
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 2533–2547
December 7-11, 2022 ©2022 Association for Computational Linguistics

Chaining Simultaneous Thoughts for Numerical Reasoning

Zhihong Shao, Fei Huang, Minlie Huang∗

The CoAI group, DCST, Tsinghua University, Institute for Artificial Intelligence;
State Key Lab of Intelligent Technology and Systems;

Beijing National Research Center for Information Science and Technology;
Tsinghua University, Beijing 100084, China

{szh19, f-huang18}@mails.tsinghua.edu.cn
aihuang@tsinghua.edu.cn

Abstract
Given that rich information is hidden behind
ubiquitous numbers in text, numerical reason-
ing over text should be an essential skill of AI
systems. To derive precise equations to solve
numerical reasoning problems, previous work
focused on modeling the structures of equa-
tions, and has proposed various structured de-
coders. Though structure modeling proves to be
effective, these structured decoders construct
a single equation in a pre-defined autoregres-
sive order, potentially placing an unnecessary
restriction on how a model should grasp the rea-
soning process. Intuitively, humans may have
numerous pieces of thoughts popping up in no
pre-defined order; thoughts are not limited to
the problem at hand, and can even be concerned
with other related problems. By comparing di-
verse thoughts and chaining relevant pieces,
humans are less prone to errors. In this pa-
per, we take this inspiration and propose CAN-
TOR, a numerical reasoner that models reason-
ing steps using a directed acyclic graph where
we produce diverse reasoning steps simultane-
ously without pre-defined decoding dependen-
cies, and compare and chain relevant ones to
reach a solution. Extensive experiments demon-
strated the effectiveness of CANTOR under
both fully-supervised and weakly-supervised
settings.

1 Introduction

Numerical reasoning over text is an essential skill
for a neural model to help analyze rich numerical in-
formation from large-scale textual data (Chen et al.,
2021). Many question answering benchmarks (Dua
et al., 2019; Patel et al., 2021) have been created to
promote the numerical reasoning ability of neural
models, where, typically, models are required to
answer questions about given contexts with numer-
ical answers. This is challenging, as it requires
comprehensive structural analyses of text as well
as precise and possibly complex deduction.

∗*Corresponding author: Minlie Huang.

Directed Acyclic Graph Decoder

Problem: There were 542 boys and 387 girls. 290 more boys and 50 more
girls joined the school. How many more boys than girls are in the school?
(a) Possible Human Thoughts Popping up

(b) CANTOR

3
4 7

Selector

①= 542 + 387
② = 290 + 50

⑤ =①+②
⑥=③−④

③= 387 + 50
④ = 542 + 290

⑦ =④−③

1
2

5

6

W
ha

t c
om

e
to

 m
y

m
in

d # of pupils originally

of new pupils

of girls

of boys

total # of pupils

of girls more than boys

of boys more than girls

Figure 1: (a) Possible pieces of human thoughts that
pops up in no pre-defined order; (b) How our model cap-
tures the reasoning process similarly. Reasoning steps
inside solid frames and dashed frames are necessary and
loosely-relevant ones, respectively.

Existing models mostly decode the equations
and return the execution results. To better exploit
structures of equations, many complex structured
decoders (Xie and Sun, 2019; Cao et al., 2021)
have been proposed and significantly outperform
sequential decoding (Tan et al., 2021). However, all
these methods construct a single equation in a pre-
defined order (e.g., top-down or bottom-up order),
which may place an unnecessary restriction on how
a model should grasp the reasoning process.

Intuitively, after reading a reasoning problem,
humans may have several pieces of thoughts which
pop up in no pre-defined order, and finalize a solu-
tion by comparing and chaining relevant pieces.
Take Fig 1(a) for example. Possible thoughts
include necessary reasoning steps (e.g., how to
get the number of boys and girls separately) and
loosely-relevant ones (e.g., those learned from pre-
vious similar questions like “how many more girls
than boys are in the school?”). There is arguably
no pre-defined strict order where a thought should
conditionally emerge after some other thoughts. By
comparing these diverse thoughts, we finally select

2533

and chain proper ones to reach a solid solution,
which will be less prone to mistakes.

In this paper, we propose CANTOR, which com-
pares and Chains simultANeous ThOughts for nu-
merical Reasoning. As in Fig 1(b), CANTOR con-
structs a Directed Acyclic Graph (DAG) of diverse
reasoning steps in a non-autoregressive way: all
vertices are produced simultaneously, which cor-
respond to operations like addition, and edges in
the graph are constructed by chaining operations
with their best-matched operands; the final equa-
tion is a selected sub-graph in the whole DAG. With
no pre-defined decoding order, logical dependen-
cies among reasoning steps are freely captured by
the model internally. With our training methods,
CANTOR captures diverse reasoning steps at dif-
ferent vertices, and learns to prune away possibly-
distracting candidates during both training and in-
ference, resulting in chaining reasoning steps that
are more consistent with given problems.

To summarize, compared with previous mod-
els with structured decoding, CANTOR has no
pre-defined restrictions on the decoding depen-
dencies while also benefiting from modeling the
structures of equations. Besides, by comparing
diverse reasoning steps and chaining logically con-
sistent ones, our model is less prone to errors. Our
model establishes a new state-of-the-art record on
two math word problem datasets under the fully-
supervised setting, and is also applicable to weakly-
supervised scenarios (where problems are only an-
notated with final answers, and the equations are
unavailable) with significant improvements over
baselines. Though not directly comparable, on
two numerical reasoning datasets, fully-supervised
CANTOR achieves even higher accuracies than
hundreds of times larger language models (e.g.,
PaLM-62B (Chowdhery et al., 2022)) that use
the effective chain-of-thought prompting technique
(Wei et al., 2022), demonstrating CANTOR’s great
potential.

2 Related Work

Numerical Reasoning Numerical reasoning tasks
can be formulated in many ways (Mishra et al.,
2022), such as (1) question answering with nu-
merical answers directly derived from arithmetic
operations (Koncel-Kedziorski et al., 2016; Wang
et al., 2017; Dua et al., 2019; Amini et al., 2019;
Miao et al., 2020; Patel et al., 2021), (2) or other
tasks like quantitative natural language inference

(Ravichander et al., 2019) whose expected outputs
are non-numerical but require implicit arithmetic
reasoning. In this work, we focus on the former
type of task which is widely studied. To generate
equations precisely, previous work proposed to en-
hance number-related representations in problem
encoding (Zhang et al., 2020; Shen and Jin, 2020;
Liang et al., 2021), re-rank equation samples with
a verifier (Shen et al., 2021; Cobbe et al., 2021),
or exploit the structures of equations with complex
top-down tree-structured decoding (Xie and Sun,
2019; Li et al., 2022) or bottom-up DAG-structured
decoding (Cao et al., 2021; Jie et al., 2022). Our nu-
merical reasoner also models equations with DAGs
but with three major differences: (1) there is no
pre-defined decoding order which may place un-
necessary burden on how a model should learn the
dependencies among operations; (2) the decoding
process is largely simplified, which is reduced to si-
multaneous predictions of an operator and operands
at each vertex of a graph; (3) our model explores di-
verse operations in a DAG and is trained to compare
and chain relevant ones, so that logical consistency
between given problems and equations are better
captured during both training and inference.

