)
where the sentence suffix was consistent with the
parse being probed, and 2) where the sentence suf-
fix was consistent with the other parse. This can be
seen as a probabilistic version of Figure 1 (right).
We plot the difference in negative log-likelihoods
from condition 2 to condition 1 in Figure 6. As
expected, we find each of the probes assign higher
negative log likelihood (i.e., lower likelihood) to
parses when matched with incongruent suffixes.
This effect is especially pronounced for the MAP
probe.

Editing Parse States. Finally, we use counter-
factual analysis (Tucker et al., 2021, 2022) at the
level of ALM hidden states to probe the extent
to which our probes capture essential information
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Figure 5: Disambiguation as evaluated by MAP and
model behavior. (Right) Difference in GPT?2 surprisal
over the continuations in our corpus from the unam-
biguous condition to the ambiguous condition (higher
means the model is more surprised in the unambiguous
condition). (Left) Difference in (MAP) probe surprisal
over the disambiguating parse action. Error bars show
95% confidence intervals across our corpus.

about incremental parses that mediate model behav-
ior. Our approach generates counterfactual ALM
hidden states by propagating the loss of a par-
ticular parse state (a) from our probe output to
model embeddings. Specifically, we iteratively
update GPT2 hidden states with the following:
h = h + €V Pprobe (a | h), for a small step size e
(see Appendix 7 for further details). Crucially, we
perturb towards incremental, incomplete structures
before a word is generated, rather than complete
structures.

We conjecture that if our probes pick up on es-
sential syntactic information in model embeddings,
they should be able to generate model embed-
dings that produce the expected effect on model be-
haviour (e.g., perturbing toward the Z-complement
parse should make the Z-complement continuation
more likely). We generate two sets of counterfac-
tual embeddings (one for each syntactic interpreta-
tion; Figure 2) for each sentence in our modified
NP/Z data set. We do this for each layer of the
models considered for each of our probes and eval-
uate the effect of these treatments by generating
surprisal estimates from each of the counterfactual
embeddings.

The results of our analysis are shown in Figure 7.
We find that counterfactuals generated with MAP

GPT2-XL, MLP Action Probe

60 -@- Zparse
-@- NP parse

T U T T u T U T T

0 4 10 14 18 22 26 30 34 38 42 46
GPT2, MLP Action Probe

60 -@- Zparse
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204

o
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o GPT2-XL, Geometric Action Probe
<
T 60 -@- Zparse
= -@- NP parse
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o
U 204
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3
%) 0 4 8 12 16 20 24 28 32 36 40 44 48
> GPT2, Geometric Action Probe
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40 -

] mm:.‘
, ,

4 8
GPT2, No-stack Action Probe
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40
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Figure 6: Effect of sentence continuations on parse
likelihood. For each of the incremental parse probes,
we produce the negative log likelihood for each parse
given 1) congruent suffix words and 2) incongruent suf-
fix words (larger is better) and show each probe assigns
higher negative log-likelihood to parses when matched
with an incongruent suffix (lines above origin in all
cases).

produce the predicted effect on both GPT2 and
GPT2-XL for the Z- and NP-congruent continua-
tions (but not for the ‘Both’ or ‘Neither’ conditions;
Appendix A.2). This effect is significant across sev-
eral layers of both models and is most significant
at layer 2 of GPT2 small, where Z-complement-
congruent continuations increase in likelihood by
~8 fold (3 nats) on average after model interven-
tion. We find that counterfactuals generated with
the other probes do not mediate next-word predic-
tions in the expected way (Appendix A.2).

5 Related Work

Our work is related to the growing literature quan-
tifying the syntactic sensitivity of neural models of
language at behavioral (Linzen and Baroni, 2021;
Aina and Linzen, 2021; Lakretz et al., 2021) and
representational (Pimentel et al., 2020; Hewitt and
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Manning, 2019; Manning et al., 2020; Miiller-
Eberstein et al., 2022) levels. Of particular note
among these studies is the dependency-arc labeling
task introduced in Tenney et al. (2019) which bears
resemblance to our MAP architecture. Our work
extends this literature by developing several new
types of syntactic probes in the incremental setting.

