Salient Phrase Aware Dense Retrieval:
Can a Dense Retriever Imitate a Sparse One?

Xilun Chen, Kushal Lakhotia, Barlas Oguz, Anchit Gupta,
Patrick Lewis, Stan Peshterliev, Yashar Mehdad, Sonal Gupta and Wen-tau Yih
Meta Al

{xilun,barlaso,anchit,plewis, stanvp, mehdad, sonalgupta, scottyih}@meta.com

flakhotia.kushal@gmail.com

Abstract

Despite their recent popularity and well-known
advantages, dense retrievers still lag behind
sparse methods such as BM25 in their ability to
reliably match salient phrases and rare entities
in the query and to generalize to out-of-domain
data. It has been argued that this is an inher-
ent limitation of dense models. We rebut this
claim by introducing the Salient Phrase Aware
Retriever (SPAR)', a dense retriever with the
lexical matching capacity of a sparse model.
We show that a dense Lexical Model A can be
trained to imitate a sparse one, and SPAR is
built by augmenting a standard dense retriever
with A. Empirically, SPAR shows superior per-
formance on a range of tasks including five
question answering datasets, MS MARCO pas-
sage retrieval, as well as the EntityQuestions
and BEIR benchmarks for out-of-domain eval-
uation, exceeding the performance of state-of-
the-art dense and sparse retrievers.

1 Introduction

Text retrieval is a crucial component for a wide
range of knowledge-intensive NLP systems, such
as open-domain question answering (ODQA) mod-
els and search engines. Recently, dense retriev-
ers (Karpukhin et al., 2020; Xiong et al., 2021)
have gained popularity and demonstrated strong
performance on a number of retrieval tasks. Dense
retrievers employ deep neural networks to learn
continuous representations for the queries and doc-
uments, and perform retrieval in this dense embed-
ding space using nearest neighbor search (John-
son et al., 2019). Compared to traditional sparse
retrievers that rely on discrete bag-of-words rep-
resentations, dense retrievers can derive more se-
mantically expressive embeddings, thanks to its
end-to-end learnability and powerful pre-trained
encoders. This helps dense retrievers to overcome

'The code and models of SPAR are available at:

https://github.com/facebookresearch/
dpr-scale/tree/main/spar.

several inherent limitations of sparse systems such
as vocabulary mismatch (where different words are
used for the same meaning) and semantic mismatch
(where the same word has multiple meanings).

On the other hand, while existing dense retriev-
ers excel at capturing semantics, they sometimes
fail to match the salient phrases in the query. For
example, Karpukhin et al. (2020) show that DPR,
unlike a sparse BM25 retriever (Robertson and
Walker, 1994), is unable to catch the salient phrase
“Thoros of Myr” in the query “Who plays Thoros
of Myr in Game of Thrones?”. In addition, dense
retrievers struggle to generalize to out-of-domain
test data compared to training-free sparse retriev-
ers such as BM25. For instance, Sciavolino et al.
(2021) find that DPR performs poorly compared
to BM25 on simple entity-centric questions, and
Thakur et al. (2021) introduce a new BEIR bench-
mark to evaluate the zero-shot generalization of
retrieval models showing that BM25 outperforms
dense retrievers on most tasks.

With dense and sparse retrievers each having
their own distinctive pros and cons, researchers
have long aspired to develop retriever models that
combine the strengths of both. This, however, has
proven challenging as dense and sparse retrievers
are supported by drastically different algorithms
and data structures (inverted index (Bialecki et al.,
2012) for sparse and approximate nearest neigh-
bor search (Johnson et al., 2019) for dense). Most
existing research towards this goal extends sparse
retrievers with improved representations from neu-
ral models (Lin and Ma, 2021). These methods,
nonetheless, still rely on exact matching on a bag
of tokens, which arguably cannot fully leverage the
representational power of the pre-trained encoders.

The opposite route of building better dense re-
trievers with the strengths of sparse models is much
less explored. In fact, there have been theoretical
and empirical studies suggesting that such draw-
backs of dense retrievers may be a result of in-

250

Findings of the Association for Computational Linguistics: EMNLP 2022, pages 250-262
December 7-11, 2022 ©2022 Association for Computational Linguistics

https://github.com/facebookresearch/dpr-scale/tree/main/spar
https://github.com/facebookresearch/dpr-scale/tree/main/spar

The SPAR model:
sim**** (g, p)
Query Emb. / \ Passage Emb. J/
A
T 0(q) T P(p) TM-Q"((]) T PAp)

[Dense Retriever] [Lexical Model A]

(e.g. DPR)
Query q Passage p

,.— A Training ----- e

t t

Passage Encoder P

1 T

Query Encoder Q

Random Sentences

Top 10 46 - 50

A —— Teacher: BM25

Figure 1: SPAR augments a dense retriever with a dense Lexical Model A trained to imitate a sparse teacher retriever.
A is trained using random sentences as queries with positive and negative passages produced by the teacher. A is
then combined with a dense retriever via vector concatenation to form a salient-phrase aware retriever.

herent limitations (Luan et al., 2021; Reimers and
Gurevych, 2021). In this work, we embark on
this underexplored research direction by proposing
SPAR (Fig. 1), a dense retriever with the lexical
matching capacity and out-of-domain generaliza-
tion of a sparse model. In particular, we address
an important and yet largely unanswered research
question: Can we train a dense retriever to imi-
tate a sparse one? Contrary to previous findings,
we show that it is indeed possible to mimic a given
sparse retriever (e.g., BM25 or UniCOIL (Lin and
Ma, 2021)) with a dense Lexical Model A, and we
build the SPAR model by combining A with a stan-
dard dense retriever (e.g., DPR or ANCE). Despite
the long-standing dichotomy between sparse and
dense retrievers, we arrive at a simple yet elegant
solution of SPAR by conducting an extensive study
to answer two key questions: i) How to train A
to imitate a sparse retriever (§4.1) and ii) How to
best utilize A to build a salient-phrase aware dense
retriever (§4.2).

We evaluate SPAR on five ODQA datasets (§5.1)
as well as on the MS MARCO (Bajaj et al., 2018)
passage retrieval benchmark (§5.2), and show that
it outperforms existing dense and sparse retrievers.
We also examine the out-of-domain generalization
of SPAR showing strong zero-shot performance
across datasets (§5.3), including on the BEIR bech-
mark (Thakur et al., 2021) and a recently released
dataset of entity-centric questions (Sciavolino et al.,
2021). In addition, we conduct analyses of A show-
casing its lexical matching capability (§6).