Non-Autoregressive Decoding Our model is also
relevant to non-autoregressive decoding. For ma-
chine translation, non-autoregressive translation
(Gu et al., 2018; Ghazvininejad et al., 2020; Du
et al., 2021) aims at fast inference; the recently
proposed DA-Transformer (Huang et al., 2022),
which utilizes a DAG to capture diverse transla-
tions, has made great progress in bridging the per-
formance gap with autoregressive models. Re-
cent work has also proposed non-autoregressive
models for efficient task-oriented semantic parsing
(Babu et al., 2021; Shrivastava et al., 2021), which
achieved comparable performance with autoregres-
sive parsers. All these methods model a target as
a sequence and adopt token-wise decoding (one
token at a position). By contrast, we model a target
as a DAG and adopt step-wise decoding (one com-
plete reasoning step at each vertex), which facili-
tates structure modeling and learning meaningful
vertex representations. Experimental results show
that our model significantly outperforms both au-
toregressive and non-autoregressive baselines. No-
tably, for open text generation, autoregressive meth-
ods are probably still the better choice for strong
probabilistic modeling of diverse targets. However,
for the numerical reasoning task we focus on, it

2534

is the logical relationships among quantities (both
known and unknown in a given problem) that mat-
ter, and non-autoregressive methods, with proper
designs, suffice to decode equations precisely and
can provide new perspectives on how numerical
reasoning can be better grasped by neural models.

3 Task Definition

Given a problem description X which mentions a
list of numbers N = {n1, n2, ..., n|N |}, our task is
to return the numerical answer A which is derived
from an equation Y that takes arithmetic operations
(e.g., addition, subtraction, multiplication, division,
and exponentiation) on N as well as a set of pre-
defined constants C = {c1, c2, ..., c|C|}.

For scenarios that consider only binary opera-
tors1, a ground-truth equation Y can be formally
defined as follows:

Y ={y1, y2, ..., y|Y |}, yi = ⟨yf
i , y

a
i , y

b
i ⟩

s.t. yf
i ∈ F ∧ ya

i , y
b
i ∈ C ∪ N ∪ {yk|k < i}

where F is the set of pre-defined operators. yi is
an operation that applies the operator yfi to the two
operands yai and ybi . Y can be directly transformed
into a DAG with ci, ni, and yi being vertices, and
yi → yai and yi → ybi being edges. The final
operation (the root vertex) y|Y | returns the answer.

4 CANTOR

4.1 Overview

We propose to model diverse reasoning steps with a
DAG. Vertices of the graph correspond to reasoning
steps which are decoded in parallel. This is anal-
ogous to humans’ burst of thoughts after reading
a reasoning problem. No pre-defined restriction
is placed on how a reasoning step should condi-
tionally depend on others; logical dependencies
among reasoning steps are captured by the model
internally. Our DAG also allows the model to ex-
plore diverse reasoning steps at different vertices,
including necessary or wrong ones; the model is
trained to compare the semantics of diverse reason-
ing steps and chain the most proper ones to be the
final equation, which benefits model performance.

4.2 Architecture

Our model (Fig 2) comprises a pre-trained Trans-
former encoder (e.g., RoBERTa) and a shallow

1In this paper, we only consider binary operators while it
is feasible to extend our model to utilize other n-ary operators.

Transformer-based DAG decoder. The encoder en-
codes a problem X; from the encoder outputs, we
can obtain the representations of mentioned num-
bers N = [n1,n2, ...,n|N |] ∈ Rd×|N| (d is the
hidden size). The DAG decoder, with positional
embeddings as inputs and cross attention over en-
coder outputs, produces representations for L ver-
tices V = {v1, v2, ..., vL} in a non-autoregressive
way, which are denoted as V = [v1,v2, ...,vL] ∈
Rd×L. Each vertex representation encodes the se-
mantics of a reasoning step, including its operator,
the expected operands, and the meaning of the re-
sulting quantity. We then verbalize the operator
for each vertex and chain it with its best-matched
operands in parallel, and finally, select one root ver-
tex and return its execution result. The selected root
vertex along with its vertex descendants constitutes
a decoded sub-graph, which is also the DAG rep-
resentation of an equation. Let Z be the decoded
sub-graph, which can be formulated as:

Z ={z1, z2, ..., z|Z|}, zj = ⟨pj , zfj , zaj , zbj ⟩
s.t. 1 ≤ p1 < p2 < ... < p|Z| ≤ L

zfj ∈ F ∧ zaj , z
b
j ∈ C ∪ N ∪ {zk|k < j}

where zj is the operation for the vertex at position
pj , with zfj being the operator, and zaj and zbj being
its operands. p|Z| is the index of the root vertex, and
{pj |j < |Z|} are indices of its vertex descendants.

The probability of a target equation Y can be
formulated as follows:

Pθ(Y |X) =
∑

Z

Pθ(Y |Z,X)Pθ(Z|X) (1)

Definition of Pθ(Y |Z,X): Given Y and Z,
Pθ(Y |Z,X) is defined to be 1 if and only if map-
ping yi to the vertex at position pi (∀1 ≤ i ≤ |Y |)
produces Z exactly; otherwise, Pθ(Y |Z,X) is 0.

Therefore, Pθ(Y |X) can be re-written as:

Pθ(Y |X) =
∑

Z∈Γ

Pθ(Z|X)

Γ = {Z|Pθ(Y |Z,X) = 1}
(2)

Any Z ∈ Γ is a DAG representation of Y (see
the example in Fig 2). For a given Y , Γ can be
created by enumerating {p1, ..., p|Y |} that satisfies
1 ≤ p1 < ... < p|Y | ≤ L, and then mapping yi to
vpi (∀1 ≤ i ≤ |Y |). Therefore, |Γ| =

(
L
|Y |

)
.

Definition of Pθ(Z|X): Pθ(Z|X) can be further
decomposed based on operations in Z:

Pθ(Z|X) = Pr(p|Z||X)

|Z|∏

j=1

Pz(zj |pj , X) (3)

Pz(zj |pj , X) = Pf (z
f
j |pj , X)Pa(z

a
j |pj , X)Pb(z

b
j |pj , X)

2535

Directed Acyclic Graph Decoder (Transformer Block × 2)Problem Encoder

!#$

!#"
!%$

!%"

!&"
!&$

Problem

Cross Attn

!#

!($

!("

!%

+ + − −

1 2 3 4 5

542

387

290

Chaining Operations with Operands & Selecting the Root Vertex

Verbalizing Operators

!: #$ = +, '$, '% #&= ⟨−, #$, '&⟩

+: ,$= 2,+, '$, '% ,&= ⟨4,−, ,$, '&⟩
') is mapped to (* '* is mapped to (+

)) is at (*)* is at (+

Ground-truth Equation

Decoded Equation

There were 542 boys and 387 girls. 290 more boys joined the school. How many more boys than girls are in the school?Problem !:
Mentioned Numbers : '$ = 542 '& = 387 '% = 290

0.2

0.8

1

0.9

0.11

1

1

1

1

1

!#$

!($

!%$

!&$

1 0 0

0.1 0.9 0 0 0

0 0 0 1 0

0 1 0 0

0

!#"

!("

!%"

!&"

0 1 0

0 0 0 1 0

0 1 0 0 0

0 0 0 1

0

Probability for Selecting the First Operand Probability for Selecting the Second Operand

Chaining Operations with Operands

0 0 0.80.2

Selecting the Root Vertex

!'

!&

!(

!# !(!% !& !# !(!% !&

!# !(!% !&

!'

##

#(

#%

#(#% ## #(#%

Interpretations of Operations at Different Vertices

Number of pupils in the school originally!#
!(

!%

!&

Number of boys in the school now

Number of girls more than boys in the school

Number of boys more than girls in the school

Figure 2: Overview of CANTOR. CANTOR models diverse operations using a DAG. Each vertex corresponds to an
operation, which is chained with its operands via edges in the graph. We decode an equation by simultaneously
verbalizing operators at each vertex, chaining operations with operands, and selecting the root vertex; the selected
root vertex along with all its descendants is the resulting equation in a DAG format. In this example, the ground-truth
equation Y can be represented by the decoded sub-graph Z, as mapping y1 to v2 and y2 to v4 produces Z exactly.

where Pr(·) and Pz(·) are the probability functions
of the root vertex and an operation, respectively;
Pf (·) and Pa(·) (Pb(·)) are for operator verbaliza-
tion and operand matching, respectively.

