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Abstract

Developing models that can automatically gen-
erate detailed code explanation can greatly
benefit software maintenance and program-
ming education. However, existing code-to-
text generation models often produce only
high-level summaries of code that do not cap-
ture implementation-level choices essential for
these scenarios. To fill in this gap, we propose
the code explanation generation task. We first
conducted a human study to identify the criteria
for high-quality explanatory docstring for code.
Based on that, we collected and refined a large-
scale code docstring corpus and formulated au-
tomatic evaluation metrics that best match hu-
man assessments. Finally, we present a multi-
stage fine-tuning strategy and baseline models
for the task. Our experiments show that (1) our
refined training dataset lets models achieve bet-
ter performance in the explanation generation
tasks compared to larger unrefined data (15x
larger), and (2) fine-tuned models can gener-
ate well-structured long docstrings compara-
ble to human-written ones. We envision our
training dataset, human-evaluation protocol,
recommended metrics, and fine-tuning strat-
egy can boost future code explanation research.
The code and annotated data are available at
https://github.com/subercui/CodeExp.

1 Introduction

Code documentation improves program compre-
hension (Garousi et al., 2015) and reduces software
maintenance cost (Chen and Huang, 2009). Re-
cently, many automated code summary tools have
been developed to reduce the effort of document
creation: for example, Denigma' is an IDE ex-
tension for generating inline function summaries;
GitHub Copilot Labs? is a code summary model

*Work was done during an internship at Microsoft.
f Corresponding author.
"https://denigma.app/
2https://github.com/github/feedback/
discussions/8308

built on top of Codex (Chen et al., 2021a) for gen-
erating explanations for Al generated code. How-
ever, these existing code summary tools focus on
the generation of short high-level descriptions of
source code semantics (Haiduc et al., 2010; Roy
et al., 2021; Zhu and Pan, 2019), and code sum-
mary alone is insufficient to meet the software un-
derstanding and maintenance need: A recent sur-
vey shows 85% developers expect tools to generate
method-level documentations explaining the func-
tionalities, usage and design rationales of code (Hu
et al., 2022). For example, as shown in Figure 1, the
code summary captures only the high-level code
functionality, while the explanatory docstring ex-
plains arguments, return values, and its compu-
tation process in a detailed and informative way.
However, due to the lack of training and evaluation
resources, few code explanation models have been
developed.

In this work, we introduce the code explana-
tion generation task. We provide (1) the training
corpus, (2) fine-tuning strategy, and (3) human-
evaluation protocol and recommended automatic
evaluation metrics to support developing code ex-
planation models. Our contributions include:

* We provide a python code-docstring corpus Code-
Exp, which contains (1) a large partition of 2.3
million raw code-docstring pairs, (2) a medium
partition of 158 thousand pairs refined from the
raw corpus using a learned filter, and (3) a par-
tition of 13 thousand pairs with rigorous human
annotations. Our data collection process lever-
ages an annotation model learned from human
annotations to automatically filter high quality
code-docstring pairs from raw GitHub datasets.

* We propose a two-stage strategy for fine-tuning
large language models using collected data — first
with the raw data and then with medium-size re-
fined data. Our experiments show that the best
fine-tuned model achieves human-comparable per-
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Code:

def (rng_or_seed=None, default_seed=None, constructor=None):
if (rng_or_seed is not None) and isinstance(rng_or_seed, RNG):
rng = rng_or_seed
elif (rng_or_seed is not None):
rng = constructor(rng_or_seed)
elif (default_seed is not None):
rng = constructor(default_seed)
else:
rng = constructor(42)
return rng

Summary:

Returns a random number generator.

Explanatory Docstring:

Returns a random number generator.

The RNG object is generated using the first of these cases that
produces a valid result:

1) rng_or_seed itself

2) constructor(rng_or_seed)

3) constructor(default_seed)

4) constructor(42)

Parameters:

rng_or_seed (int or RNG): If ‘rng_or_seed’ is a random number
generator, then it is returned. If ‘rng_or_seed' is an integer, then
a random number generator is created using ‘constructor’ and seeded
with “rng_or_seed’.

default_seed (int): Seed used if rng_or_seed is None.

constructor (function or class): Must return a RNG object.
constructor is called with rng_or_seed, default_seed or 42.

Returns:
An RNG object.

Figure 1: Example code paired with summary and ex-
planatory docstring. Difference between two styles:
Summaries outline the highest-level intent of the code.
Docstrings are more informative and detailed, explain-
ing the semantics of specific code pieces.

formance and highlights the importance of high-
quality data for the code explanation task.

We evaluated our models on seven automatic eval-
uation metrics and examined their consistency
with respect to the human evaluation of 180 test
examples. Our study shows that BLEU (Papineni
et al., 2002) and METEOR (Banerjee and Lavie,
2005) best reflect code generation quality, and we
recommend using them in future research.

2 Code Explanation Generation

Application scenarios. We focus on the gener-
ation of code explanations that describe both low-
level and high-level code semantics. The automatic
code explanation tool can benefit developers in
many scenarios. For example, the tool can reduce
software engineers developing effort by automati-
cally generating function comments during devel-
opment; it can help learners and codebase main-
tainers better understand undocumented code; it
can also explain code generated by code genera-
tion models like Codex for the developer to better
understand and verify its correctness. Note that
in these scenarios, because the developer needs to
understand both design rationale and implementa-
tion details of the code, an explanation covering
detailed code semantics would be more appropriate

than a short high-level description. For example,
if a developer aims to create a test for the function
make_rng in Figure 1 when maintaining a code-
base, it is crucial to understand how the variable
rng_or_seed is defined and used.

