
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 2334–2341
December 7-11, 2022 ©2022 Association for Computational Linguistics

Syntax-guided Localized Self-attention by Constituency Syntactic Distance

Shengyuan Hou1∗ Jushi Kai1∗ Haotian Xue1∗

Bingyu Zhu2 Bo Yuan2 Longtao Huang2 Xinbing Wang1 Zhouhan Lin1†
1 Shanghai Jiao Tong University 2 Alibaba Group

{hsyhwjsr,json.kai,xavihart}@sjtu.edu.cn
{zhubingyu.zby,qiufu.yb,kaiyang.hlt}@alibaba-inc.com

lin.zhouhan@gmail.com

Abstract

Recent works have revealed that Transform-
ers are implicitly learning the syntactic infor-
mation in its lower layers from data, albeit is
highly dependent on the quality and scale of
the training data. However, learning syntac-
tic information from data is not necessary if
we can leverage an external syntactic parser,
which provides better parsing quality with well-
defined syntactic structures. This could po-
tentially improve Transformer’s performance
and sample efficiency. In this work, we pro-
pose a syntax-guided localized self-attention
for Transformer that allows directly incorpo-
rating grammar structures from an external
constituency parser. It prohibits the attention
mechanism to overweight the grammatically
distant tokens over close ones. Experimental
results show that our model could consistently
improve translation performance on a variety
of machine translation datasets, ranging from
small to large dataset sizes, and with different
source languages. 1

1 Introduction

Although Transformer doesn’t have any inductive
bias on syntactic structures, some studies have
shown that it tends to learn syntactic information
from data in its lower layers (Tenney et al., 2019;
Goldberg, 2019; Jawahar et al., 2019). Given the
pervasiveness of syntactic parsers that provides
high quality parsing results with well-defined syn-
tactic structures, Transformers may not need to
re-invent this wheel if grammar structures could be
directly incorporated into it.

Prior to Transformer (Vaswani et al., 2017), ear-
lier works have demonstrated that syntactic infor-
mation could be helpful for various NLP tasks. For
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1Our code is available at https://github.com/
LUMIA-Group/distance_transformer

example, Levy and Goldberg (2014) introduced
dependency structure into word embeddings, and
Chen et al. (2017) uses Tree-LSTMs to process the
grammar trees for machine translation.

More recently, dependency grammar has been
successfully integrated into Transformer in various
forms. Strubell et al. (2018) improves semantic
role labelling by restricting tokens to only attend
to its dependency parent. Zhang et al. (2020) mod-
ifies BERT (Devlin et al., 2019) for named entity
recognition as well as GLUE tasks (Wang et al.,
2018) by adding an additional attention layer that
allows every token to only attend to its ancestral
tokens in the dependency parse tree. Bugliarello
and Okazaki (2020) improves machine translation
by constructing the attention weights from depen-
dency tree, while Li et al. (2021) masks out distant
nodes in the dependency tree from attention.

While the dependency grammar demonstrates
the relation between nodes, the constituency gram-
mar focuses more on how a sentence is formed
in a merging way block by block. Constituency
grammar contains more information about the
global structure of a sentence in a hierarchical way,
which we think will greatly improve global atten-
tion mechanism like self-attention in Transform-
ers. Since constituency grammar doesn’t directly
reflect grammatical relations between words and
introduces new constituent nodes, integrating it
into Transformer becomes less obvious. Ma et al.
(2019) explores different ways of utilizing con-
stituency syntax information in the Transformer
model, including positional embedding, output se-
quence, etc. Yang et al. (2020) uses dual encoders
to encode both source text and template yielded by
constituency grammar, at a cost of introducing a
large amount of parameters.

In this work, we propose a syntax-guided lo-
calized self-attention that effectively incorporates
constituency grammar into Transformers, without
introducing additional parameters. We first serial-
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Figure 1: (a) The constituency tree for the example sentence "I swim across the river.". (b) Its syntactic distances.
(c) The attention mask reflecting the syntactic local ranges of each word For example, rather than attending to the
whole sequence, "across" encourages attention towards swim, the and river while suppresses the others.

ize constituency trees through syntactic distance
(Shen et al., 2018), and then select several atten-
tion heads as grammar-aware heads in which the
attention ranges of each token are individually mod-
ulated according to their grammatical roles. the
modulated attention ranges are named as syntactic
local ranges, which prohibits the attention mech-
anism to overweight the grammatically distant to-
kens over close ones. Experimental results show
that our model could consistently improve transla-
tion performance on a variety of machine transla-
tion datasets, ranging from small to large dataset
sizes, and with different source languages.