4.2.1 Verbalizing Operators
We verbalize an operator for each vertex based on
its representation:

Pf (z
f
j |pj , X) = softmax(Wfvpj)

where Wf ∈ R|F|×d is trainable parameters.

4.2.2 Chaining Operations with Operands
Each operation is connected with its best-matched
operands chosen from all available quantities (in-
cluding the other operations, constants, and men-
tioned numbers). Let C = [c1, c2, ..., c|C|]⊤ be
the embedding matrix for pre-defined constants.
Then the representation matrix for all quantities
is denoted as Q = [V,C,N] ∈ Rd×(L+|C|+|N |).
The probability distribution over candidates when
predicting the first operand for the vertex at posi-
tion pj can be computed as follows:

Pa(z
a
j |pj , X) = softmax(

(WqQ)⊤va
pj√

d
), va

pj
= Wavpj

The probability for predicting the second operand
Pb(·) can be computed likewise. Wq,Wa,Wb ∈
Rd×d are trainable parameters. To avoid cycles in
the graph, we apply probability masking so that
a vertex can not use itself or vertices with larger
indices as its operands.

4.2.3 Selecting the Root Vertex and Finalizing
the Equation

The final equation is represented by a sub-graph
of the whole DAG, which comprises a selected
root vertex and all its descendants. We introduce a
special vertex vL+1 at position L+1 of the decoder,
and use its representation to select the best-matched
root vertex:

Pr(p|Z||X) = softmax(
(WqV)⊤vL+1√

d
)

where vL+1 is the representation of vL+1, com-
puted the same way as other vertex representations.

4.3 Training
To capture diverse reasoning steps at different ver-
tices, we explore four training methods2, namely,
naïve mapping, hard EM, MML, and hard EM with
annealing. Notably, as will be discussed by Sec-
tion 5.7.3, in practice, one has no need to consider
all four training methods; hard EM with annealing
should be the default choice.

4.3.1 Naïve Mapping
A naïve way of mapping from Y to V is to map
yi to vi (∀1 ≤ i ≤ |Y |). Let Z ′ be the resulting
sub-graph, then the training objective is:

L = − logPθ(Z
′|X) (4)

which leaves {vj ||Y | < j ≤ L} unused.
2See Appendix B for implementation details of hard EM

and MML.

2536

4.3.2 Hard EM
Hard EM is to optimize the probability of Z∗ that
best aligns with Y :

L = − logPθ(Z
∗|X), Z∗ = argmax

Z∈Γ
Pθ(Z|X) (5)

As |Γ| can be quite large3, we use beam search
to find Z∗ approximately, which is feasible as
Pθ(Z|X) can be factorized into probabilities of
constituent operations of Z (Eq 3). Notably, the
probability of an operation depends on which ver-
tices its operands (if being operations) are mapped
to. We search Z by iteratively determining where
to map yi, until y|Y | is settled.

4.3.3 MML
MML optimizes the marginal likelihood of Z:

L = − log
∑

Z∈Γ

Pθ(Z|X) (6)

Marginalization is expensive due to the large size of
Γ. We therefore adopt a strong (but risky) assump-
tion so that we can use dynamic programming to
marginalize Pθ(Z|X) in polynomial time. Specifi-
cally, for any operation yi, we assume that the two
sub-graphs rooted at yai and ybi respectively (in the
DAG counterpart of Y) are independently mapped
to {v1, v2, ..., vL}. Notably, with this assumption,
we in fact marginalize Pθ(Z|X) over a superset of
Γ and even allow mapping multiple operations to a
single vertex. However, we empirically found that
MML (with this assumption) works well on short
equations4, and can be used to warm up hard EM.

4.3.4 Hard EM with Annealing
To avoid optimizing the model on its early deci-
sions, we follow Min et al. (2019) to apply anneal-
ing to hard EM: we optimize the model using MML
for τ training steps and use hard EM afterwards.

4.4 Inference
During inference, we adopt greedy decoding which
conducts the argmax operation for operator predic-
tion, operand matching, and root vertex selection
in parallel. The execution result at the root vertex
is returned as the numerical answer.

5 Experiments

5.1 Datasets
We applied CANTOR to Math Word Problem
(MWP) solving under the fully-supervised setting

3Suppose L = 60 and |Y | = 15, then |Γ| ≈ 5× 1013.
4We provide detailed discussion on the properties of our

MML in Appendix C.

Dataset Train Dev Test |C| F max |Y |
Fully-Supervised MWP Solving
MathQA 16,191 2,411 1,605 24 {+,−,×, /, ∗∗} 15
SVAMP 3,138 - 1,000 17 {+,−,×, /} 7
Weakly-Supervised Discrete Reasoning
DROPnum 46,973 5,850 - 2 {+,−} 1
DROP 77,409 9,536 9,615 2 {+,−} 1

Table 1: Data statistics. Note that DROPnum and DROP
are only annotated with answer texts but not equations
Y ; we followed previous work to enumerate binary
operations that evaluate to the answers (max |Y | = 1).

and discrete reasoning under a weakly-supervised
setting. Data statistics are shown in Table 1.
Fully-Supervised MWP Solving
(a) MathQA (Amini et al., 2019) consists of GRE
level math problems from multiple domains. We
used the dataset from Jie et al. (2022) which has
wrongly-annotated instances removed.
(b) SVAMP (Patel et al., 2021) was created for
robustness evaluation, which consists of problems
from the ASDiv-A dataset (Miao et al., 2020) with
manual perturbations. We strictly followed Pa-
tel et al. (2021) to use both MAWPS (Koncel-
Kedziorski et al., 2016) and ASDiv-A for training
and SVAMP for testing.
Weakly-Supervised Discrete Reasoning
(a) DROPnum (Dua et al., 2019) consists of all
problems with numerical answers from the read-
ing comprehension dataset called DROP. Problems
are only annotated with final answers but not the
corresponding equations.
(b) DROP is a reading comprehension dataset con-
sisting of problems with different types of answers,
e.g., number, date, and span(s).

5.2 Metrics

For MWP solving, we evaluated models with value
accuracy and equation accuracy. Previous work
evaluated equation accuracy with string matching,
failing to recognize positive equations that are struc-
turally different from the ground-truth. In our eval-
uation, an equation is considered correct if it has
consistent results with the annotated equation for
100 random replacements of numbers mentioned
in the problem. For discrete reasoning on DROP,
we followed previous work to use F1.

5.3 Baselines

We considered the following three categories:
Sequential Models generate an equation sequen-
tially based on a given problem. mBERT2Seq (Tan

2537

Model Dev Test
Sequential Model
mBERT2Seq (Tan et al., 2021) - 77.1
Structured Model
Graph2Tree (Zhang et al., 2020) - 69.5
BERT2Tree (Li et al., 2022) - 73.8
DEDUCTREASONER (Jie et al., 2022) - 78.6
CANTOR 81.7 82.9

Table 2: Value accuracy on MathQA.

et al., 2021) comprises a multilingual BERT (De-
vlin et al., 2019) encoder and an LSTM (Hochreiter
and Schmidhuber, 1997) decoder. We also com-
pared our model with two sequential models from
(Lan et al., 2021), namely, GPT-2 (Radford et al.,
2019) and RoBERTaGen (Liu et al., 2019).
Structured Models utilize structured autoregres-
sive decoders to generate an equation. Graph2Tree
(Zhang et al., 2020) and DEDUCTREASONER (Jie
et al., 2022) are the representative tree-structured
model and DAG-structured model, respectively.
Tagging-based Models refer to the arithmetic mod-
ules of those modular networks dominant on DROP,
which assign a plus, minus, or zero to each constant
and number mentioned in a problem, and return the
sum of the signed numbers. TASE (Segal et al.,
2020) is a representative modular network which
consists of modules specialized for different types
of answers, e.g., a tagging-based arithmetic mod-
ule, a count module, and modules for span-typed
answers. We referred to a TASE model with only
an arithmetic module as TASEarith.