Task definition. Based on these observations, we
define the code explanation task as the text gener-
ation given code snippets (functions), where the
generated texts describe the code semantics. Con-
cretely, a high quality code explanation should
meet the following criteria: the description should
be informative, covering important code behaviors,
coherent with the semantics of source code, fluent,
and grammatically correct. We follow these criteria
to set up our annotation and evaluation protocols
in Section 3.1 and 5, respectively.

Challenges. The first key challenge for devel-
oping code explanation models is the shortage of
high-quality paired training and evaluation data.
Despite the existence of large-scale public code cor-
pora, directly using functions and their comments
for modelling is not ideal because these comments
can be oversimplified or misleading: Clement et al.
(2020) found 44% of python function documents
are very short in one-line style, and Wen et al.
(2019) showed code changes rarely (<20%) trigger
comments updates, potentially making the inconsis-
tency between code and comments a severe issue.

Second, developing code explanation models is
challenging. Besides the need for understanding
code logic to generate a global summary, the ex-
planation model also needs to generate detailed
comments based on fine-grained local code struc-
tures (e.g., examine the control and data flow in
order to explain how a variable is used).

Third, while prior work (Gros et al., 2020; Roy
et al., 2021) empirically studied criteria of high
quality code summaries, translating these crite-
ria/guidelines into actionable automatic evaluation
metrics for code explanation remains a challenge.

We next present how we collect high quality
datasets, define evaluation metrics and fine-tune
language models to address the above challenges.

3 CodeExp Data Collection

This section describes our data selection process.
The code explanation corpus (CodeExp) consist
of three sets of code-docstring pairs: (1) Code-
Exp(annotated) with 13K human annotated pairs.
(2) CodeExp(refined) with 158K pairs filtered by a
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trained model. (3) CodeExp(raw) with 2.3M unla-
belled pairs.

3.1 Examine docstring quality with human
annotations - CodeExp(annotated)

In order to understand how developers evaluate
the quality of explanatory docstrings, we first con-
duct a user study to let developers annotate quality
of code-docstring pairs using the code-doc-corpus
collected by Barone and Sennrich (2017). The cor-
pus contains 109,108 parallel python functions and
docstrings. We automatically filtered the dataset to
only include qualified examples. The filtered exam-
ples consist of the data pairs where (1) the number
of code lines is within 6 to 30, (2) the number of
lines in the docstring is larger than 3, and (3) the
Cyclomatic Complexity? of the code is larger than
3. In total, this yields 13,186 valid examples. We
hire external annotators to label this subset.

Annotation Our annotation protocol is devel-
oped through several pilots and further updated
with hard examples as the annotation progresses.
Annotators are asked to make three judgements for
each pair of code and docstring: (1) General ad-
equacy: The docstring should describe the main
logic of the code, i.e. containing at least one sen-
tence describing how the code handles the input or
what it computes given the input. (2) Coverage: If
the code contains outer-level if/else or try/except
blocks, check whether the docstring describes the
semantic of each block. (3) Coherence: Check
whether the documentation (if any) of parameter
types and returns match the code semantics.

For each pair of code and docstring, the human
annotator is asked to give a score from 0 (worst)
to 3 (best) for each step if it is applicable (only
step 1 is always applicable); otherwise, the annota-
tor leaves a blank score. For the coverage evalua-
tion, the annotator will also mark the specific code
spans and text spans that are associated with code
blocks (Figure 2). Due to the concern of feasibility,
we do not require the step 2 annotation to cover all
aspects of details, but only the branching blocks.

We refer to the human-annotated data as the
CodeExp(annotated) in later sections. We show
the statistics of annotations in Appendix A.l. In
the annotated result, we found the human-written
docstrings mostly perform well in explaining the
general logic and provide accurate type defines, but

3https://radon.readthedocs.io/en/latest/intro.
html#cyclomatic-complexity

are less optimal considering the coverage require-
ment. In other words, examples have high scores
for step 1 and step 3, but the scores for step 2
interestingly diverge. For the 11,900 code with
branching blocks, 6,300 examples do not describe
any block (step 2 score equals zero). The rest 5,400
examples (33%) describe at least one code block.

{
"docstring": "Pulls all flashed messages from the session and returns

them. ... whitelist of categories to limit return values",

"code": "

def (with_categories=False, category_filter=[]):
flashes = _request_ctx_stack.top.flashes

if (flashes is None):
_request_ctx_stack.top.flashes = flashes = (
session.pop('_flashes') if ('_flashes' in session)
else [1)
if category_filter:
flashes = list(filter(
(lambda f: (f[0] in category_filter)), flashes))
if (not with_categories):
return [x[1] for x in flashes]
return flashes

whtepl": "3,

"step2": "2",
"step3": "3",
"match": [
{
"selectedCode": "if (not with_categories): \n return [x[1] for
x in flashes] ",
""CodeSpan": [357,421],
"selectedDoc": " ‘False' ' gives just the message text)",
"DocSpan": [685,723]
3
"selectedCode": " if category_filter: \n flashes =
list(filter((lambda f: (f[@] in
category_filter)), flashes))",
""CodeSpan": [254,352],
"selectedDoc": "Filter the flashed messages to one or more
categories by providing those \n categories in
‘category_filter'. This allows rendering
categories in \n separate html blocks. ",
"DocSpan": [331,501]

¥
1

Figure 2: An annotated example of high-score code
docstring pair. Integer scores of three steps are provided.
The "CodeSpan" field extracts the specific code lines
described by the texts of the "DocSpan" field.