2 Preliminary: Syntactic Distance

2.1 Definition

Syntactic distance (Shen et al., 2018) is a serialized
vector representation of constituency grammar tree
(Fig 1(a)) that is defined as:

Definition 2.1. (Syntactic Distance) Given a
length n sentence S = (t1, ..., tn) and its con-
stituency grammar tree T , in which the height of
the lowest common ancestors of any pair of to-
kens ti, tj is noted as hij . The syntactic distance
D = (d1, ..., dn−1) of this sentence could be any
vector of scalars with length n− 1, which satisfies:
∀i, j ∈ [1, n− 1],

sign(di − dj) = sign(hii+1 − hjj+1) (1)

Intuitively, syntactic distance D keeps the same
ranking order as the sequence of (h12, h

2
3, ..., h

n−1
n ),

in which hii+1 is the height of the lowest common
ancestors between pairs of consecutive words in
the sentence (See Fig. 1(b)).

2.2 Generation of Syntactic Distance
The syntactic distance could be generated by re-
cursively spliting the constituency tree in a top-
down manner. According to the merging order of
constituency syntactic tree, for any subtree T, the
subtrees rooted by every child node of T must be
constructed at first. Therefore, the merging of all
of T’s child nodes must take place afterwards. The
syntax distance in all the subtrees of T can be cal-
culated first, and then the maximum distance value
plus 1 is the current merging distance order.

During preprocessing, the syntactic distance is
calculated on different datasets respectively. For
each sentence, we first concatenate all BPE word
segmentations, then analyze the syntax tree struc-
ture using the Stanford corenlp toolkit (Manning
et al., 2014), and calculate the syntactic distance
according to the algorithm in Algorithm 1. When
filling in the syntactic distance between words in
BPE word segmentation, the lowest value is 0, and
finally all syntactic distances are added by 1 to be-
come a syntactic distance vector with a minimum
value of 1. In the case of multiple sentences, we
generate the syntactic distance of each sentence
respectively, and then fill in the maximum 999 be-
tween different sentences, indicating that all sen-
tences are merged at last.

3 Method

We are going to present a form of local self-
attention that dynamically controls each word’s
attention range according to its syntactic role in
the sentence (See Fig. 1(c)). Attention heads that
incorporate this localized self-attention could sig-
nificantly outweight the grammatically close tokens
over distant ones, thus incorporate the syntax infor-
mation as prior knowledge.
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Algorithm 1 Syntactic Distance Generation

Input: Constituency Grammar Tree T
Output: Syntactic Distance D = (d1, ..., dn)

1: function DISTANCE(root)
2: d← [ ]
3: if root is not leaf then //Node can be split
4: d_set← { }
5: maxd← 0
6: for c in root’s child do
7: cd ← Distance(c)
8: maxc← max(cd,1, ..., cd,|cd|)
9: d_set← d_set ∪ {cd}

10: maxd← max(maxd,maxc)
11: end for
12: nd← maxd+ 1
13: d← [cd1;nd; cd2; ...;nd; cd|d_set|]
14: end if
15: return d;
16: end function

3.1 Syntactic Local Range

It is widely believed that in a grammar tree, sibling
words within a certain constituent is more corre-
lated than words that are more distant (Klein and
Manning, 2003). For example, in Fig. 1(a), for the
word the, the word river locates to its right is more
related than the word I. More generally, we define
a syntactic local range for each of the words to
mark a set of adjacent words as more syntactically
correlated to it. For a given token t, we consider the
words that are 1) direct siblings of t; or 2) left/right
siblings of the constituent that has t on its left/right
boundary respectively, as syntactically more corre-
lated to t. Note that, depending on the structure of
the grammar tree, the syntactic local range to the
left of the word could be different with that to the
right. Formally, we have the following definitions.

Definition 3.1. (Syntactic Local Range) For a
given token t, let f be its parent node in the con-
stituency tree. Syntactic local range is defined as
the concatenation of two ranges residing on t’s left
and right sides, corresponding to its pre-text and
post-text directions, respectively.

For the pre-text direction,

• If t is not the leftmost child of f , then t’s syn-
tactic local range on its left side starts at f ’s
leftmost child, and stops at t.

• If t is the leftmost child of f , back-trace its
ancestors to find a nearest constituent v where

Algorithm 2 Inducing Syntactic Local Range

Input: Syntactic Distance D = di(i ∈ [1, n− 1])
Output: Syntactic Local Range G

1: G = 0 ∈ {0, 1}n×n

2: for i=1 to n do
3: bl = argmax

j<i−1,dj>di−1

{j+1} // left boundary

4: br = argmin
j>i,dj>di

{j} // right boundary

5: G[i, bl : br] = 1
6: end for
7: return G

v is not the leftmost child of its parent w. Then
t’s syntactic local range on its left side starts
at w’s leftmost child and stops at t.