5.4 Implementation Details
For all experiments, we used two Transformer
blocks (Vaswani et al., 2017) as the DAG decoder,
which was trained with random initialization.

For MWP solving, we used RoBERTabase as the
problem encoder. We experimented with different
training methods whose effect on model perfor-
mance will be discussed in Section 5.7.3 with the
graph size L set to 60 and the beam size B for
hard EM set to 20. We further investigated the ef-
fect of graph size L (Table 9 in Section 5.7.3) and
beam size B (Table 13 in Appendix D.1). The best
model on MathQA used hard EM with annealing
(τ = 2, 000, B = 20), with L = 80, and the best
model on SVAMP used MML, with L = 60. Fol-
lowing previous work, all experiments on SVAMP
were run with 5 random seeds, with both the aver-
age performance and standard deviation reported.

For discrete reasoning on DROP, we followed

Model Test
Sequential Model
GPT-2 (Lan et al., 2021) 25.7
RoBERTaGen (Lan et al., 2021) 30.3
Structured Model
RoBERTa-Graph2Tree (Patel et al., 2021) 43.8
BERT2Tree (Li et al., 2022) 32.4
DEDUCTREASONER (Jie et al., 2022) 45.1
CANTOR 49.6±0.63

Table 3: Value accuracy on SVAMP.

Breakdown
MathQA SVAMP

Baseline CANTOR Baseline CANTOR

Equ. Val. Equ. Val. Equ. Val. Equ. Val.
Breakdown w.r.t. # Operation

1 76.4 79.1 78.2 80.0 48.8 49.1 54.9 55.2
2 81.0 83.5 83.1 84.8 31.2 32.1 30.7 31.6
3 80.8 83.6 82.6 86.7 - - - -
4 78.5 82.0 81.3 84.4 - - - -

≥ 5 65.7 71.3 74.4 79.4 - - - -
Breakdown w.r.t. Equation Novelty

Seen 90.5 91.4 95.2 96.1 48.8 49.2 53.5 53.8
Unseen 34.5 45.8 38.3 49.3 12.2 13.9 15.8 16.9

Overall Performance
Full 74.7 78.6 79.2 82.9 44.6 45.1 49.2 49.6

Table 4: Breakdowns of performance on the MWP solv-
ing task. Baseline refers to the previous best model
DEDUCTREASONER. Equ. and Val. are equation accu-
racy and value accuracy, respectively.

Variations
Baseline CANTOR

Equ. Val. Equ. Val.
Question Sensitivity 21.6 22.3 29.6 30.3
Reasoning Ability 49.5 49.8 53.2 53.4

Structural Invariance 37.3 38.1 42.4 43.2

Table 5: A breakdown of robustness evaluation w.r.t.
different variations in SVAMP. Baseline refers to the
previous best model DEDUCTREASONER. Equ. and Val.
are equation accuracy and value accuracy, respectively.

TASE to use RoBERTalarge for encoding and MML
for training. L was chosen from {5, 10} based on
F1. The best models on DROPnum and DROP used
L = 5 and L = 10, respectively.

5.5 Results for MWP Solving

As shown by Table 2 and Table 3, CANTOR es-
tablished a new state-of-the-art record on MathQA
and SVAMP with large improvements. The fine-
grained analyses in Table 4 and Table 5 show that
CANTOR (1) outperforms the best baseline on
nearly all problems of different levels of complex-
ity measured by the number of operations needed,

2538

(2) is better at exploiting equation templates5 seen
in training or creating novel ones to solve prob-
lems, (3) and is more robust to different types of
variations, including those that evaluate question
sensitivity (whether questions asked in problems
are ignored in prediction), reasoning ability (how
predictions are adjusted to subtle changes in given
problems), and structural invariance (whether pre-
dictions are invariant to structural changes of given
problems that preserve the reasoning logic).

5.6 Results for Discrete Reasoning

Model Dev
TASEarith 76.4
CANTOR 78.1

(a) DROPnum

Model Dev Number (Dev) Test
TASE 83.58 81.38 83.62

w/ CANTOR 83.93 81.95 84.25

(b) DROP

Table 6: F1 scores on DROPnum and DROP. w/ CANTOR
is a TASE model that replaces the original tagging-based
arithmetic module with CANTOR; all modules share
one problem encoder.

CANTOR is also applicable to weakly-supervised
scenarios where only final answers are annotated.
Given problem-answer pairs {⟨X,A⟩}, if it is fea-
sible to find Y that evaluates to A, we can adapt
hard EM, MML, and hard EM with annealing for
weakly-supervised training by simply re-defining
Γ for the objective functions as follows:

Γ = {Z|∃Y P (A|Y)Pθ(Y |Z,X) = 1}

where P (A|Y) is 1 if and only if Y evaluates to A.
For weakly-supervised training on DROPnum, we

followed TASE to enumerate Y by searching addi-
tion or subtraction of two numbers, and used MML
for training6. As each Y has only one operation,
MML conducts exact marginalization over Γ.

As shown by Table 6a, CANTOR significantly
outperforms TASEarith on DROPnum. If using CAN-
TOR as a drop-in replacement for the arithmetic
module of TASE, we can obtain further improve-
ments on DROP (Table 6b).

5.7 Ablation Study
5.7.1 No Pre-defined Order Restrictions
To investigate the effect of removing restrictions
on decoding dependencies, we considered a vari-

5Equation templates are equations with numbers replaced
with placeholders, e.g., const_10 + num@7 adds 10 to
the 7-th number in a problem.

6There are more advanced weakly-supervised training
methods (Chen et al., 2020; Shao et al., 2021) for discrete
reasoning on DROP. Investigation of how CANTOR is com-
patible with them is left for future work.

Model
MathQA (Dev) MathQA (Test) SVAMP

Equ. Val. Equ. Val. Equ. Val.
Autoregressive Model

Pre-defined Decoding Order (✓); Structure Modeling (✓)
DEDUCTREASONER 74.0 77.5 74.7 78.6 44.6 45.1

Non-autoregressive Models
Pre-defined Decoding Order (%); Structure Modeling (%)
Vanilla NAR 76.9 79.1 77.4 79.6 36.4±1.56 37.0±1.48

Pre-defined Decoding Order (%); Structure Modeling (✓)
Vanilla CANTOR 77.4 80.4 78.3 81.4 46.8±0.55 47.3±0.47

Table 7: Comparisons between (1) models without and
with a pre-defined decoding order (Vanilla CANTOR vs.
DEDUCTREASONER) (2) and models with and without
modeling the structures of equations (Vanilla CANTOR
vs. Vanilla NAR).

ant of CANTOR called vanilla CANTOR, which
also produces all operations in parallel, but is not
designed to have diverse and possibly redundant op-
erations for comparisons in both operand matching
and root vertex selection. Specifically, instead of
using a pre-specified value of L, vanilla CANTOR
predicts the number of operations needed to solve
a given problem as L (using the [CLS] representa-
tion from the encoder), and was trained with naïve
mapping; the last vertex vL is the root vertex. As
shown by Table 7, vanilla CANTOR already outper-
forms the best baseline which adopts a pre-defined
decoding order, indicating that our model does well
in capturing the structures of equations internally,
and that using a pre-defined decoding order may
be an unnecessary burden on model learning.