2 Related Work

Sparse retrievers date back for decades and suc-
cessful implementations such as BM25 (Robertson
and Walker, 1994) remain popular to date for its
lexical matching capacity and great generalization.
Despite the rapid rise of dense retrievers in recent
years, development in sparse retrievers remain ac-
tive, partly due to the limitations of dense retrievers
discussed in §1. Various methods have been pro-
posed to improve term weight learning (Dai and
Callan, 2020; Mallia et al., 2021), address vocab-
ulary mismatch (Nogueira and Lin, 2019) and se-
mantic mismatch (Gao et al., 2021a), inter alia.
While most of these methods have been incom-
patible with dense retrievers, our SPAR method
provides a route for incorporating any such im-
provement into a dense retriever.

Dense retrievers employ pre-trained neural en-
coders to learn vector representations and per-
form retrieval by using nearest-neighbor search
in this dense embedding space (Lee et al., 2019;
Karpukhin et al., 2020). Subsequent works have de-
veloped various improvements, including more so-
phisticated training strategies and using better hard
negatives (Xiong et al., 2021; Qu et al., 2021; Mail-
lard et al., 2021; Oguz et al., 2022). Such improve-
ments are also complementary to the SPAR ap-
proach, which can potentially leverage these more
powerful dense retrievers as shown in §5.2.

A few recent studies focus on the limitations
of current dense retrievers. Lewis et al. (2021a)
and Liu et al. (2022) study the generalization is-
sue of dense retrievers in various aspects, such as

251

the overlap between training and test data, com-
positional generalization and the performance on
matching novel entities. Thakur et al. (2021) intro-
duce a new BEIR benchmark to evaluate the zero-
shot generalization of retrieval models showing that
BM25 outperforms dense retrievers on most tasks.
A different line of research explores using multiple
dense vectors as representations which achieves
higher accuracy but is much slower (Khattab and
Zaharia, 2020). Lin et al. (2021b) further propose
a knowledge distillation method to train a stan-
dard dense retriever with similar performance of
the multi-vector CoIBERT model. More recently,
Sciavolino et al. (2021) create EntityQuestions, a
synthetic dataset of entity-centric questions to high-
light the failure of dense retrievers in matching key
entities in the query. We evaluate the generalization
of SPAR on BEIR and EntityQuestions in §5.3.

Hybrid retrievers directly combine sparse and
dense retrievers, and have been the most commonly
used approach to overcome the limitations of a
dense or sparse retriever (Gao et al., 2021b; Ma
et al., 2022) before this work. A hybrid system
retrieves two separate sets of candidates using a
dense and a sparse retriever and rerank them using
the hybrid retrieval score. Compared to a hybrid
retriever, SPAR offers the same performance with
a much simpler architecture. We compare SPAR
with the hybrid models in more details in §4.3.

3 Preliminaries: Dense Retrieval

In this work, we adopt DPR (Karpukhin et al.,
2020) as our dense retriever architecture for learn-
ing the Lexical Model A. We give a brief overview
of DPR in this section and refer the readers to the
original paper for more details.

DPR is a bi-encoder model with a guery en-
coder and a passage encoder, each a BERT trans-
former (Devlin et al., 2019), which encodes the
queries and passages into d-dimensional vectors,
respectively. Passage vectors are generated offline
and stored in an index built for vector similarity
search using libraries such as FAISS (Johnson et al.,
2019). The query embedding is computed at run
time, which is used to look up the index for k pas-
sages whose vectors are the closest to the query
representation using dot-product similarity.

DPR is trained using a contrastive objective:
given a query and a positive (relevant) passage, the
model is trained to increase the similarity between
the query and the positive passage while decreas-

ing the similarity between the query and negative
ones. It is hence important to have hard negatives
(irrelevant passages that are likely confused with
positive ones) for more effective training?.

We employ the DPR implementation from Oguz
et al. (2022), which supports efficient multi-node
training as well as memory-mapped data loader,
both important for the large-scale training of A. For
model training, we also adopt their validation met-
rics of mean reciprocal rank (MRR) on a surrogate
corpus using one positive and one hard negative
from each query in the development set. Assuming
a set of N dev queries, this creates a mini-index of
2N passages, where the MRR correlates well with
full evaluation while being much faster.

4 The SPAR Model

In this section, we present SPAR, our salient phrase
aware dense retriever. As illustrated in Figure 1, the
basic idea of SPAR is to first train a dense Lexical
Model A such that it produces similar predictions
to a sparse teacher retriever. A is then combined
with a regular dense retriever via vector concatena-
tion. Although the high-level idea of SPAR is fairly
straightforward, details of the model training pro-
cess dictate its success in practice, and thus require
a careful experimental study. To find the best con-
figuration of SPAR, we conduct pilot experiments
using the validation set of NaturalQuestions (NQ,
Kwiatkowski et al., 2019) following the ODQA
setting (Lee et al., 2019). BM25 is adopted as the
teacher model for training A. Below we describe
the key results on how to successfully train A (§4.1)
and on how to best leverage A in SPAR (§4.2).

4.1 Training the Lexical Model A

There are many options to train A to imitate the
predictions of a sparse retriever, such as mimicking
the scores of the sparse retriever with the MSE loss
or KL divergence, or learning the passage ranking
of the teacher while discarding the scores. After un-
successful initial attempts with these methods, we
instead choose a very simple approach inspired by
the DPR training. Recall that to train a DPR model,
a passage corpus and a set of training queries are
needed, where each query is associated with one
or more positive and hard negative passages. To
create such data for training A, we use the sparse
teacher retriever to produce the positive and neg-
ative passages. In particular, for any given query,

2DPR uses BM25 to generate hard negatives.

252

we run the teacher model to retrieve the top K pas-
sages and use the top n,, passages as positives and
the bottom n,, as negatives. After the training data
is generated, A can be trained using the same con-
trastive loss as DPR. To find the best strategy for
training A, we experiment with different training
queries and different values of K, n;, and n,.