Similar rules apply for the pos-text direction ex-
cept that the left/right directions are altered accord-
ingly.

3.2 Inducing Syntactic Local Range from
Syntactic distance

Intuitively, for a given token t, its syntactic local
range keeps stretching on both pre-text and post-
text directions until it hits a distance that is larger
than t’s on the corresponding side. We can repre-
sent all the syntactic local ranges for every words
in a sentence as a masking matrix consisting of
0s and 1s (c.f. Fig. 1(c)), and compute it through
Algorithm 2. It can be proved that the ranges gen-
erated by Algorithm 2 is identical to the syntactic
local ranges defined by Definition 3.1:

Proof. Consider the token ti in the sequence
(t1, t2, ..., tn) with the syntactic distances
(d1, d2, ..., dn−1).

For the pre-text direction, let ti’s syntactic local
range starts at tl. According to Definition 3.1, tl
and ti share a lowest common ancestor w. Let the
height of w be hw.

1. Since tl is the leftmost child of w, we have
hl−1
l >= hw.

2. Since ti is either the immediate child of w, or
the leftmost child of a constituent v who is the
immediate child of w, we have hi−1

i = hw−1.

3. For all tokens between tl and ti inclusively, w
should also be their common ancestor. Thus
we have ∀j ∈ [l + 1, i], hj−1

j <= hw − 1.

2336



Comprehensively, we have

∀j ∈ [l + 1, i− 1], hl−1
l > hi−1

i >= hj−1
j (2)

According to Eq. 1, we could derive that

∀j ∈ [l, i− 2], dl−1 > di−1 >= dj (3)

Thus validates line 3 in Algorithm 2.
Symmetrically, the proof for the post-text direc-

tion is obvious.

Specifically, we first define the syntactic local
pattern in a constituency tree in Definition 3.1,
which is explicit and easy to understand. However,
using syntactic distance can facilitate the comput-
ing of syntactic local pattern since it can be well
paralleled. Therefore we turn to an alternative ex-
pression of Definition 3.1 using syntactic distance,
and propose Algorithm 2 to generate mask from
syntactic distance, which is also proved to be iden-
tical to the definition of syntactic local pattern.

3.3 Syntax-guided Self-Attention
Given the masking matrix G, we can incorporate it
into self-attention through masked softmax to get a
syntax-guided self-attention:

Attn(Q,K, V,G) = Sm

(
G,

QKT

√
dk

)
V (4)

Sm (M,X) =

[
S
(

mjie
xji

∑n
k=1mjke

xjk

)]

j=[1,...,n]

(5)
where Sm(·) and S(·) are masked softmax and soft-
max, respectively. And mji and xji are the ele-
ment in the j-th row and i-th column of the M and
X matrices. [·]j=[1,...,n] corresponds to vertically
stack the elements yielded by the function inside it,
whose input j being 1, ..., n respectively.

Moreover, since we want to encourage the atten-
tion within the syntactic local range and suppress
those outside of it, rather than zeroing out the atten-
tion weights outside of the syntactic local range. To
this end, we would still like the model to attend on
tokens outside of the range. Thus, rather than using
a crispy boundary, i.e., elements in G are either 0
or 1, we smooth it through the following steps.

First we define the soft comparison between di
and dj as

αj
i =

tanh((di − dj)/τ) + 1

2
(6)

datasets Transformer Ours

IWSLT14-De2En 34.56 35.74
IWSLT14-En2De 28.17 29.28

NC11-De2En 26.83 27.67
NC11-En2De 25.26 26.19
ASPEC-Ch2Ja 47.77 48.34

WMT14-En2De 27.3 28.48

Table 1: Test BLEU score on five datasets.

which yields 0 when di ≪ dj and gradually in-
creases to 1 as di increases, with τ controlling the
softness.

We can simulate the attention range found by Al-
gorithm 2 by multiplying α from the central token
to both sides. i.e., entries in G can be approximated
by

Gij =
∏

j≤t≤i−1

αi−1
t , j < i− 1 (7)

To initiate the continued product, mask values on
the two secondary diagonals in G are set to 1.

We then use this syntactic-guided attention mask
to augment some of the attention heads in the
vanilla Transformer model, thus incorporates con-
stituency grammar information into Transformer.