5.7.2 Structure Modeling

Previous work has proposed non-autoregressive
models for semantic parsing, but without explicit
structure modeling. To investigate the effect of
structure modeling, we compared vanilla CAN-
TOR with the non-autoregressive parser proposed
by Shrivastava et al. (2021) which we name as
vanilla NAR. Vanilla NAR predicts a length of the
decoder L′, and produces an L′-sized equation text
with token-wise generation (one token at a posi-
tion)7. By contrast, vanilla CANTOR structures
an equation as a DAG with vertices corresponding
to reasoning steps. As shown by Table 7, vanilla
CANTOR outperforms vanilla NAR, which verifies
the value of structure modeling.

7For numbers in an equation, following Shrivastava et al.
(2021), vanilla NAR decodes their positions in the prob-
lem instead of their constituent tokens. An example of an
equation text is (const_1 + pos@7) × const_2
where pos@7 denotes the number mentioned at position 7.

2539

Problem:Melissa scored 109 points in each game. She also got 82 bonus points in each game. How many points did she score in 79 games ?

DEDUCTREASONER CANTOR

5* 5+ 5,
Reference

a
b

a
b

##
a
b

#(
a
b

#%

a
b Root

0.91

0.86
1.0

1.0

1.0
1.0

0.64

0.78

1.0
1.0

6.84e-8

7.81e-5

1.0

1.49e-8

1.1e-8

×: 1.0

+: 0.89 Total points in each game

Points scored in 79 games (bonus points excluded)

Bonus points scored in 79 games

Total points in 79 games

Meaningless operation

Interpretations of Different Operations

×: 1.0

+: 0.96

+: 1.0
⟨×, 5*, 5,⟩

7* = ⟨+, 5*, 5+⟩

7+ = ⟨×, 7*, 5,⟩

Figure 3: A test case from SVAMP. Operations leading to the same quantity are marked with the same color. Purple
ones are operations evaluating to the correct answer. For a clear presentation of our DAG, we only retain top-5
root vertices along with their descendants. We also present probabilities of predicted operators, operands, and root
vertices. The best baseline DEDUCTREASONER overlooks bonus points in its prediction; while the same prediction
appears as a sub-graph in our DAG, CANTOR succeeds in filtering it out and recognizes the correct one.

Training Method
MathQA (Dev) MathQA (Test) SVAMP

Val.@1 Val.@5 Val.@1 Val.@5 Val.@1 Val.@5
Naïve Mapping 80.51 81.63 81.00 81.87 48.22±0.94 55.98±1.30

Hard EM 81.29 82.46 82.06 83.68 47.08±0.63 66.56±1.45

MML 68.39 71.09 69.91 72.65 49.58±0.63 63.44±1.38

Hard EM with Annealing
τ = 500 81.46 83.66 82.93 84.86 47.84±0.64 67.52±1.78

τ = 1, 000 81.54 83.20 82.55 83.99 48.06±0.91 66.46±2.95

τ = 1, 500 81.50 83.37 82.68 84.24 48.82±0.58 67.12±1.63

τ = 2, 000 81.54 83.45 82.80 84.30 48.14±0.48 65.58±1.79

Table 8: Comparisons among different training methods.
Val.@k is the recall of answers over execution results at
top-k root vertices (top-k Pr(p|Z||X)).

5.7.3 Capturing Diverse Reasoning Steps
CANTOR decodes an L-sized DAG that encom-
passes diverse reasoning steps which are necessary
or possibly redundant. Comparing diverse choices
is beneficial to pick out the proper one. In this sec-
tion, we investigate how well CANTOR captures
diverse reasoning steps and its effect on model per-
formance. As it is pointless to merely have different
operations at different vertices, we focused on the
quality of top-k root vertices (top-k Pr(p|Z||X))8

and evaluated the recall of answers (Val.@k).
Training Methods Compared with vanilla CAN-
TOR, CANTOR trained with methods that lever-
age more vertices than necessary (for ground-truth
equations) achieved higher Val.@k most of the time
(Table 8). One exception was applying MML on
MathQA, which led to much worse performance.
We conjecture that this is because our assumption
in MML is incompatible with the complex equa-
tions in MathQA (please refer to Appendix C for
detailed discussion on the limitations of our MML).
However, it is still helpful to warm up hard EM
with MML, which is demonstrated by the improve-

8When selecting the top-k root vertices, we skipped re-
peated logically-equivalent equations; logical equivalence is
evaluated the same way as equation accuracy.

L
MathQA (Dev) MathQA (Test) SVAMP

Val.@1 Val.@5 Val.@1 Val.@5 Val.@1 Val.@5
20 81.00 82.66 82.74 83.86 48.56±0.43 59.00±2.28

40 81.21 82.70 82.74 83.86 48.96±0.74 62.94±2.26

60 81.54 83.45 82.80 84.30 49.58±0.63 63.44±1.38

80 81.67 83.16 82.93 84.42 48.58±0.48 62.32±0.72

100 81.58 83.20 82.87 84.42 48.60±0.75 63.24±1.87

Table 9: Val.@k with varying graph sizes L. Models
were trained using hard EM with annealing (τ = 2000)
on MathQA and MML on SVAMP. Val.@k is the answer
recall over execution results at top-k root vertices.

ments of hard EM with annealing over hard EM.
Notably, CANTOR trained with naïve mapping out-
performs vanilla CANTOR on SVAMP; this is be-
cause the former was trained to leverage more ver-
tices than necessary in testing (due to max |Y | on
the train set being larger than max |Y | on SVAMP)
and compares different vertices for root vertex se-
lection, while the latter has no access to extra ver-
tices and uses the last vertex as the root vertex
without comparisons.

In practice, hard EM with annealing should
be the default training method; as in Table 8, it
always outperforms naïve mapping and hard EM,
and is at least competitive with MML. As shown
by Table 8 and Table 13, the two hyperparameters
to tune, i.e., the number of warm-up steps τ and the
beam size B, are robust to a wide range of values.

Graph Size L A larger DAG can encompass more
reasoning steps, but also increases the difficulty of
operand matching and root vertex selection. Train-
ing methods like hard EM may even suffer from
suppressing false negative operations. Table 9
shows the effect of varying graph sizes L. Model
performance improves until L reaches 80 and 60
on MathQA and SVAMP, respectively.

2540

Model Params SVAMP GSM8K
Few-Shot Setting

8-shot CoT (Wei et al., 2022)
LaMDA 137B 37.5 14.3
GPT-3 175B 68.9 46.9
PaLM 62B 46.7 29.9

540B 79.0 56.9
Fully-Supervised Setting

GPT-3 (Cobbe et al., 2021) 175B - ∼35
DEDUCTREASONER

RoBERTabase 125M 45.1 -
RoBERTalarge 355M 50.4 -

CANTOR
RoBERTabase 125M 49.6 -
RoBERTalarge 355M 55.4 30.2

Table 10: Value accuracy on SVAMP and GSM8K. CoT
is short for Chain-of-Thought prompting.

5.8 Case Study

Fig 3 presents a test case from SVAMP. For a clear
presentation of our DAG, we only show top-5 root
vertices8 along with their descendants. By compar-
ing diverse operations and chaining relevant ones,
CANTOR succeeds in discriminating logically cor-
rect operations from distracting ones (e.g., the one
predicted by DEDUCTREASONER which overlooks
bonus points), even though the final equation is
structurally different from the annotated reference.

5.9 CANTOR vs. LLMs with
Chain-of-Thought Prompting

Recently, Wei et al. (2022) proposed chain-of-
thought prompting which endows large language
models with the ability to generate a series of inter-
mediate reasoning steps to reach the final answer of
a given problem, achieving state-of-the-art perfor-
mance on a wide range of reasoning tasks. Table 10
compares CANTOR and chain-of-thought prompt-
ing. Though being 392× smaller, CANTOR with
RoBERTabase already outperforms PaLM-62B on
SVAMP; using RoBERTalarge gives an aggressive
improvement, demonstrating CANTOR’s great po-
tential.