We use a similar process to create the validation
data, and adopt the MRR metric (§3) for evaluating
whether A behave similarly to the teacher model.
In particular, we use the questions from the NQ
validation set as the target queries and whether
a passage is relevant is again determined by the
teacher. For validation, n,, is set to 1, which means
only the passage ranked the highest by the teacher
is considered positive. As a result, a higher MRR
on this validation data indicates that the predictions
of A are more similar to the teacher.

Training queries As the teacher model can be
run on arbitrary queries to generate positive and
negative passages, we are not restricted to any an-
notated data for training A. We experiment with
different approaches for constructing such queries,
focusing on two potentially helpful properties: i)
how similar the queries are to the downstream eval-
uation queries and ii) the quantity of queries as
large-scale training data gives the neural models
more exposure to rare words and phrases. Specifi-
cally, we consider three query sets: NQ questions,
Wiki sentences and PAQ questions. NQ questions
consists of 59k questions in the training set of NQ,
which have the benefit of being similar to the evalu-
ation queries. Wiki sentences are a large collec-
tion of 37 million sentences sampled randomly
from the Wikipedia passage corpus. (See Ap-
pendix A for how the queries are sampled.) Finally,
PAQ questions are from the PAQ dataset (Lewis
et al., 2021b), a collection of 65 million syntheti-
cally generated probably asked questions based on
Wikipedia, which have both desirable properties.
Based on our experiments, NQ A achieves a
MRR of 76.5%, while Wiki A attains 92.4% and
PAQ A reaches 94.7%. This indicates that the
size of the data certainly plays an important role,
as both Wiki A and PAQ A outperform NQ A
by a wide margin. PAQ A achieves the highest
MRR among the three options, for it combines the
benefits of NQ and Wiki A, with large-scale queries
that are also similar to the downstream evaluation
data. However, such large-scale synthetic queries
are very expensive to obtain and not available for

92

90

88

86

Validation MRR

84

82

12 5 10 15
Number of positive passages

Figure 2: Validation MRR of the Wiki A using various
numbers of positive passages.

all domains, so we focus our attention on the much
cheaper Wiki A option, given that the gap between
their performance is small.

Number of positive and negative passages We
also experimented with the numbers of positive and
negative passages per training query. The model
performance was not sensitive to the total number
of passages retrieved from the teacher model (K)
as well as the number of negative passages (ny).
However, the number of positives (n,,) is more im-
portant. As shown in Figure 2, using more than one
positive passage is critical to successful training, as
n, = 2 significantly improves the validation met-
rics over n, = 1. Further increase in n, remains
helpful, but with a diminished return. As a result,
we use 1, = 10 in our final model.

4.2 Building SPAR with A

With a successfully trained dense lexical model
A, we next experiment with various approaches to
build a salient-phrase aware retriever with it. All
models are trained on NQ training set and we re-
port the Acc@20 and Acc@ 100 metrics on the test
set, which evaluates whether any of the top 20/100
retrieved passages contain the answer to the input
question. We consider two baseline models, DPR
(NQ-single) and the hybrid DPR+BM25 model’.
Because SPAR is built by augmenting DPR with
A, it should perform better than the DPR alone.
Moreover, if our dense lexical model is effective,
then the final model should achieve a comparable
performance as DPR+BM25.

The first method we test is to initialize DPR with
the model weights of A (Initialization) for DPR

3We implement DPR+BM25 with Pyserini (Lin et al.,
2021a); see §4.3 for more discussions on hybrid models.

253

training, with the hope that DPR can inherit the lex-
ical matching capacity from A. However, as shown
in Table 1, the results are only slightly better than
the original DPR on Acc@100. We next test di-
rectly combining the vectors of DPR and A, using
either summation (Weighted Sum) or concatenation
(Weighted Concat), where the weights are tuned us-
ing the validation data. In our experiments, we find
that both methods perform well, achieving higher
Acc@20 and Acc@100 scores than DPR+BM?25.
Although concatenation performs better, summa-
tion has the benefit of not increasing the dimension
of the final vectors. Since both DPR and A are
dense retrievers, this post-hoc combination can be
easily done while still using a single FAISS index.
The good performance of Weighted Concat is
encouraging, but also triggers two questions. First,
does the good performance come from the longer
embedding size? To answer this question, we in-
clude the ensemble (weighted concatenation of em-
beddings) of two independently trained DPR mod-
els (2 DPRs) as an additional baseline. Although it
has the same dimension and number of parameters
as Weighted Concat, its performance is substan-
tially lower. Second, can we train a better concate-
nation model instead of simply combining the vec-
tors of two separately trained models at test time?
We experiment with a joint training approach, in
which we concatenate the DPR embeddings with
that of a trained A during DPR training. The simi-
larity and loss are computed with the concatenated
vector, but we freeze A, and only train the DPR
encoders as well as the scalar weight for vector
concatenation. The idea is to make DPR “aware”
of the lexical matching scores given by A during its
training in order to learn a SPAR model. This can
also be viewed as training DPR to correct the errors
made by A. Somewhat surprisingly, however, this
strategy does not work well compared to post-hoc
concatenation as shown in Table 1. We hence adopt
the Weighted Concat method in our final model.

Concatenation Weight Tuning When concate-
nating the vectors from two dense retrievers, they
may be on different scales, especially across varied
datasets. It is hence helpful to add a weight u to
balance the two models during concatenation. We
add the weight to the query embeddings so that the
offline passage index is not affected by a change of
weight. Specifically, for a query g and a passage p,
a dense retriever with query encoder () and passage
encoder P, as well as a A model with QA and PA,

Acc@k on NQ @20 @100
DPR 78.3 85.6
2 DPRs (Weighted Concat) 79.8 86.4
DPR + BM25 Hybrid 80.9 87.9
SPAR (Initialization) 78.1 86.3
SPAR (Joint Training) 79.2 86.6
SPAR (Weighted Sum) 81.3 88.0
SPAR (Weighted Concat) 822 883

Table 1: Comparison of various methods of leveraging
the Wiki A in SPAR: used as initialization for DPR
training; combining two trained models with weighted
vector sum or concatenation; vector concatenation dur-
ing DPR training (joint training).

the final query vector in SPAR is [Q(q), pQ"(q)]

while the passage vector being [P(p), P*(p)]. The
final similarity score is equivalent to a linear com-
bination of the two model scores:

sim®"** (¢, p) = [Q(q), nQ"(0)]" [P(p), P (p)]
Mg,p) (D

Note that unlike hybrid retrievers, the similarity
function of SPAR is an exact hybrid of A and the
base retriever, achievable in a single FAISS index
search, thanks to the fact that both are dense retriev-
ers. In addition, our decision of adding u to the
query vectors can potentially support dynamic or
query-specific weights without the need to change
the index, which we leave for future work.