3.2 CodeExp(raw) with Open-source Pairs

As it is economically infeasible to manually an-
notate a dataset large enough with code-docstring
pairs for training a machine learning model, we
instead create a suboptimal dataset with unlabelled
pairs. Following (Husain et al., 2019), we pair the
code function with its corresponding documenta-
tion to form a code-docstring pair. We leverage
open-source python repositories in GitHub to col-
lect CodeExp(raw). To ensure the code quality,
we only keep repositories with more than 60 stars.
This step yields around 55,000 repositories by De-
cember 2021. We downloaded all Python files with
".py’ extensions and parsed the source code into ab-
stract syntax trees (AST) with Tree-Sitter*. Then
we include the functions provided with docstrings.
Finally, we collected a corpus of 2,285,387 pairs of
Python function code and docstrings. To the best of
our knowledge, CodeExp(raw) is one of the largest

4https: //tree-sitter.github.io/tree-sitter/
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datasets with parallel programming language (PL)
and natural language (NL) till now. In compari-
son, CodeSearchNet (Husain et al., 2019) contains
457,461 samples of python code.

3.3 Data selection with a learned filter -
CodeExp(refined)

The collected code and docstrings from Github are
of mixed qualities and potentially introduce noise
if used for training. Hence, we aim to refine a
higher-quality subset from it for modeling. Our
key insight here is to train a machine learning fil-
ter to mimic the human annotators based on the
annotated dataset, and apply the learned filter to
refine the raw data. The filter is fine-tuned from
a pretrained BERT base model (uncased) on the
collected human annotations. It takes as input the
code and docstring pairs and predicts the step 1
and 2 scores . The target scores are normalized
to [0, 1]. We used 11208 examples, 85% of Code-
Exp(annotated), for training and the rest for valida-
tion. The model achieved mean square errors (mse)
of 0.027 and 0.018 for step 1 and 2, respectively,
on the validation set.

We apply the same workflow as in Section 3.1
to filter the raw 2.3M corpus of CodeExp(raw): we
used the same complexity and length threshold to
select candidate examples, and then applied the
ML-filter. Finally, we selected the qualified data
pairs with predicted step 1 and 2 scores greater
than 1.0 (after scaling back). In this way, we col-
lected 158,024 refined examples, named as the
CodeExp(refined) partition.

Partition #Examples Quality Annotated By
CodeExp(raw) 2,285,387 Mixed

CodeExp(refined) 158,024 High Machine
CodeExp(annotated) 13,186 Mixed Human

Table 1: Data statistics. The raw and refined partitions
are collected from GitHub. The annotated partition is
selected from code-doc-corpus (Barone and Sennrich,
2017).

Table 1 shows the statistics for the three par-
titions. Note that the annotated subset’s quality
is “mixed” because it contains both low and high
scored examples annotated by human (we only use
higher scored ones for testing in Section 4.2). Be-
cause the refined partition is refined by the learned
filter, it better matches the definition of code ex-

Because most annotated examples have high step 3 scores,
and low-score examples are inconsistent between annotators,
we excluded step 3 score when training the ML filter.

Models
GPT-2-base (Radford et al., 2019)

#Params Pretrained w/
117M NL

GPT-Neo-13 (Black et al., 2021) 1.3B NL, PL
GPT-Neo-27 (Black et al., 2021) 2.7B NL, PL
CodeT5 (Wang et al., 2021) 220M PL*

Table 2: Backbone models for fine-tuning. (*) CodeT5
was mainly trained with PL. The NL training data con-
tained only the code comments.

planations (Section 2). An example with human
annotations is shown in Figure 2.

4 Experiment Settings

In this paper, we formulate the code explanation
generation as a sequence-to-sequence problem,
where the source sequence is a function code (in-
cluding both function signature and body), and the
target sequence is an explanatory documentation
string. We select four strong pretrained language
models for programming language and fine-tune
the models on our proposed CodeExp dataset. We
next introduce the baseline models, experiment set-
tings, and evaluation metrics.

4.1 Baseline models

We evaluate four popular pretrained language mod-
els in this paper: (1) GPT2-base (Radford et al.,
2019), a transformer decoder model pretrained with
only NL; (2) GPT-Neo (Black et al., 2021), a se-
ries of GPT-style decoders varying in parameter
size and pretrained with the large PILE corpus
(Gao et al., 2020) containing both NL and PL;
(3) CodeT5 (Wang et al., 2021), a transformer
encoder-decoder model pretrained with NL and
PL. (4) Codex (Chen et al., 2021b) the state-of-
the-art model trained on Github code of multiple
programming languages including python. We fine-
tune these models with our collected data to test
the performance except for Codex, with which we
only report its zero-shot performance due to the
inaccessibility of model weights.