CANTOR is also applicable to the challenging
GSM8K dataset (Cobbe et al., 2021) which was
created to probe the reasoning ability of large lan-
guage models and has high diversity among prob-
lems. As GSM8K was annotated with natural lan-
guage solutions, the extracted equations are noisy
and incomplete; we ended up with 6,312 (out of
7,473) noisy training examples. As shown in Table
10, CANTOR is close to the 175B GPT-3 model
fine-tuned on the whole train set, and is on a par

with PaLM-62B with chain-of-thought prompting.

6 Conclusion

We propose a numerical reasoner called CANTOR.
Unlike previous structured decoders that model a
single equation with pre-defined restrictions on the
decoding dependencies, CANTOR models diverse
reasoning steps using a directed acyclic graph with-
out a pre-defined decoding order, and derives equa-
tions by comparing and chaining relevant reasoning
steps. With our training methods, CANTOR is ca-
pable of capturing the logical dependencies among
reasoning steps internally, and produces equations
that are more consistent with the reasoning prob-
lems by comparing diverse reasoning steps. CAN-
TOR achieves state-of-the-art results on two math
word problem datasets under the fully-supervised
setting, and is applicable to weakly-supervised sce-
narios with significant improvements.

In future work, we plan to extend CANTOR for
general structured prediction tasks, e.g., sequence
labeling and parsing.

7 Limitations

Though CANTOR significantly outperforms base-
lines, there is still a large room for improvement in
solving numerical reasoning problems with novel
equation templates and being robust to variations
in the problems. For example, our value accuracy
on SVAMP problems with unseen equation tem-
plates is lower than 20% (Table 4), and the value
accuracy on problems that evaluate question sensi-
tivity barely reaches 30% (Table 5). We also argue
for more benchmarks that expose weaknesses of
existing models, as we observe that more than half
of test problems in MWP datasets can be solved
with equation templates seen in training, which
may overestimate the numerical reasoning ability
of neural models.

Acknowledgements

This work was supported by the National Sci-
ence Foundation for Distinguished Young Scholars
(with No. 62125604) and the NSFC projects (Key
project with No. 61936010 and regular project with
No. 61876096). This work was also supported
by the Guoqiang Institute of Tsinghua University,
with Grant No. 2019GQG1 and 2020GQG0005,
and sponsored by Tsinghua-Toyota Joint Research
Fund.

2541

References
Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik

Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 2357–2367. Association for Computational
Linguistics.

Arun Babu, Akshat Shrivastava, Armen Aghajanyan,
Ahmed Aly, Angela Fan, and Marjan Ghazvininejad.
2021. Non-autoregressive semantic parsing for com-
positional task-oriented dialog. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pages 2969–2978. Associa-
tion for Computational Linguistics.

Yixuan Cao, Feng Hong, Hongwei Li, and Ping Luo.
2021. A bottom-up DAG structure extraction model
for math word problems. In Thirty-Fifth AAAI Con-
ference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Arti-
ficial Intelligence, IAAI 2021, The Eleventh Sympo-
sium on Educational Advances in Artificial Intelli-
gence, EAAI 2021, Virtual Event, February 2-9, 2021,
pages 39–46. AAAI Press.

Xinyun Chen, Chen Liang, Adams Wei Yu, Denny Zhou,
Dawn Song, and Quoc V. Le. 2020. Neural symbolic
reader: Scalable integration of distributed and sym-
bolic representations for reading comprehension. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan R. Routledge,
and William Yang Wang. 2021. Finqa: A dataset of
numerical reasoning over financial data. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pages 3697–3711. Association for
Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny

Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. CoRR, abs/2110.14168.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Cunxiao Du, Zhaopeng Tu, and Jing Jiang. 2021. Order-
agnostic cross entropy for non-autoregressive ma-
chine translation. In Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages
2849–2859. PMLR.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages 2368–2378.
Association for Computational Linguistics.

Marjan Ghazvininejad, Vladimir Karpukhin, Luke
Zettlemoyer, and Omer Levy. 2020. Aligned cross
entropy for non-autoregressive machine translation.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 3515–3523. PMLR.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K.
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In 6th International Con-
ference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

2542

https://doi.org/10.18653/v1/n19-1245
https://doi.org/10.18653/v1/n19-1245
https://doi.org/10.18653/v1/n19-1245
https://doi.org/10.18653/v1/2021.naacl-main.236
https://doi.org/10.18653/v1/2021.naacl-main.236
https://ojs.aaai.org/index.php/AAAI/article/view/16075
https://ojs.aaai.org/index.php/AAAI/article/view/16075
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://proceedings.mlr.press/v139/du21c.html
http://proceedings.mlr.press/v139/du21c.html
http://proceedings.mlr.press/v139/du21c.html
https://doi.org/10.18653/v1/n19-1246
https://doi.org/10.18653/v1/n19-1246
http://proceedings.mlr.press/v119/ghazvininejad20a.html
http://proceedings.mlr.press/v119/ghazvininejad20a.html
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Fei Huang, Hao Zhou, Yang Liu, Hang Li, and Min-
lie Huang. 2022. Directed acyclic transformer
for non-autoregressive machine translation. CoRR,
abs/2205.07459.

Zhanming Jie, Jierui Li, and Wei Lu. 2022. Learning
to reason deductively: Math word problem solving
as complex relation extraction. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 5944–
5955. Association for Computational Linguistics.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In NAACL HLT
2016, The 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, San Diego
California, USA, June 12-17, 2016, pages 1152–1157.
The Association for Computational Linguistics.

Yihuai Lan, Lei Wang, Qiyuan Zhang, Yunshi Lan,
Bing Tian Dai, Yan Wang, Dongxiang Zhang, and
Ee-Peng Lim. 2021. Mwptoolkit: An open-source
framework for deep learning-based math word prob-
lem solvers. CoRR, abs/2109.00799.

Zhongli Li, Wenxuan Zhang, Chao Yan, Qingyu Zhou,
Chao Li, Hongzhi Liu, and Yunbo Cao. 2022. Seek-
ing patterns, not just memorizing procedures: Con-
trastive learning for solving math word problems. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 2486–2496. Association for Computa-
tional Linguistics.

Zhenwen Liang, Jipeng Zhang, Jie Shao, and Xian-
gliang Zhang. 2021. MWP-BERT: A strong baseline
for math word problems. CoRR, abs/2107.13435.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
english math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pages 975–984. Association for Compu-
tational Linguistics.

M.L. Miller, H.S. Stone, and I.J. Cox. 1997. Opti-
mizing murty’s ranked assignment method. IEEE
Transactions on Aerospace and Electronic Systems,
33(3):851–862.

Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2019. A discrete hard EM ap-
proach for weakly supervised question answering.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and

the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 2851–2864.
Association for Computational Linguistics.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney,
Bhavdeep Singh Sachdeva, Peter Clark, Chitta Baral,
and Ashwin Kalyan. 2022. Numglue: A suite of
fundamental yet challenging mathematical reasoning
tasks. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 3505–3523. Association for
Computational Linguistics.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 2080–2094. Association for
Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Abhilasha Ravichander, Aakanksha Naik, Carolyn Pen-
stein Rosé, and Eduard H. Hovy. 2019. EQUATE:
A benchmark evaluation framework for quantitative
reasoning in natural language inference. In Proceed-
ings of the 23rd Conference on Computational Nat-
ural Language Learning, CoNLL 2019, Hong Kong,
China, November 3-4, 2019, pages 349–361. Associ-
ation for Computational Linguistics.