4 Experiments

4.1 Datasets and Experiment Settings

We implement our model based on Fairseq (Ott
et al., 2019) toolkit The Stanford CoreNLP parser
is utilized to generate constituency grammar tree,
which is further used to calculate syntactic distance.
All distance values are natural numbers with a min-
imum value of 1 and distances between sentences
are set to 999 by default.

We evaluate our model on machine translation
tasks of different languages. We use IWSLT-14
German-English on both directions (De2En and
En2De), NC11 German-English on both directions,
ASPEC from Chinese to Japanese (Ch2Ja), and
WMT14 from English to German. Unless oth-
erwise noted, we only modify the first encoder
layer, with 3 heads for IWSLT14-En2De and NC11-
En2De, 4 heads for NC11-De2En and IWSLT14-
De2En, 2 heads for ASPEC-Ch2Ja and WMT14-
En2De. Detailed settings and available in Ap-
pendix A.
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Figure 2: Layer-wise for IWSLT14-De2En

models
IWSLT14 NC11

De2En En2De De2En En2De

baseline 34.56 28.17 26.83 25.26
1-head 35.65 29.20 27.58 25.87
2-head 35.68 29.21 27.67 25.99
3-head 35.71 29.28 27.56 26.19
4-head 35.74 29.23 27.67 26.08

Table 2: Head-wise for IWSLT14 and NC11.

4.2 Experimental Results

We compare our syntactic-guided model with
Transformer (Vaswani et al., 2017) measuring by
BLEU score2. All of the results are averaged over
5 independent runs on different seeds and the im-
provements have statistical significance (p<0.01).
For the large WMT dataset, we average the test
results over the last 5 checkpoints in a single run
due to computation limits. Our model outperforms
Transformer baseline model on all six machine
translation datasets. Our model can achieve up to
1.18 improvements on these test beds. Detailed
results are shown in table 1.

4.3 Ablation Study

We apply syntactic distance in different encoder
layers of Transformer to get best utilization of syn-
tactic distance. The results are shown in Fig. 2,
where "x-layer" means that only 3 attention heads
of x-th encoder layer use syntactic information.
The model performs best with syntactic distance
used in the first layer. Moreover, the deeper layer
we add syntactic distance, the worse performance
the model has. It can be concluded that top layers
focus more on long range dependency of data.

2https://pypi.org/project/sacrebleu/

We also studied effects of different heads in us-
ing syntactic distance, as shown in table 2. "x-
head" means we only use syntactic distance in x
heads of the first encoder layer. We found that the
utilization of different extent does not lead to great
difference in performance.

5 Conclusion

In this work, we introduce constituency grammar
into Transformer by using syntactic distance to
guide the self-attention mechanism. We implement
the complete pipeline of fusion by converting con-
stituency tree to syntactic distance and finally gen-
erating syntactic local pattern. Experiments show
that our method could consistently improve the
performance of Transformer on a variety of ma-
chine translation tasks. We also excavate that the
syntactic-guided attention achieve the best effec-
tiveness in the bottom layer. Future work could
expand to other NLU tasks and larger-scale pre-
trained models.

Limitations

Although the constituency-based syntactic local
patterns implemented by syntactic distance appear
to be advantageous for self-attention learning in
seq2seq architecture, there are still some directions
for further improvement.

Firstly, the constituency grammar information is
generated explicitly using external parser, whereas
most low-resource languages like Southeast Asian
family lack sophisticated parsing toolkit. Specially
consituency syntax tree bank is far rarer compared
with dependency tree bank. Due to this, our ex-
periments do not include low resource languages.
To solve this problem, incorporating syntactic in-
formation implicitly without any annotation is a
heated topic with great prospect. We will further
explore this direction.

Also, most parsers are based on statistical meth-
ods so that generated grammar tree often entails
noise and uncertainty. These hinder the wide appli-
cations of our method. A more modern parser like
the Berkeley Neural parser with Bert or Roberta etc.
embeddings would do better probably. It would be
interesting to see whether the effect on the BLUE
scores of using a parser has a higher accuracy that
could presumably then provide the basis for an
improved incorporation of syntactic representation.

Secondly, the utilization position of syntactic
mask is a tough problem when it is manually tuned,
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especially on large model configurations and large
datasets. One alternative is to learn the usage of
syntactic attention mask adaptively and softly, by
which every attention head in every layer is a com-
bination of original global attention and syntactic
masked attention. The combination weight of every
head is parameterized and learned throughout the
training process.