4.2 Fine-tune

We fine-tune the baseline models with the collected
data of different sizes and qualities (Table 2). This
yields three fine-tuning strategies: S1. Fine-tune
on all collected examples, i.e. CodeExp(raw); S2.
Fine-tune on the refined subset, CodeExp(refined);
S3. Fine-tune on the raw and refined partitions con-
secutively, in a "curriculum learning" manner. For
each strategy, we leave out 1% of the raw partition
and/or 5% of the refined partition for validation.
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For evaluation, we select examples with high
scores from the CodeExp(annotated) and remove
duplicates if they also appear in the raw or refined
partition (Appendix A.2). This generates a high-
quality test set of 2,677 examples.

The pretrained models are fine-tuned using cross-
entropy loss on 16 Nvidia V100 32GB GPUs. We
select the checkpoint with the best perplexity score
on the corresponding validation set for further eval-
uation. For strategy S3, the best checkpoint after
fine-tuning on CodeExp(raw) is used as the starting
point for the next phase on CodeExp(refined). The
hyperparameters, including the max tokens, learn-
ing rate, batch size, epoch numbers, etc., are listed
in Appendix Table 7. At inference time, we sample
the top generated text using the default inference
settings (Appendix A.3).

4.3 Automatic metrics

We adopt four existing metrics widely used in re-
lated tasks and propose two new metrics dubbed
CER and CodeBERTScore to evaluate our models.
The efficacy of each metric is verified in the next
section against human evaluation. We include both
statistical and recent model-based metrics.

Statistical Metrics BLEU (Papineni et al., 2002),
ROUGE (Lin and Och, 2004), METEOR (Banerjee
and Lavie, 2005) are three commonly used metrics
in code summarization and machine translation.
These methods compute the matching of n-grams
between candidate and target texts in various man-
ners. We use the sentence BLEU (with smooth-
ing method 4) and METEOR interfaces provided
by NLTK®. For ROUGE, we use the F1 score of
ROUGE-1 and ROUGE-L.

We propose a new metric dubbed Common En-
tity Recall (CER). It first computes the number of
common 1-grams shown in code, generated, and
reference docstrings. Then it is divided by the num-
ber of common 1-grams of the code and reference
docstring. The intuition is that we found the com-
mon 1-grams of the code and reference docstrings
often contain important variable names, function
identifiers, or important keywords (e.g., if, int).

Model-based Metrics BERTScore (Zhang et al.,
2019) is an automatic metric that employs a BERT
model to measure the similarity between generation
and reference. The semantic similarity is computed

6https ://www.nltk.org/

as cosine similarities between the average token
embeddings of generated and target texts.

As BERTScore is only for natural language, we
propose CodeBERTScore as an adapted version of
BERTScore for evaluating code-related tasks. This
metric is built by replacing the language model in
BERTScore with CodeBERT (Feng et al., 2020),
a state-of-the-art language model pretrained with
code and natural language. We use the average
token embeddings of the 9th layer in CodeBERT
to compute similarity.

5 Metric selection based on human
evaluation

We conducted human evaluations on generated
docstrings and compared the aforementioned auto-
matic metrics against the human-eval results. The
protocol of our human evaluation is designed to
cover four important aspects: Al. General ade-
quacy, A2. Coverage, A3. Coherence, A4. Fluency.
Annotators rate for each aspect a score within 0-
4 on the 5-point Likert scale (Likert, 1932). The
detailed setup is listed in Appendix A.4. Aspects
1,3,4 have been used in both machine translation
(Reiter, 2018) and code summarization studies
(Song et al., 2019; Roy et al., 2021). The coverage
aspect emphasizes the preference for informative
explanations of code pieces. Notably, these scores
provide reference-free assessments. Both the orig-
inal reference docstring (identity is hidden) and
generated ones are provided to annotators.

We calculate the adapted Kendal’s 7 (Graham
et al., 2015) to measure the agreement between
automatic metrics and human evaluation. For an
arbitrary pair of two examples, it considers whether
two metrics both prefer one example to the other.
The 7 value is the ratio difference of concordant
(Con) and discordant (Dis) pairs,

|#Con — #D1is]|
T =
[#Con + #Dis + #Tie|’

ey

where # denotes the number of pairs. The concor-
dant, discordant and tie pairs are calculated as in
Table 3, where s and s9 are the scores for the two
docstrings within a pair.

6 Results and discussion

6.1 Results of auto-metric evaluations

We evaluated the generated docstrings of all afore-
mentioned models (in Section 4.1). We also in-
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Metric
s1 < S9

S1 = S9 S1 > S92
s1 < So | concordant tie discordant
Human s = s9 - -
s1 > So | discordant tie concordant

Table 3: Calculate concordant and discordant pairs.

cluded the CodeT5 checkpoint for code summariza-
tion, i.e. CodeTS-multi-sum’. The evaluated results
are shown in Table 4. In latter sections, we use the
notion "[model name]-(raw), -(refined), -(r+1)" rep-
resenting the model fine-tuned using the strategy
S1, S2, and S3, respectively.

We observed all fine-tuned models have sig-
nificant improvements over off-the-shell versions
across all metrics, for example, the BLEU scores
increased from below 0.4 (GPT-Neol3, CodeT5-
multi-sum) to around 10.0 (GPT-Neol3-(r+r),
CodeT5-(r+r)). Since GPT-Neo and CodeT5-multi-
sum are reported as strong summarization baselines
(Wang et al., 2021), this result again highlights the
large difference between summaries and explana-
tory docstrings.