Elad Segal, Avia Efrat, Mor Shoham, Amir Globerson,
and Jonathan Berant. 2020. A simple and effective
model for answering multi-span questions. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, pages 3074–3080.
Association for Computational Linguistics.

Zhihong Shao, Lifeng Shang, Qun Liu, and Minlie
Huang. 2021. A mutual information maximization
approach for the spurious solution problem in weakly
supervised question answering. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 4111–4124. Associa-
tion for Computational Linguistics.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &
rank: A multi-task framework for math word prob-
lems. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 16-20 November,
2021, pages 2269–2279. Association for Computa-
tional Linguistics.

2543

https://doi.org/10.48550/arXiv.2205.07459
https://doi.org/10.48550/arXiv.2205.07459
https://aclanthology.org/2022.acl-long.410
https://aclanthology.org/2022.acl-long.410
https://aclanthology.org/2022.acl-long.410
https://doi.org/10.18653/v1/n16-1136
https://doi.org/10.18653/v1/n16-1136
http://arxiv.org/abs/2109.00799
http://arxiv.org/abs/2109.00799
http://arxiv.org/abs/2109.00799
https://aclanthology.org/2022.findings-acl.195
https://aclanthology.org/2022.findings-acl.195
https://aclanthology.org/2022.findings-acl.195
http://arxiv.org/abs/2107.13435
http://arxiv.org/abs/2107.13435
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.1109/7.599256
https://doi.org/10.1109/7.599256
https://doi.org/10.18653/v1/D19-1284
https://doi.org/10.18653/v1/D19-1284
https://aclanthology.org/2022.acl-long.246
https://aclanthology.org/2022.acl-long.246
https://aclanthology.org/2022.acl-long.246
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/K19-1033
https://doi.org/10.18653/v1/K19-1033
https://doi.org/10.18653/v1/K19-1033
https://doi.org/10.18653/v1/2020.emnlp-main.248
https://doi.org/10.18653/v1/2020.emnlp-main.248
https://doi.org/10.18653/v1/2021.acl-long.318
https://doi.org/10.18653/v1/2021.acl-long.318
https://doi.org/10.18653/v1/2021.acl-long.318
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195

Yibin Shen and Cheqing Jin. 2020. Solving math word
problems with multi-encoders and multi-decoders.
In Proceedings of the 28th International Confer-
ence on Computational Linguistics, COLING 2020,
Barcelona, Spain (Online), December 8-13, 2020,
pages 2924–2934. International Committee on Com-
putational Linguistics.

Akshat Shrivastava, Pierce Chuang, Arun Babu, Shrey
Desai, Abhinav Arora, Alexander Zotov, and
Ahmed Aly. 2021. Span pointer networks for non-
autoregressive task-oriented semantic parsing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 16-20 November, 2021, pages
1873–1886. Association for Computational Linguis-
tics.

Minghuan Tan, Lei Wang, Lingxiao Jiang, and Jing
Jiang. 2021. Investigating math word problems us-
ing pretrained multilingual language models. CoRR,
abs/2105.08928.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2017,
Copenhagen, Denmark, September 9-11, 2017, pages
845–854. Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word problems.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, pages
5299–5305. ijcai.org.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020. Graph-to-
tree learning for solving math word problems. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 3928–3937. Associa-
tion for Computational Linguistics.

A Implementation Details

MWP Solving Discrete Reasoning
Batch Size 32 12

Learning Rate 2e-5 5e-6
Learning Rate Warum-up Steps 500 0

Table 11: Hyperparameters for training CANTOR.

We trained CANTOR for up to 100k training steps
for the MWP task and up to 20 epochs for the dis-
crete reasoning task, using hyperparameters speci-
fied in Table 11. All experiments were conducted
with V100 GPUs.

B Training Methods

B.1 Hard EM
The training objective of hard EM is formulated as:

L = − logPθ(Z
∗|X), Z∗ = argmax

Z∈Γ
Pθ(Z|X)

where Γ = {Z|Pθ(Y |Z,X) = 1}. For any Z ∈ Γ,
we have |Z| = |Y |, that is,

Z ={z1, z2, ..., z|Y |}, zi = ⟨pi, zfi , zai , zbi ⟩
s.t. 1 ≤ p1 < p2 < ... < p|Y | ≤ L

zfi = yf
i

where zi is the operation yi mapped to the vertex
at position pi.

As {p1, ..., p|Y |} defines a valid mapping from Y
to Z, finding Z∗ is equivalent to finding the optimal
mapping {p1, ..., p|Y |}, which we search for via
beam search. For convenience of illustration, we
define the level of an operation in Y as the length
of the longest path from its corresponding vertex in
the DAG counterpart of Y to a leaf vertex (which is
a constant or a number mentioned in the problem).
Let Dl be the set of indices of operations with the
same level l. For any Z ∈ Γ, Pθ(Z|X) can be
factorized as follows:

Pθ(Z|X) = Pr(p|Y ||X)
∏

l

∏

i∈Dl

Pz(zi|pi, X)

Therefore, we can use beam search to approxi-
mately find the optimal mapping level-by-level. To
guarantee valid mappings, we restrict that

∀i ∈ Dl, max{pj |j ∈ Dl−1} < pi ≤ L−
∑

s>l

|Ds|

To find the B-best mappings from Dl according
to

∏
i∈Dl

Pz(zi|pi, X), we utilize an open-source
implementation9 of Murty’s algorithm (Miller et al.,
1997), whose worse case complexity is O(B|Dl|3).

9https://github.com/motrom/fastmurty

2544

https://doi.org/10.18653/v1/2020.coling-main.262
https://doi.org/10.18653/v1/2020.coling-main.262
https://doi.org/10.18653/v1/2021.findings-emnlp.161
https://doi.org/10.18653/v1/2021.findings-emnlp.161
http://arxiv.org/abs/2105.08928
http://arxiv.org/abs/2105.08928
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/d17-1088
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/2020.acl-main.362

B.2 MML
The training objective of MML is formulated as:

L = − log
∑

Z∈Γ

Pθ(Z|X)

We adopt a strong (but risky) assumption so that
we can use dynamic programming to marginal-
ize Pθ(Z|X) in polynomial time. Specifically,
for any operation yi, we assume that the two sub-
graphs rooted at yai and ybi respectively (in the DAG
counterpart of Y) are independently mapped to
{v1, v2, ..., vL}. Let Mi,j be the marginal prob-
ability of the sub-graph rooted at yi mapped to
{v1, ..., vj}, and G(yi) is the set of indices of con-
stituent operations in the sub-graph, then Mi,j is
computed as (we omit X for a brief presentation):

Mi,j =
∑

{pk|k∈G(yi)}
pi=j

∏

k∈G(yi)

Pz(zk|pk)

Pz(zk|pk) = Pf (y
f
k |pk)Pa(z

a
k |pk)Pb(z

b
k|pk)

Based on our assumption, if yai = yu ∈ Y and
ybi = yv ∈ Y , we have:

Mi,j = Pf (y
f
i |j)

j−1∑

pu=1

Mu,puPa(zu|j)
j−1∑

pv=1

Mv,pvPb(zv|j)

otherwise, we have:

ya
i ∈ C∪N , yb

i = yv ∈ Y :

Mi,j = Pf (y
f
i |j)Pa(y

a
i |j)

j−1∑

pv=1

Mv,pvPb(zv|j)

ya
i = yu ∈ Y, yb

i ∈ C ∪ N :

Mi,j = Pf (y
f
i |j)Pb(y

b
i |j)

j−1∑

pu=1

Mu,puPa(zu|j)

ya
i , y

b
i ∈C ∪ N :

Mi,j = Pf (y
f
i |j)Pa(y

a
i |j)Pb(y

b
i |j)

Finally, the training objective can be computed as:

L = − log
L∑

j=1

Pr(j)M|Y |,j

which takes O(|Y |) parallel operations.