Our final SPAR model is a general framework
for augmenting any dense retriever with the lexi-
cal matching capability from any given sparse re-
triever. We first train A using queries from random
sentences in the passage collection and labels gen-
erated by the teacher model with 10 positive and 5
hard negative passages. We then combine A and
the base dense retriever with weighted vector con-
catenation using weights tuned on the development
set. The passage embeddings can still be generated
offline and stored in a single FAISS index and re-
trieval can be done in the same way as a standard
dense retriever. Further implementation details can
be found in Appendix A.

= sim(g, p) + p - sim

4.3 Comparing SPAR with Hybrid Retrievers

While most research focuses on improving either
dense or sparse retrievers to overcome their draw-
backs, people in practice also build hybrid retriev-
ers that directly incorporate both. In addition to ad-
dressing an open research question probing the lim-
its of a dense retriever, SPAR also has several prac-
tical advantages over such hybrid models, which is
discussed in this section.

254

NQ SQuAD TriviaQA WebQ TREC Average
Model @20 @100 @20 @100 @20 @100 @20 @100 @20 @100 @20 @100
(s) BM25 629 783 71.1 81.8 764 832 624 755 80.7 89.9 70.7 81.7
(d) Wiki A 620 774 67.6 794 75.7 833 60.4 750 79.8 90.5 69.1 8l1.1
(d) PAQ A 63.8 78.6 68.0 80.1 76.5 834 63.0 764 81.0 90.5 70.5 81.8
(d) DPR-multi 79.5 86.1 520 67.7 789 84.8 75.0 83.0 88.8 934 74.8 83.0
(d) xMoCo' 82.5 86.3 559 70.1 80.1 85.7 78.2 84.8 89.4 94.1 772 842
(d) ANCE? 82.1 879 - - 80.3 85.2 - - - - - -
(d) RocketQA® 82.7 885 - - - - . . - - - -
(h) DPR + BM25* 82.6 88.6 751 844 82.6 86.5 713 84.7 90.1 95.0 81.5 8738
(d) sPAR-Wiki 83.0 88.8 73.0 83.6 82.6 86.7 76.0 844 89.9 952 80.9 87.7
(d) sPAR-PAQ 82.7 88.6 729 837 82.5 869 76.3 85.2 90.3 954 809 88.0
Cross-dataset model generalization (Discussed in §5.3)
(d) SPAR-MARCO 823 88.5 71.6 82.6 82.0 86.6 772 84.8 89.5 94.7 80.5 874

' (Yang et al., 2021)

2 (Xiong et al., 2021)

3(Quet al., 2021)

*Maetal., 2022)

Table 2: Acc@20 and 100 for Open-Domain Question Answering. Model types are shown in parentheses (d: dense,

s: sparse, h: hybrid). The highest performance is in bold, and the highest among dense retrievers is underlined.

Architectural Complexity A major advantage of
SPAR is its simplicity as a dense retriever. Hybrid
retrievers need to build and search from two sepa-
rate indices with different libraries (e.g. FAISS for
dense and Lucene for sparse), and the retrieved pas-
sages from the dense and the sparse index then need
to be aggregated to form the final results. SPAR,
on the other hand, can be deployed and used in the
same way as any standard dense retriever such as
DPR without added complexity. Passage embed-
dings can be pre-computed and stored in a single
FAISS index, and only a single lookup in the FAISS
index is needed for retrieval. Furthermore, most
dense retrieval optimizations such as Product Quan-
tization, HNSW can also be applied to SPAR. Last
but not least, it is prohibitive to perform an exact
hybrid search in hybrid models and challenging to
even devise an efficient approximation (Wu et al.,
2019). SPAR retrieval, however, is equivalent to an
exact hybrid of A and the base retriever (Eqn. 1),
without the need for approximation.

Retrieval Speed and Index Size SPAR has two
variants (§4.2), where the weighted concat variant
is optimized for accuracy while the weighted sum
variant has higher efficiency. With the weighted
sum variant, the index size and retrieval speed stays
the same as the base dense retriever, making it
superior than a hybrid model.

For the weighted concat variant, SPAR index
search takes 20ms/query using a HNSW index
(compared to DPR’s 10ms). BM25, in compar-
ison, has a latency of 55ms using the Anserini
toolkit (Hofstitter et al., 2021), and a hybrid

DPR+BM2S5 retriever has a latency of 58ms assum-
ing DPR and BM25 retrieval can be done in parallel.
For the index size, however, a hybrid model may
have an advantage thanks to the small index foot-
print of BM25. SPAR’s index for MS MARCO is
52GB when using weighted concat, which is twice
as large as DPR. A hybrid DPR+BM25 model, in-
stead, has an index size of 27GB as BM25 only
takes up 700MB space.

S Experiments

5.1 Open-Domain Question Answering

Datasets We evaluate on five widely used ODQA
datasets (Lee et al., 2019): NaturalQuestions (NQ,
Kwiatkowski et al., 2019), SQuAD v1.1 (Rajpurkar
et al., 2016), TriviaQA (Joshi et al., 2017), We-
bQuestions (WebQ, Berant et al., 2013) and Curat-
edTREC (TREC, Baudi§ and Sedivy, 2015). We
follow the exact setup of DPR (Karpukhin et al.,
2020), including the train, dev and test splits, and
the Wikipedia passage collection, as well as the
accuracy @k (Acc@k) metric for evaluation, which
is defined as the fraction of queries that has at least
one positive passage retrieved in the top k.

Table 2 presents the main results on ODQA. For
SPAR models, we report two variants both trained
with BM25 as teacher, using the Wiki and PAQ
training queries respectively (§4.1). The MARCO
A is to test the model generalization of SPAR, and
will be discussed in §5.3. SPAR outperforms all
state-of-the-art retrievers in the literature, usually
by wide margins, demonstrating the effectiveness
of our approach.