Two-stage fine-tuning achieves best perfor-
mances. For the three fine-tuning strategies (S1-3
in Section 4), S3 yields the best performance for all
baseline models. To recall, it trains on all collected
examples (i.e. CodeExp(raw)) and the high-quality
partition (i.e. CodeExp(refined)) consecutively.
Comparing across models, fine-tuned CodeTS mod-
els perform best for S2 and S3 fine-tuning. Espe-
cially, CodeT5-(r+r) achieves the highest scores
with respect to 6 out of 7 metrics.

6.2 Results of human evaluations

We randomly select 180 examples from the test
set and collect human evaluations using the proto-
col in Section 5. For each evaluated docstring, the
annotator gives four scores for the aspects A1-4
and an overall average score is computed as well.
The evaluated docstrings are generated using 6 fine-
tuned models given the selected 180 python func-
tions. The models and respective results are shown
in Table 5. For comparison, we also include the
human-written reference docstrings in the origi-
nal codebases and two strong baselines using the
OpenAl Codex API, i.e. Codex-PyDoc and Codex-
Py2NL. These two APIs generate docstrings and
NL explanations, respectively, and we follow the

"https://huggingface.co/Salesforce/
codet5-base-multi-sum

official settings (Appendix A.S5).

Comparing the overall scores in Table 5, the rel-
ative superiority of models are largely consistent
with the results of auto-metrics (Table 4): (1) The
fine-tuning strategies (S2, S3) using high-quality
data partition outperforms S1. In fact, we found
that fine-tuning using only CodeExp(raw) would
often generate short one-line texts (like summa-
rization) due to the majority of one-line docstring
in the data, and this explains the annotators’ low
rating to CodeT5-(raw). (2) CodeT5-(refined) and
CodeT5-(r+r) outperform other models.

Achieving human-comparable performance.
We also observe that CodeT5-(refined) achieves
comparable overall scores as the human-written
references. Especially, it has a higher Coverage
score than the references, indicating more detailed
explanations. We plot in Figure 3 the (kernel den-
sity estimated) distribution of overall scores across
180 examples. The CodeT5-(refined) has the high-
est density accumulated at the high score range
(3.5-4.0), and the distribution is very close to the
distribution of reference docstrings.

Distribution of overall scores for all human-evaluated models, w/ KDE

1.2 Reference
codeT5-(r+r)
GPT-Neo27-(r+r)
GPT-Neo13-(r+r)
GPT-2-base-(r+r)
CodeT5-(raw)
CodeT5-(refined)
2 Codex-Py2Doc
é 06 Codex-Py2NL

N\

0.0 D ——
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
Overall scores

Figure 3: Distribution of overall scores on 180 human-
evaluated examples. The best model has comparable
performance with human-written reference docstrings.

We also observe the best fine-tuned models out-
perform Codex-Py2Doc and Codex-Py2NL with
respect to all evaluation aspects, although the pa-
rameter size of Codex (12B) is 60 times larger than
the fine-tuned CodeT5.

BLEU and METEOR are most consistent with
human evaluations. To examine the consistency
between automatic metrics and human evaluation,
we calculated the adapted Kendal’s 7 (Section 5)
and show the results in Table 6. We found BLUE
and METEOR mostly match the human evalua-
tions for aspects A1,3,4 and the overall score. For
the aspect of A2, Coverage, the newly introduced
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CodeBERT

Model ROUGE-1f ROUGE-Lf BLEU CER METEOR BERTScore Score
GPT-2-base
- CodeExp(raw) 0.2557 0.2443 442  0.4580 18.55 83.87 77.46
- CodeExp(refined) 0.2462 0.2357 426  0.4890 19.00 83.55 77.48
- CodeExp(r+r) 0.2623 0.2520 5.19 04978 20.30 83.92 7791
GPT-Neol3
- w/o fine-tune 0.0694 0.0646 0.40 0.1294 5.71 78.19 67.62
- CodeExp(raw) 0.2894 0.2769 0.4805 21.85 84.46 78.31
- CodeExp(refined) 0.2954 0.2815 7.36  0.5570 23.58 84.24 78.46
- CodeExp(r+r) 0.3265 0.3128 1045 0.5524 26.31 84.78 79.26
GPT-Neo27
- w/o fine-tune 0.1480 0.1380 0.82 0.2285 10.06 78.40 71.99
- CodeExp(raw) 0.2953 0.2818 7.72  0.4895 22.42 84.31 78.34
- CodeExp(refined) 0.2955 0.2816 821  0.5285 23.66 84.33 78.41
- CodeExp(r+r) 0.3298 0.3154 10.72  0.5560 26.87 84.86 79.28
CodeT5
- multi-sum 0.1507 0.1392 0.21  0.1240 5.58 82.35 74.29
- CodeExp(raw) 0.2652 0.2530 5.39  0.3851 17.51 83.84 77.42
- CodeExp(refined) 0.3175 0.3016 8.02 0.5536 24.38 84.67 78.90
- CodeExp(r+r) 0.3415 0.3256 991 0.5695 26.87 84.98 79.52

Table 4: Evaluate the generated explanation of fine-tuned models with various metrics. The top three scores for
each metric are in bold text, and the top one scores are underlined.