C Limitations of Our MML

For our MML method, we impose an indepen-
dence assumption for efficient marginalization of
Pθ(Z|X) over all Z that denote valid mappings
from operations in Y to decoding positions, but at
the cost of failing to compute exact marginalization
and giving a noisy training objective when the tar-
get equation Y is complex, like those in MathQA.

Branch
All # Operation ≤ 3 # Operation ≥ 4

MML Naïve Hard EM MML Naïve Hard EM MML Naïve Hard EM
0 83.8 82.5 82.9 84.7 83.4 83.4 79.5 78.0 80.3
1 69.2 83.0 85.2 82.3 82.3 87.1 65.6 83.2 84.7

≥ 2 35.0 73.1 73.5 - - - 35.0 73.1 73.5

Table 12: Value accuracy breakdown on the test set of
MathQA w.r.t. the number of branches (# Branch) and
the number of operations (# Operation) in annotated
gold equations. Naïve stands for naïve mapping.

When does Our MML Conduct Exact Marginal-
ization? And What are the Effects on Model Per-
formance? Our MML conducts exact marginal-
ization only if Y has a linear structure, i.e., Y has
no branches; we define a branch in Y to be an op-
eration taking another two operations as operands.
If Y have branches, our MML will include the
probability of invalid Z where different opera-
tions share one decoding position, which may mis-
lead a model. As validated by Table 12, (a) our
MML works well on test problems whose gold
equations have no branches (# Branch=0: value
accuracy=83.8%), even when equations are long
(# Branch=0 and # Operation>=4: value accu-
racy=79.5%); (b) However, it becomes poor if equa-
tions have more branches (# Branch>=2: value
accuracy=35.0%).

Empirically, our MML works well when most
equations are linear, and short equations are likely
linear in existing datasets (e.g., SVAMP and
DROP). When target equations are complex, hard
EM should be more suitable, but we can still benefit
from using our MML for warming up.

D Ablation Study

D.1 Effect of Beam Size B on Hard EM

Training Method
Dev Test

Equ. Val. Equ. Val.
Random Mapping 18.08 19.20 17.76 18.44
Hard EM

B = 1 77.93 81.13 78.75 82.24
B = 10 77.64 81.17 78.38 81.99
B = 20 78.43 81.29 78.63 82.06

Table 13: Value accuracy of models trained with hard
EM using different beam sizes. Random Mapping is a
baseline which uses random Z ∈ Γ for training.

As shown by Table 13, model performance is in-
sensitive to beam size when using hard EM on
MathQA. To investigate whether the choices of Z
matter for optimization, we considered a baseline
called random mapping, which optimizes a model

2545

on random Z ∈ Γ. We observed that hard EM out-
performs random mapping substantially, indicating
that beam search finds effective Z for training.

E Inference Efficiency

Due to non-autoregressive decoding, CANTOR
is significantly faster than previous autoregressive
baselines in terms of inference efficiency. For ex-
ample, on a single V100 32G GPU, CANTOR
achieves a 7× speedup over DEDUCTREASONER

on the dev set of MathQA.

F Case Study on MathQA

Fig 4 presents two test cases from MathQA. In
the upper case, the baseline DEDUCTREASONER

misunderstands “increase” and “decrease”, and
conducts wrong operations. In the lower case
which mentions numerous quantities in the prob-
lem, DEDUCTREASONER, despite arriving at the
correct value, operates on wrong quantities at the
second and the third reasoning steps. By contrast,
our proposed model CANTOR produces precise
reasoning processes with proper choices of quanti-
ties to operate on.

2546

Problem: Fox jeans regularly sell for $ 15 a pair and pony jeans regularly sell for $ 18 a pair. During a sale these regular

unit prices are discounted at different rates so that a total of $ 8.73 is saved by purchasing 5 pairs of jeans: 3 pairs of fox

jeans and 2 pairs of pony jeans. If the sum of the two discount rates is 22 percent, what is the discount rate on pony jeans?

5* 5+

5, 5- 5.

5/ 50

a
b

#(

#,

a
b

##
#'

a
b

#-const_100

a
b

a
b

#%

a
b

a
b

a
b

a
b

a
b

a
b

a
b

Root

+: 1.0

−: 1.0

/: 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
1.0

1.0
1.0 1.0

1.0

0.95

0.69

0.91

0.99

0.97

1.0

1.0

3.82e-9

2.10e-7

8.26e-9

2.01e-8

Problem: The price of stock increased by 8 % last year and decreased by 6 % this year. What is the net percentage change

in the price of the stock?
5* 5+

DEDUCTREASONER

CANTOR

①: ⟨/, 50, :;<=>_@AA ⟩ ④: ⟨×,②,① ⟩ ⑤: ⟨−,③,② ⟩

⑥: ⟨−, 5,,④ ⟩ ⑦: ⟨/,⑥,⑤⟩ ⑧: ⟨−,①,⑦⟩ ⑨: ⟨×,⑧, :;<=>_@AA⟩

/: 1.0

×: 1.0 ×: 1.0

×: 1.0

−: 1.0

−: 1.0

/: 1.0

−: 1.0

×: 1.0

③: ⟨×, :;<=>_J, 5* ⟩②: ⟨×, :;<=>_K, 5+ ⟩
A B C D E

F G H I

A

B C

D

E

F G

H

I

Should be '$ Should be '%

A: Sum of the two discount rates

B: Total cost of pony jeans

C: Total cost of fox jeans

D: Money saved in total if fox jeans cost the same as pony jeans

E: How much fox jeans cost more than pony jeans

Interpretations of Different Operations

F: How much more money saved due to fox jeans costing more than pony jeans

G: Discount rate on fox jeans

H: Discount rate on pony jeans

I: Discount rate on pony jeans (%)

DEDUCTREASONER

①: ⟨/, 5+, :;<=>_@AA ⟩ ④: ⟨−, :;<=>_@,② ⟩ ⑤: ⟨×,④,③ ⟩

⑥: ⟨−,⑤, :;<=>_@⟩ ⑦: ⟨×,⑥, :;<=>_@AA⟩

③: ⟨+,①, :;<=>_@ ⟩②: ⟨/, 5*, :;<=>_@AA ⟩
A B

✗Misunderstands ‘decrease’ ✗Misunderstands ‘increase’

a
b /: 1.0

const_100

a
b

#(

const_1

a
b

a
b

a
b

a
b

a
b

a
b##

a
b

a
b

a
b

Root

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

0.890.82

0.6

1.0

0.98

9.31e-10

3.0e-6

7.01e-10
2.68e-9

CANTOR

−: 1.0

+: 1.0 ×: 1.0

+: 1.0

×: 1.0

−: 1.0

×: 1.0+: 1.0

−: 1.0

/: 1.0

A: Decrease (%) this year

B: Increase (%) last year

C: Ratio between the price after last year and the price before last year

D: Ratio between the price after this year and the price before this year

Interpretations of Different Operations

F: Ratio between the price after this year and the price before last year

G: Net change

H: Net percentage change (%)

B

A

C

D

E

F

G

✗ ✗

Figure 4: Two test cases from MathQA. Operations leading to the same value are marked with the same color and
letter (e.g., A, B, etc.). Purple ones are operations evaluating to the correct answer. For a clear presentation of our
DAG, we only retain top-5 root vertices along with their descendants. We also present probabilities of predicted
operators, operands, and root vertices. For predictions from DEDUCTREASONER, we mark the decoding order of
operations with circled numbers; operations with forward slashes in the background are erroneous ones.

2547