255

Model

MS MARCO Deyv Set
MRR@10 R@50 R@1000

(s) BM25
(s) UniCOIL (Lin and Ma, 2021)

18.7 59.2 85.7
352 80.7 95.8

(d) MARCO BM25 A
(d) MARCO UniCOIL A

17.3 56.3 83.1
34.1 82.1 97.0

(d) ANCE (Xiong et al., 2021)
(d) TCT-ColBERT (Lin et al., 2021b)
(d) RocketQA (Qu et al., 2021)

33.0 79.1 95.9
359 - 97.0
37.0 84.7 91.7

(h) ANCE + BM25 347 816 96.9
(h) RocketQA + BM25 38.1 859 98.0
(h) ANCE + UniCOIL 375 848 976
(h) RocketQA + UniCOIL 38.8 865 973
(d) SPAR (ANCE + A=MARCO BM25) 34.4 815 97.1
(d) SPAR (RocketQA + A=MARCO BM25) 37.9 857 98.0
(d) SPAR (ANCE + A=MARCO UniCOIL) 36.9 846 98.1

(d) SPAR (RocketQA + A=MARCO UniCOIL)

Cross-dataset model generalization (Discussed in §5.3)

(d) Wiki BM25 A
(d) SPAR (ANCE + A=Wiki BM25)

(d) SPAR (RocketQA + A=Wiki BM25)

15.8 50.8 78.8
344 81.5 97.0
37.7 85.3 98.0

Table 3: SPAR results on MS MARCO passage retrieval. We consider several options for A, trained with different
objectives (BM25 and UniCOIL) and different corpora (MSMARCO and Wikipedia). For ANCE and RocketQA,
we use the released checkpoints and our evaluation scripts. We matched public numbers in most cases, but we were
unable to reproduce the R@50 and R@ 1000 reported by RocketQA.

Another appealing result comes from SQuAD, a
dataset on which all previous dense retrievers fail
to even get close to a simple BM25 model. As the
SQuAD annotators are given the Wikipedia passage
when they write the questions, the lexical overlap
between the questions and the passages is hence
higher than other datasets. The poor performance
of dense retrievers on SQuUAD confirms that dense
retrieval struggles at lexical matching. On the other
hand, SPAR dramatically improves over previous
models, achieving an improvement of 13.6 points
in Acc@100 over the best existing dense retriever.

PAQ A matches the accuracy of the teacher
BM25 model, while Wiki A performs slightly
worse. The performance gap, however, is smaller
in the final SPAR model. Both approaches are able
to match the performance of the hybrid model, and
SPAR-PAQ is only 0.3% better on average than
SPAR-Wiki. This enables us to go with the much
cheaper Wiki option for training A without sacri-
ficing much of the end performance.

5.2 MS Marco Passage Retrieval

In this section, we report our experiments on the
MS MARCO passage retrieval dataset (Bajaj et al.,
2018), a popular IR benchmark with queries from
the Bing search engine and passages from the

web. Following standard practice, we evaluate
MRR @10, Recall@50 and Recall@ 1000.

To highlight the versatility of our approach, we
adopt two base dense retrievers in SPAR, ANCE
and RocketQA. We further consider two sparse re-
trievers for training A, BM25 and UniCOIL (Lin
and Ma, 2021), a recent SOTA sparse retriever, to
study whether SPAR training can imitate a more ad-
vanced teacher model. Similar to the Wiki training
queries, we create a MARCO corpus for training A.
As the MS MARCO passage collection has fewer
passages than Wikipedia, we use all sentences in-
stead of sampling, resulting in a total of 28 million
queries. We also report the performance of the
Wiki A for model generalization (see §5.3).

Table 3 illustrates the results, where the sec-
tions correspond to sparse retrievers, the Lexical
Models, state-of-the-art dense retrievers, various
hybrid models, and finally SPAR and the model
generalization experiments. As demonstrated in
Table 3, SPAR is able to augment ANCE and Rock-
etQA with the lexical matching capacity from ei-
ther BM25 or UniCOIL, leading to a performance
close to the hybrid retriever, and again outperform-
ing all existing dense and sparse retrievers with a
MRR@10 of 38.6. The fact that SPAR works with
not only DPR and BM25, but other SoTA dense

256

TC NF NQ HQ FQ AA T2 Qu CQ DB SD Fe CF SF Avg.
BM25 65.6 32.5 32.9 60.3 23.6 31.5 36.7 78.9 29.9 31.3 158 753 21.3 66.5 43.0
docT5query 713 32.8 39.9 58.0 29.1 34.9 34.7 80.2 32.5 33.1 162 71.4 20.1 67.5 44.4
ANCE 654 23.7 44.6 456 29.5 41.5 24.0 852 29.6 28.1 122 66.9 19.8 50.7 40.5
CoIBERT 67.7 30.5 52.4 59.3 31.7 23.3 20.2 85.4 35.0 39.2 14.5 77.1 184 67.1 444
Contriever (Izacard et al., 2022) 59.6 32.8 49.8 63.8 32.9 44.6 23.0 86.5 34.5 41.3 16.5 75.8 23.7 67.7 46.6
GTR-large (Ni et al., 2021) 55.7 32.9 54.7 57.9 42.4 525 21.9 89.0 38.4 39.1 158 71.2 26.2 63.9 472
GTR-large (our reproduction) 56.3 31.4 55.1 57.8 41.1 50.9 22.0 88.5 36.2 39.5 15.5 56.6 19.8 54.0 44.6
SPAR (ANCE + BM25 A) 68.4 27.7 473 53.6 32.1 45.0 28.1 86.7 33.2 32.1 14.1 72.6 23.2 59.6 445
SPAR (ANCE + UniCOIL A) 76.4 31.8 51.1 63.0 32.3 47.2 30.3 86.9 358 36.1 155 80.2 23.5 62.6 48.1
SPAR (GTR + BM25 A) 60.7 32.3 55.7 60.9 40.9 51.4 23.5 89.3 37.4 41.1 163 58.0 20.5 57.3 46.1
SPAR (GTR + UniCOIL A) 73.7 34.0 57.0 66.2 39.8 52.6 30.3 89.6 39.1 41.9 17.2 66.5 21.4 62.8 49.4
SPAR (Contriever + BM25 A) 63.0 33.7 51.3 66.4 34.1 459 249 875 35.8 42.8 169 769 24.8 69.5 48.1
SPAR (Contriever + UniCOIL A) 73.5 33.8 53.1 67.6 33.7 48.8 27.5 87.0 36.5 422 17.1 812 245 683 49.6

Table 4: Zero-shot results on BEIR (Thakur et al., 2021). All SPAR models, including the concatenation weights,
are trained / tuned on MS MARCO. Dataset Legend: TC=TREC-COVID, NF=NFCorpus, NQ=NaturalQuestions,
HQ=HotpotQA, FQ=FiQA, AA=ArguAna, T2=Touché-2020, Qu=Quora, CQ=CQADupStack, DB=DBPedia,
SD=SCIDOCS, Fe=FEVER, CF=Climate-FEVER, SF=SciFact.

and sparse retrievers makes SPAR a general solu-
tion for combining the knowledge of dense and
sparse retrievers in a single dense model.