Model Al A2 A3 A4 Overall
Reference 3.617 2994 3.628 3.822 3.515
Codex-Py2Doc 3394 2950 3.378 3.556  3.319
Codex-Py2NL 2489 2528 2922 2.683 2.656
GPT-2-base-(r+r) 2.972 2.883 3.406 3.539 3.200
GPT-Neo27-(r+r) 3.417 2811 3.444 3589 3315
GPT-Neol3-(r+r) 3.283 2.900 3.439 3.606 3.307
CodeT5-(raw) 2594 2217 2756 2.889 2.614
CodeT5-(refined) 3.489 3.061 3.572 3.661  3.446
CodeT5-(r+r) 3478 2933 3.517 3.578  3.376

Table 5: Aspect-wise and overall score of Human evalu-
ations. Four aspects (Section 5): Al. General adequacy,
A2. Coverage, A3. Coherence, A4. Fluency.

Metric Al A2 A3 A4 Overall
ROUGE-1f 0.389 0.293 0.275 0.463 0.311
ROUGE-Lf 0.377 0.292 0275 0462 0.304
BLEU 0.416 0.347 0327 0.554 0.355
METEOR 0.417 0.368 0.333 0.518 0.361
BERTScore 0.278 0.218 0.251 0471 0.263
CodeBERTScore 0.334 0.266 0.280 0.494  0.297
CER 0.346 0.377 0328 0.454 0.339

Table 6: Kendall’s 7 calculated between 7 automatic
metrics and the human evaluated scores.

CER has the highest 7. Interestingly, ROUGE
scores show less alignment to human evaluations,
although they have been widely used in code sum-
marization. In summary, we recommend applying
BLEU and METEOR to the task of code explana-
tion generation.

6.3 Data quality matters

Reviewing both automatic and human evaluations,
we find fine-tuning solely on the high-quality par-

tition (CodeExp(refined)) significantly improves
the performance compared to fine-tuning on Code-
Exp(raw). Taking as example the best performed
model series, CodeT5: (1) For human evaluation,
the CodeT5-(refined) achieves an overall score of
3.446 (ranking 1st) and improves 31.8% over the
score 2.614 of CodeT5-(raw) (Table 5). (2) For au-
tomatic metrics, BLEU and METEOR are the two
most faithful metrics recommended in Section 6.2.
CodeT5-(refined) improves the BLEU score from
5.39 to 8.02 and METEOR score from 17.51 to
24.38, when compared to CodeT5-(raw). In fact,
the preference of -(refined) over -(raw) can be ob-
served for most automatic metrics and model types
(Table 4). This pattern is particularly interesting
considering that the refined partition is only 1/15
of the total size. One reason is that the majority
of CodeExp(raw) are of short length and do not
satisfy the requirements of code explanation doc-
uments (Section 3.3). Therefore, it brings about
observable noise during the optimization. This re-
sult demonstrates the importance of data quality
for code explanation generation.

6.4 Case Study

Figure 4 shows an example of code and gener-
ated docstring. More examples are listed in Ap-
pendix A.6. The CodeT5-(r+r) model successfully
captures the main logic of "Indent text by a given
number of characters". It also describes in detail
the types and semantics of input parameters and re-
turns. Interestingly, the model also captures the
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condition for the first "ValueError", although a
more faithful description should be "ValueError:
if the number of characters differs from the number
of lines".

Notably, achieving human-written quality does
not mean perfect. In this example, the human-
written reference missed the description for the Val-
ueErrors. We found the coverage aspect is challeng-
ing for both human-written and model-generated
docstrings in general. This has also been reflected
by the A2 scores in Table 5.

Code:

def (text: str, indent_chars: Union[(str, List[str])] ="' ',
level: int = 1) —> str:
text_lines = text.splitlines(keepends=True)
if isinstance(indent_chars, str):
indented_lines = [((indent_chars * level) + line)
for line in text_lines]
elif isinstance(indent_chars, list):
if (len(indent_chars) != len(text_lines)):
raise ValueError('Must provide indentation chars for
each line’)
indented_lines = [((ind * level) + line)
for (ind, line) in zip(indent_chars,
text_lines)]
else:
raise ValueError('Unrecognized indentation characters
value')
return ''.join(indented_lines)

CodeT5-(r+r):
Indent text by a given number of characters.
Args:
text (str): Text to indent.
indent_chars (str or list[str], optional): Indentation
characters. Defaults to "".
level (int, optional): Indent level. Defaults to 1.

Returns:
str: Indented text.

Raises:

ValueError: If the specified character is not a valid number of
characters.

Reference:

Indent lines of text in the string '‘text'" using the indentation
character(s) given in '“indent_chars’® '“level' ' times.

:param text: A string containing the lines of text to be indented.
tparam level: The number of times to indent lines in " “text™ .
:param indent_chars: The characters to use for indentation. If a
string uses repetitions of that string for indentation. If a list
of strings, uses repetitions of each string to indent each line.

:return: The indented text.

Figure 4: Case study of generated docstring. The
CodeT5-(r+r) correctly captured some detailed code
semantics (highlighted in ). An ambiguous span is
highlighted in as well.

7 Related works

Several approaches have been proposed for
method/function-level automatic code documen-
tation. Early studies use template-based and in-
formation retrieval approaches to generate long-
form documents (Wong et al., 2013; McBurney
and McMillan, 2014; Moreno et al., 2013). Recent
efforts have been mainly focused on the summa-
rization. Barone and Sennrich (2017) collected a
large parallel Python code and docstring corpus and
trained LSTM-based machine translation model.