Similar to our work but in semantics, Li et al.
(2021) use probes to interpret text-encoders as
maintaining an evolving semantic information state
while interacting with a text-based game. Relatedly,
our work is among others that attempt to control
neural models of language for counterfactual anal-
ysis or controllable Al more generally (De Cao
et al., 2021; Ravfogel et al., 2021; Elazar et al.,
2020; Meng et al., 2022; Dathathri et al., 2019).

Lastly, we expect our work to be of consequence
to computational psycholinguistics, where neural
language models and incremental parsers have been
historically prominent as candidate cognitive mod-
els (Hale et al., 2018; Hale, 2001; Wilcox et al.,
2020; Levy, 2008; Jurafsky, 1996; Eisape et al.,
2020). This work draws representational parallels
between these two models.

6 Conclusion

Motivated by recent work showing human-like in-
cremental parsing behaviour in ALMs, this work
extends structural probing to the incremental set-
ting. We find that autoregressive language models
can perform on par with bidirectional models in
terms of global parsing metrics despite the fact that
an ALM’s representation cannot condition on fu-

ture words. We present several hypotheses of the
representation of incremental structure in ALMs,
instantiate them in probe architectures, and eval-
uate their explanatory power across a wide range
of experiment types: parsing performance, predict-
ing model behavior, and counterfactual analyses.
Cumulatively, MAP performs the best, which is
significant because this architecture incorporates
strong constraints based on linguistic theory (i.e.,
stack-based representations) while still being rela-
tive agnostic (compared to the geometric probe) to
the details of how parse probabilities might be en-
coded. This suggests that despite a lack of explicit
feedback, language models not only rediscover lin-
guistic structure through pretraining but learn to
make ‘inferences’ over this structure in real-time
comprehension.

7 Limitations

The methods presented here have several limita-
tions. Principally, the question of what consti-
tutes a probe remains a potential confound (He-
witt and Liang, 2019; Belinkov, 2021). While we
show several effects that suggest our probes iden-
tify meaningful syntactic information, including
counterfactual perturbations, our counterfactual ef-
fects, though significant for many of the layers
of the models considered, are small in absolute
terms. Our approach to mitigating these has been
to apply a varied set of analyses that, in aggregate,
adjudicate between the hypotheses we present here.
Finally, our probes rely on a particular oracle—it
is possible that action sets from other oracles (e.g.
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ArcEager) are better-suited towards representing
incremental syntactic structures than ArcStandard.

8 Ethical and Broader Impacts

Language models are increasingly used for tasks
beyond language that assume the ability of the lan-
guage model to structure their input and make ‘de-
cisions’ in real-time. Our study targets this ability
in a basic linguistic phenomenon and thus has the
potential to be useful for interpretability and align-
ment. While the model control aspects of our study
pose some risks in that it may enable malicious
parties to generate harmful content with language
models, the authors believe the benefits in terms of
interpretability reasonably balance these.
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A Appendix

A.1 Training

Our probes are built in PyTorch (Paszke et al.).
All probes were trained with Adam (Kingma and
Ba, 2014) with a learning rate of 10~3 except for
the GAP, which used a learning rate of 10~ after
pretraining on the regression task of Hewitt and
Manning (2019). For multilayer architectures, a
dropout rate of 0.2 was used between layers (3 lay-
ers), and hidden state size was fixed to be the same
size as the model emission. The attentive probe
was implemented using a GRU of 200 hidden units,
biaffine attention, and a 3 layer MLP read-out net-
work. All architectures were optimized in PyTorch
lightning (Falcon et al., 2019). Each model trained
for at most 40 each but used early stopping with a
plateau tolerance of 3.

A.2 Counterfactual details

We find training our probes with a high dropout
rate (Tucker et al., 2022) improves counterfactual
results. Thus, we train separate checkpoints for
evaluation (0 dropout on model embeddings) and
counterfactual generation (0.4 dropout). We found
MAP achieved the largest counterfactual effect size
in the predicted direction when evaluating NP- and
Z-parse consistent completions. It had less inter-
pretable effects on the ‘Both’ and ’Neither’ condi-
tions. We include the full range of experiments in
Figures 8 and 9.
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Figure 8: Extended results of counterfactual analyses.
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Figure 9: Extended results of counterfactual analyses
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