One interesting phenomenon in both experi-
ments is that while A by itself achieves a slightly
lower performance than the teacher sparse retriever,
the final SPAR model can reach or beat the hy-
brid model when combined with the same dense
retriever. One possible reason why SPAR outper-
forms the hybrid model may be that SPAR is able
to perform an exact “hybrid” of two retrievers since
both are dense models (Eqn. 1), while the hybrid
model relies on approximation. We leave further
investigation in this curious finding to future work.

5.3 Out-of-Domain Generalization of SPAR

We now focus on another important topic regarding
the generalization of SPAR. We have shown that
Wiki A achieves a similar performance to PAQ A,
making it often unnecessary to rely on sophisti-
catedly generated queries for training A. A more
exciting finding is that A also has great zero-shot
generalization to other datasets.

In the last section of Table 2 and 3, we reported
SPAR performance on ODQA using the A model
built for MS MARCO and vice versa. In both direc-
tions, A has a high zero-shot accuracy, and SPAR’s
performance is close to that using in-domain A.
This suggests that A shares the advantage of better
generalization of a sparse retriever, and it may not
be always necessary to retrain A on new datasets.

5.3.1 Zero-shot performance on BEIR

We further evaluate zero-shot transfer of SPAR on
the BEIR benchmark (Thakur et al., 2021), which
consists of a diverse set of 18 retrieval tasks gacross
9 domains®. In particular, following the standard
setup, all models are trained on MS MARCO
and tested on the BEIR benchmarks. Therefore,
we adopt the MARCO A models, and combine
them with various dense retrievers trained on MS
MARCO to form SPAR models. As shown in Ta-
ble 4, SPAR achieves a new state-of-the-art overall
performance, and performs the best on 11 out of 14
datasets. Regardless of the choice of the base dense
retriever, adding either the BM25 or UniCOIL A
can consistently and substantially boost the perfor-
mance of the base retriever, even for very recent
SoTA models such as Contriever (Izacard et al.,
2022) and GTR (Ni et al., 2021).

5.3.2 SPAR on EntityQuestions

Acc@k on EQ Acc@20 Acc@100
(d) DPR 56.6 70.1
(s) BM25 70.8 79.2
(h) DPR + BM25 73.3 82.3
(d) Wiki A 68.4 77.5
(d) PAQ A 69.4 78.6
(d) SPAR 73.6 81.5
(d) SPAR-PAQ 74.0 82.0

Table 5: Zero-shot performance on the EntityQues-
tions (Sciavolino et al., 2021) dataset. We report micro-
average instead of macro-average in the original paper.

A concurrent work (Sciavolino et al., 2021)

*4 tasks were omitted in our evaluation for license reasons.

257

also identifies the lexical matching issue of dense
retrievers, focusing specifically on entity-centric
queries. They create a synthetic dataset containing
simple entity-rich questions, where DPR performs
significantly worse than BM25. In Table 5, we
evaluate SPAR on this dataset in a zero-shot set-
ting without any re-training, other than tuning the
concatenation weight on the development set. The
result further confirms the generalization of SPAR.
A transfers much better to this dataset than DPR,
achieving a slightly lower performance than BM25.
When A is combined with DPR, SPAR achieves a
higher Acc@20 than the hybrid model, and overall
an improvement of 17.4 points over DPR.

6 Does A Learn Lexical Matching?

In this section, we verify whether A actually learns
lexical matching with a series of analyses.

6.1 Rank Biased Overlap with BM25

RBOw/BM25 NQ SQuAD Trivia

DPR .104 .078 170
Wiki A .508 452 .505
PAQ A .603 478 527

Table 6: Rank Biased Overlap (RBO, Webber et al.,
2010) between BM25 and various dense retrievers on
the dev set. We use the standard p = 0.9 in RBO.

We first directly compare the predictions of A
against BM25. As shown in Table 6, the prediction
of DPR and BM25 are dramatically different from
each other, with a RBO of only 0.1, which is a
correlation measure between partially overlapped
ranked lists. In contrast, A achieves a much higher
overlap with BM25 of around 0.5 to 0.6.

6.2 Token-shuffled queries

Model Original Shuffled A

@20 @100 @20 @100 @20 @100
DPR 774 84.7 69.4 80.1 8.0 46
BM25 62.3 76.0 623 76.0 0.0 00
Wiki A 609 74.9 60.8 74.9 0.1 00
PAQ A 62.7 76.4 62.6 76.2 0.1 0.2

Table 7: Lexical matching stress test on NQ Dev, using
token-shuffled questions. A is order agnostic and main-
tains its performance on shuffled queries.

Next, we inspect the lexical matching capacity
of A in an extreme case where the order of tokens
in each question is randomly shuffled. Table 7

indicates that the performance of DPR drops sig-
nificantly on this token-shuffled dataset, while the
bag-of-word BM25 model remains completely un-
affected. On the other hand, both Wiki A and PAQ
A remain highly consistent on this challenge set,
showing great robustness in lexical matching.

6.3 Hybrid SPAR + BM25 model

Acc@Fk on NQ @20 @100
(d) DPR 79.5 86.1
(h) DPR + BM25 82.6 88.6
(d) SPAR-Wiki 83.0 88.8
(h) sPAR-Wiki + BM25 82.9 88.9
(d) SPAR-PAQ 82.7 88.6
(h) SPAR-PAQ + BM25 82.7 88.8

Table 8: The SPAR+BM?25 model yields minimal gains
over SPAR, indicating that SPAR does well in lexical
matching and performs similarly to a hybrid model.