DeepCom (Hu et al., 2018) introduced structure
information of AST to help generate summaries
for Java methods. Zhou et al. (2019) proposed
ContectCC, which encodes the context informa-
tion of external dependencies using the API calls
in the source Java method. More recently, Ahmad
et al. (2020) proposed a transformer approach for
method level summarization. Zhang et al. (2020)
built a retrieval-based approach using similar code
snippets in the generation. The aforementioned
studies employed several popular PL-NL corpora
(Barone and Sennrich, 2017; Hu et al., 2018; Hu-
sain et al., 2019). The average length of these
corpora is below 20 tokens and they target the sum-
marization task where the docstrings are often one-
liners. Apart from these efforts, few deep learning
based approaches generate full-length of documen-
tation. Clement et al. (2020) pretrained TS5 models
to generate python docstring in numerous styles.
The OpenAl Codex (Chen et al., 2021b) trained
GPT-3 for both code and document generation in
Six programming languages.

In these mentioned studies, machine translation
(MT) metrics have been widely used for code com-
ment assessments. Gros et al. (2020) questioned
this adoption of reference-based MT metrics by
examining and showing the semantic difference be-
tween code and NL. Roy et al. (2021) rigorously
examined the consistency between automatic met-
rics and human assessments using Kendall’s 7 as
well and recommended the usage of BLEU, ME-
TEOR, and chrF.

8 Conclusion

The code explanation generation is an important
task for code understanding. On one hand, we
show existing summarization methods do not di-
rectly apply to this task. On the other hand, we
built data collection pipelines, explored consistency
between automatic and human evaluations, and
provided a framework for fine-tuning existing pre-
trained models to generate explanatory docstrings
of human-comparable quality. We highlight the im-
portance of data quality by showing that fine-tuning
on high-quality data exceeds the performance using
raw data of 15 times larger scale. We expect the
proposed infrastructures, including the annotated
dataset, human-evaluation protocol, recommended
metrics, and fine-tuning strategy, to boost future
research for code explanation.
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9 Limitations

The examined automatic metrics provide insuffi-
cient semantic verification for the generated doc-
strings. Also, the absolute 7 values of automatic
metrics are all below 0.5, which indicates limited
consistency with respect to human evaluations. We
look forward to potential factuality-based metrics
better modeling the correctness and coverage of
the explained semantics. Apart from evaluating
stand-alone generations, a user study in the produc-
tion/developer environment could more accurately
reflect the effectiveness of Al-generated explana-
tory documents. As for the model performance, in-
creasing the coverage over detailed code semantics
remains a challenge for tested models. In fact, both
generated and human-written docstrings have low
coverage scores in the human assessments. Lastly,
we tested various fine-tuning strategies in this work,
while the large-scale pretraining for code explana-
tion is as well worth exploring.
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A Appendices

A.1 Statistics of CodeExp annotation results

Histogram of step 1-2 scores, avg scores: 2.52 and 0.86
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Figure AS: Histogram of Step 1. General adequacy and
Step 2. Coverage. Blank score of step 2 indicates there
is no branching if/else conditions in the code example.

A.2 Test set configuration

The test set mainly consists of examples in the
CodeExp(annotated) partition. We select the group
of data of high quality, i.e. with scores of all steps
> 1 (including blank scores), and remove dupli-
cates that also appeared in the CodeExp(raw) and
CodeExp(refined). This process generates 1744
examples. We also applied the same procedure of
quality filtering and deduplication on a small held-
out set of GitHub code-doc pairs. Altogether the
test set contains 2677 examples.

In detail, the deduplication works by comput-
ing the Levenshtein distance between a candidate
string of code/document and each code/document
in the 2.3 million CodeExp(raw). To accelerate, We
compare the first 300 characters of the candidate
and target strings. If any computed distance is less
than 5% of the total string length, the candidate
code-doc example will be considered a duplicate
and excluded from the test set.

A.3 Inference settings

At inference time, the generated tokens are sampled
with temperature set to 0.1 for all models. The max
generated token is set according to each model’s
capacity. Specifically, 512 tokens for CodeT5 and
GPT-Neo models, 256 tokens for GPT-2-base.

A.4 Human evaluation settings

The human evaluation consists of four aspects. For
each aspect, a question related to the docstring
quality is asked, and the annotator is expected to

give an integer score within 0-4, where O stands
for "not satisfying the question at all" and 4 stands
for "perfectly satisfying the question". The four
aspects and questions are as follows:

1. General adequacy: Is it possible to gain a ba-
sic understanding of what the code does after
reading the docstring?

2. Coverage: How much does the docstring
cover important semantic details, including
descriptions for input parameters, returns, ex-
ceptions and if/else, try/catch blocks?

3. Coherence: Is the information provided in the
docstring correct and related to the code?

4. Fluency: Is the docstring grammatically cor-
rect and easy to read?

Notably, the first three aspects reflect those aspects
of data annotations in Section 2.

Given one source code, each annotator must eval-
uate the generated docstrings of all models (includ-
ing the reference docstring) to remove inter-model
bias. The source of the docstring is hidden to the
annotators. In total, ten annotators provided 6480
scores, 180 examples x 9 models x 4 aspects. All
annotators have python developing experience of
over 2 years.