To confirm that SPAR improves DPR’s perfor-
mance by enhancing its lexical matching capability,
we add the real BM25 to SPAR to create a hybrid
model. As demonstrated in Table 8, adding BM25
to SPAR only results in minimal gains, which indi-
cates that SPAR renders BM25 almost completely
redundant and supports our main claim.

7 Conclusion

In this paper, we propose SPAR, a salient-phrase
aware dense retriever, which can augment any
dense retriever with the lexical matching capac-
ity and out-of-domain generalization from a sparse
retriever. This is achieved by training a dense Lexi-
cal Model A to imitate the behavior of the teacher
sparse retriever, the feasibility of which remained
unknown until this work. We show that SPAR out-
performs previous state-of-the-art dense and sparse
retrievers, matching or even exceeding more com-
plex hybrid systems, on various in-domain and out-
of-domain evaluation datasets.

For future work we plan to explore if a dense
retriever can be trained to learn lexical matching
directly without relying on a teacher model. This
way, we can avoid imitating the errors of the sparse
retriever, and devise new ways of training dense re-
trievers that can potentially surpass hybrid models.
Moreover, there are several intriguing findings in
this work that may warrant further study, such as
why SPAR’s Acc@Fk improves relatively to the hy-
brid model as k increases, and why joint training is
less effective than post-hoc vector concatenation.

258

Limitations

There is a trade-off between accuracy and effi-
ciency when considering the two variants of SPAR
(Section 4.2). The Weighted Concat variant, the
main focus of this paper, gives higher accuracy
but results in longer query and passage embed-
dings. This in turn increases the index size and
the retrieval time. On the other hand, the Weighted
Sum variant does not increase the embedding size,
but achieves a lower accuracy compared to the
Weighted Concat variant as shown in Table 1.

As mentioned in Section 7, SPAR relies on a
sparse teacher model to learn the Lexical ModelA.
It is an intriguing direction for future work to ex-
plore whether we can learn SPAR from scratch
without the help of a teacher retriever.

References

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. 2018. Ms marco: A human gener-
ated machine reading comprehension dataset. ArXiv
e-prints 1611.09268.

Petr Baudi§ and Jan Sedivy. 2015. Modeling of the
question answering task in the yodaqa system. In
Proceedings of the 6th International Conference on
Experimental IR Meets Multilinguality, Multimodal-
ity, and Interaction - Volume 9283, CLEF’ 15, page
222-228, Berlin, Heidelberg. Springer-Verlag.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533—1544, Seattle, Wash-
ington, USA. Association for Computational Linguis-
tics.

Andrzej Bialecki, Robert Muir, and Grant Ingersoll.
2012. Apache lucene 4. In Proceedings of the SI-
GIR 2012 Workshop on Open Source Information Re-
trieval, OSIR@SIGIR 2012, Portland, Oregon, USA,
16th August 2012, pages 17-24. University of Otago,
Dunedin, New Zealand.

Zhuyun Dai and Jamie Callan. 2020. Context-aware
term weighting for first stage passage retrieval. In
Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’20, page 1533-1536, New
York, NY, USA. Association for Computing Machin-
ery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021a.
COIL: Revisit exact lexical match in information
retrieval with contextualized inverted list. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3030-3042, Online. Association for Computational
Linguistics.

Luyu Gao, Zhuyun Dai, Tongfei Chen, Zhen Fan, Ben-
jamin Van Durme, and Jamie Callan. 2021b. Comple-
ment lexical retrieval model with semantic residual
embeddings. In Advances in Information Retrieval
- 43rd European Conference on IR Research, ECIR
2021, Virtual Event, March 28 - April 1, 2021, Pro-
ceedings, Part I, volume 12656 of Lecture Notes in
Computer Science, pages 146—160. Springer.

Sebastian Hofstétter, Sheng-Chieh Lin, Jheng-Hong
Yang, Jimmy Lin, and Allan Hanbury. 2021. Ef-
ficiently teaching an effective dense retriever with
balanced topic aware sampling. In Proceedings of
the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
page 113122, New York, NY, USA. Association for
Computing Machinery.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022. Unsupervised dense informa-
tion retrieval with contrastive learning. Transactions
on Machine Learning Research.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535-547.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611, Vancouver,
Canada. Association for Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqgi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781,
Online. Association for Computational Linguistics.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR Conference on Research

259

http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
https://doi.org/10.1007/978-3-319-24027-5_20
https://doi.org/10.1007/978-3-319-24027-5_20
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
http://opensearchlab.otago.ac.nz/paper_10.pdf
https://doi.org/10.1145/3397271.3401204
https://doi.org/10.1145/3397271.3401204
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.1007/978-3-030-72113-8_10
https://doi.org/10.1007/978-3-030-72113-8_10
https://doi.org/10.1007/978-3-030-72113-8_10
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075

and Development in Information Retrieval, SIGIR
720, page 39—-48, New York, NY, USA. Association
for Computing Machinery.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452-466.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6086—-6096, Florence, Italy.
Association for Computational Linguistics.

Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel.
2021a. Question and answer test-train overlap in
open-domain question answering datasets. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1000—1008, Online.
Association for Computational Linguistics.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Min-
ervini, Heinrich Kiittler, Aleksandra Piktus, Pontus
Stenetorp, and Sebastian Riedel. 2021b. PAQ: 65
million probably-asked questions and what you can
do with them. Transactions of the Association for
Computational Linguistics, 9:1098-1115.

Jimmy Lin and Xueguang Ma. 2021. A few brief notes
on deepimpact, coil, and a conceptual framework
for information retrieval techniques. ArXiv e-prints
2106.14807.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021a. Pyserini: A Python Toolkit for Reproducible
Information Retrieval Research with Sparse and
Dense Representations, page 2356-2362. Associa-
tion for Computing Machinery, New York, NY, USA.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin.
2021b. In-batch negatives for knowledge distillation
with tightly-coupled teachers for dense retrieval. In
Proceedings of the 6th Workshop on Representation
Learning for NLP (RepL4NLP-2021), pages 163-173,
Online. Association for Computational Linguistics.

Linging Liu, Patrick Lewis, Sebastian Riedel, and Pon-
tus Stenetorp. 2022. Challenges in generalization in
open domain question answering. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 2014-2029, Seattle, United States. Asso-
ciation for Computational Linguistics.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, dense, and attentional
representations for text retrieval. Transactions of the

Association for Computational Linguistics, 9:329—

345.