A.5 Codex API settings

The Codex-Py2Doc stands for the Codex API ex-
ample of "Write a Python docstring". The offi-
cial prompt includes the # Python 3.7 header, the
source code, and appends at the end the prompting
sentence # An elaborate, high quality doc-
string for the above function: """. The
model stops generating when the stop token # or
" is generated. Similarly, the Codex-Py2NL de-
notes the Codex API of "Python to natural lan-
guage". The prompt includes the # Python 3
header, the source code, and the prompting line #
Explanation of what the code does \n\n #.

We follow all official settings for these APISs, in-
cluding setting the temperature to 0, top p to 1.0,
frequency penalty to 0.0, and presence penalty to
0.0. We use the most capable engine available,
"code-davinci-002" and increase the max gener-
ated tokens to 256. The default stop token # for
Codex-Py2NL is removed in our settings because
otherwise the API would only generate one line of
text.
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Model max input tokens optimizer learning rate  batch size #epochs
GPT-2-base-(raw) 1024 16 3
GPT-2-base-(refined) 1024 16 3
GPT-Neol3-(raw) 2048 16 3
GPT-Neol3-(refined) 2048 start at Se-5, 16 3
AdamW .

GPT-Neo27-(raw) 2048 linear decay to 0 16 3
GPT-Neo27-(refined) 2048 16 3
CodeT5-(raw) 1024 32 10
CodeT5-(refined) 1024 32 10

Table 7: Fine-tuning hyperparameters. Note: (1)All max tokens are set to the upper limits of the model_max_token
of the pretrained model from Huggingface. co (2)The two-stage fine-tuning for each model adopts the settings of

-(raw) and -(refined) at each stage, respectively.

A.6 Examples of generated docstrings

See Figure A6.
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Code

def download_file_maybe_extract(url, directory, filename=None,
extension=None, check_files=[]):
if (filename is None):
filename = _get_filename_from_url(url)
directory = str(directory)
filepath = os.path.join(directory, filename)
check_files = [os.path.join(directory, str(f)) for f in
check_files]

if ((len(check_files) > @) and _check_download(xcheck_files)):

return filepath
if (not os.path.isdir(directory)):
os.makedirs(directory)
logger.info('Downloading {}'.format(filename))
if ('drive.google.com' in url)
_download_file_from_drive(filepath, url)
else:
with tqdm(unit='B', unit_scale=True, miniters=1,
desc=filename) as t:
urllib. request.urlretrieve(url, filename=filepath,
reporthook=_reporthook(t))
_maybe_extract(compressed_filename=filepath,
directory=directory, extension=extension)
if (not _check_download(xcheck_files)):
raise ValueError(' [DOWNLOAD FAILED] “skcheck_files' not
found"')
return filepath

Reference:

Download the file at "‘url'" to “‘directory''. Extract to

“‘directory’’ if tar or zip.

Args:

url (str or Path): Url of file.

directory (str): Directory to download to.

filename (str, optional): Name of the file to download;
Otherwise, a filename is extracted from the url

extension (str, optional): Extension of the file; Otherwise,
attempts to extract extension from the filename.

check_files (list of str or Path): Check if these files exist
ensuring the download succeeded. If these files exist before the
download, the download is skipped.

Returns:
(str): Filename of download file.

Raises:
ValueError: Error if one of the *“check_files "
following the download.

are not found

CodeT5-(r+r):

Download a file from a url, unless it is already present in
directory.

Args:

url (str): URL to download file from.

directory (str): Directory to extract the file to.

filename (str, optional): Name of the file to download.
If None, use filename from URL.

extension (str, optional): Extension of the file.

check_files (list, optional): List of files to check
If None, will download all files.

Returns:
str: Path to the downloaded file.

Raises:
ValueError: If the download fails.

CodeT5-(refined):
Download a file from url and extract it to directory.

Args:

url (str): URL to download file from

directory (str): Directory to save downloaded file to

filename (str, optional): Name of the file to be downloaded. If
None, use the filename from url.

extension (str, optional): Extension of the file o be extracted.
If None, use the extension of the file.

check_files (list of str, optional): Files to be checked.

If None, no files are checked.

Returns:
str: Path to downloaded file.

Raises:
ValueError: If the file is not found.

GPT-Neo27-(r+r):
Download a file from the given url to the given directory.

Args:
url (str): URL to download
directory (str): directory to download file
filename (str, optional): name of the file to be downloaded
extension (str, optional): file extension to be downloaded
check_files (list, optional): list of file paths to be downloaded

Returns:
str: path to the downloaded file

Codex-Py2Doc:
Downloads a file from a URL if it not already in the cache.

By default the file at the url ‘url® is downloaded to the cache_dir
‘~/.keras", placed in the cache_dir ‘~/.keras', and given the
filename "filename'. The final location of a file ‘“example.txt’ would
therefore be '~/.keras/example.txt.

Files in tar, tar.gz, tar.bz, and zip formats can also be extracted.
Passing a hash will verify the file after download. The command line
programs “shasum’ and ‘sha256sum’ can compute the hash.

Codex-Py2NL:

1. Download the file from the url

# 2. Check if the file is already downloaded

# 3. If not, download the file

# 4. Check if the file is already extracted

# 5. If not, extract the file

# 6. Check if the file is already downloaded and extracted
# 7. If not, raise an error

# 8. Return the filepath

Figure A6: An example function, human-written reference docstring, and selected generated docstrings. The best
fine-tuned models captures both global and local function behaviors. Highlighted text: pink - notable errors in
generation or reference. cyan - key information captured in generation.
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