Xueguang Ma, Kai Sun, Ronak Pradeep, Minghan Li,
and Jimmy Lin. 2022. Another look at dpr: Repro-
duction of training and replication of retrieval. In
Advances in Information Retrieval: 44th European
Conference on IR Research, ECIR 2022, Stavanger,
Norway, April 10-14, 2022, Proceedings, Part I, page
613-626, Berlin, Heidelberg. Springer-Verlag.

Jean Maillard, Vladimir Karpukhin, Fabio Petroni, Wen-
tau Yih, Barlas Oguz, Veselin Stoyanov, and Gargi
Ghosh. 2021. Multi-task retrieval for knowledge-
intensive tasks. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1098-1111, Online. Association for
Computational Linguistics.

Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola
Tonellotto. 2021. Learning passage impacts for in-
verted indexes. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR °21,
page 1723-1727, New York, NY, USA. Association
for Computing Machinery.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernandez Abrego, Ji Ma, Vincent Y. Zhao,
Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yinfei
Yang. 2021. Large dual encoders are generalizable
retrievers. arXiv preprint arXiv:2112.07899.

Rodrigo Nogueira and Jimmy Lin. 2019. From
doc2query to docTTTTTquery. Technical report,
University of Waterloo.

Barlas Oguz, Kushal Lakhotia, Anchit Gupta, Patrick
Lewis, Vladimir Karpukhin, Aleksandra Piktus,
Xilun Chen, Sebastian Riedel, Wen tau Yih, Sonal
Gupta, and Yashar Mehdad. 2022. Domain-matched
pre-training tasks for dense retrieval. In Findings
of the Association for Computational Linguistics:
NAACL 2022.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. RocketQA: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5835-5847, On-
line. Association for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

260

https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/2021.eacl-main.86
https://doi.org/10.18653/v1/2021.eacl-main.86
https://doi.org/10.1162/tacl_a_00415
https://doi.org/10.1162/tacl_a_00415
https://doi.org/10.1162/tacl_a_00415
http://arxiv.org/abs/2106.14807
http://arxiv.org/abs/2106.14807
http://arxiv.org/abs/2106.14807
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
https://doi.org/10.18653/v1/2022.findings-naacl.155
https://doi.org/10.18653/v1/2022.findings-naacl.155
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1007/978-3-030-99736-6_41
https://doi.org/10.1007/978-3-030-99736-6_41
https://doi.org/10.18653/v1/2021.acl-long.89
https://doi.org/10.18653/v1/2021.acl-long.89
https://doi.org/10.1145/3404835.3463030
https://doi.org/10.1145/3404835.3463030
https://arxiv.org/abs/2112.07899
https://arxiv.org/abs/2112.07899
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://arxiv.org/abs/2107.13602
https://arxiv.org/abs/2107.13602
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264

Nils Reimers and Iryna Gurevych. 2021. The curse
of dense low-dimensional information retrieval for
large index sizes. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 605-611, Online. Association
for Computational Linguistics.

S. E. Robertson and S. Walker. 1994. Some simple
effective approximations to the 2-poisson model for
probabilistic weighted retrieval. In Proceedings of
the 17th Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR 94, page 232-241, Berlin, Heidel-
berg. Springer-Verlag.

Christopher Sciavolino, Zexuan Zhong, Jinhyuk Lee,
and Dangi Chen. 2021. Simple entity-centric ques-
tions challenge dense retrievers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6138—6148, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

William Webber, Alistair Moffat, and Justin Zobel. 2010.
A similarity measure for indefinite rankings. ACM
Transactions on Information Systems, 28(4).

Xiang Wu, Ruiqi Guo, David Simcha, Dave Dop-
son, and Sanjiv Kumar. 2019. Efficient inner prod-
uct approximation in hybrid spaces. arXiv e-print
1903.08690.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In International Conference on Learning
Representations.

Nan Yang, Furu Wei, Binxing Jiao, Daxing Jiang, and
Linjun Yang. 2021. xMoCo: Cross momentum con-
trastive learning for open-domain question answering.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6120-6129, Online. Association for Computational
Linguistics.

261

https://doi.org/10.18653/v1/2021.acl-short.77
https://doi.org/10.18653/v1/2021.acl-short.77
https://doi.org/10.18653/v1/2021.acl-short.77
https://dl.acm.org/doi/10.5555/188490.188561
https://dl.acm.org/doi/10.5555/188490.188561
https://dl.acm.org/doi/10.5555/188490.188561
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://doi.org/10.1145/1852102.1852106
http://arxiv.org/abs/1903.08690
http://arxiv.org/abs/1903.08690
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.18653/v1/2021.acl-long.477
https://doi.org/10.18653/v1/2021.acl-long.477

Appendix A Implementation Details

For the Wiki training queries for A, we randomly sample sentences from each passage (following the DPR
passage split of Wikipedia) following a pseudo-exponential distribution while guaranteeing at least one
sentence is sampled from each passage. The pseudo-exponential distribution would select more sentences
in the first few passages of each Wikipedia document, as they tend to contain more answers, resulting in a
collection of 37 million sentences (queries) out of 22M passages. We did not extensively experiment with
sampling strategies, but one preliminary experiment suggested that sampling uniformly may have worked
equally well. For the MS MARCO passage collection, we use all sentences as training queries without
sampling, leading to a total of 28M queries out of 9M passages.

We train A for 3 days on 64 V100 GPUs with a per-GPU batch size of 32 and a learning rate of
3e—5 (roughly 20 epochs for Wiki A and MARCO A, and 10 epochs for PAQ A). The remaining hyper-
parameters are the same as in DPR, including the BERT-base encoder and the learning rate scheduler. For
Wiki and PAQ A, we use NQ dev as the validation queries, and MS MARCO dev for MARCO A. For the
dense retrievers used in SPAR, we directly take the publicly released checkpoints without re-training to
combine with A. We use Pyserini (Lin et al., 2021a) for all sparse models used in this work including
BM25 and UniCOIL.

For tuning the concatenation weights p, we do a grid search on [0.1, 1.0] (step size 0.1) as well as their
reciprocals, resulting in a total of 19 candidates ranging from 0.1 to 10. The best p is selected using the
best R@100 for ODQA (§5.1) and MRR @10 for MS MARCO (§5.2) on the development set for each
experiment.

262