Thirdly, the pretraining and finetuning architec-
ture has been around in recent years for its gen-
erality and excellent performance compared with
the task-specific model training from scratch. It’s
intuitive to explore whether our method could still
achieve good performance on pretraining architec-
ture such as BERT, even though some studies find
that trained on a large corpus the pretraining model
has inherently entailed syntactic structural informa-
tion.

Fourthly, many studies focus on the usage of
dependency syntax information to enhance the self-
attention learning. The constituency grammar struc-
ture is naturally suitable for languages with strong
local structure, while dependency grammar is suit-
able for languages with high flexibility of permuta-
tion. The difference between two kinds of syntax
structure on different source languages are left for
further study.
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A Training Details

We perform experiments on six machine translation
datasets and use the BLEU score to evaluate our
model’s performance. ISWLT14 EN/DE dataset
is stemmed from TED talks. NC11 EN/DE is

stemmed from news commentary. ASPEC CH/JA
is stemmed from scientific paper excerpt corpus.
WMT14 EN/DE is stemmed from European news.
Sizes of different datasets are listed in Table3.

datasets Train Valid Test

IWSLT14-De/En 160239 7283 6750
NC11-En/De 238843 2169 2999
ASPEC-Ch/Ja 672315 2090 2107

WMT14-En/De 4528223 3000 3003

Table 3: Sizes of Experimental Datasets

For Iwslt14 dataset preprocessing, we use Moses
toolkit3 for uncased word tokenization. Then we
clean up the dataset, and only keep the pairs whose
source-target length ratio is within 1.5 and the total
length does not exceed 175. Next we use the sub-
word NMT toolkit4 for BPE subword tokenization
with a shared dictionary of size 10k. Finally we
randomly select 5% of training as the validation set,
and merge dev2010, dev2012, tst2010, tst2011 and
tst2012 into the test set. The size of the training,
validation and test set are 160k/7.3k/6.7k respec-
tively.

For NC11 dataset preprocessing, we still use
Moses toolkit for uncased word tokenization. Then
we clean up the dataset, and only keep the pairs
whose source-target length ratio is within 1 and
the total length does not exceed 80. Next we use
the subword NMT toolkit for BPE subword to-
kenization with a shared dictionary of size 16k.
Otherwise, we dropout the pairs which do not
have a correct language. Validation and test set
are newstest2015 and newstest2016 respectively.
The size of the training, validation and test set are
239k/2.2k/3k respectively.

For ASPEC dataset preprocessing, we use Moses
to extract statements. Then we use StanfordNLP-
2014-01-01-segmenter5 for Chinese and juman-
7.06 for Japanese in word tokenization. Next we
use the subword NMT toolkit for BPE subword tok-
enization with a Chinese dictionary of size 61k and
a Japanese dictionary of size 46k. The size of the
training, validation and test set are 672.3k/2k/2.1k
respectively.

For WMT dataset preprocessing, subword-NMT
and Moses are still ustilized for tokenization and

3https://github.com/moses-smt/mosesdecoder
4https://github.com/rsennrich/subword-nmt
5https://nlp.stanford.edu/software/segmenter.shtml
6https://nlp.ist.i.kyoto-u.ac.jp
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dictionary built-up. The size of BPE shared dic-
tionary is 40000. Non-printing characters are re-
moved and all punctuations are normalized. The
source-target length ratio and the total length are
limited within 1 and 250 respectively. We sam-
ple 1% of training data as validation set and test
sets are directly downloaded.The size of training,
validation and test set are 4528k/3k/3k respectively.

Manual Tuning is performed for hyper-
parameters tuning on the basis of test BLEU score
for the best checkpoint. We use Adam optimizer
with β1 = 0.9, β2 = 0.98, and ϵ = 10−8. We
use label smoothing of value ϵls = 0.1 and weight
decay of 0.0001. By default, the attention-dropout
is set to 0.2, dropout is set to 0.3, except that we set
the attention-dropout to 0.1 in ASPEC and set the
attention-dropout and dropout both to 0.1 in WMT.
We take the inverse square root learning rate sched-
uler and set the peak learning rate as 1e-3 with 4000
steps linear warm-up and 1e-7 initial learning rate.
The scaling parameter τ is set to 10. The model has
a hidden dimension of 512, 6 encoder layers and
6 decoder layers with 4 attention heads per layer,
except for WMT dataset with 8 attention heads per
layer. Hidden layer size for FFN is set to 2048 in
ASPEC and 1024 in other datasets. For IWSLT14
and ASPEC, each update has up to 8192 × 2 ×
1 tokens(max_tokens×gpu_num×num_updates ).
For NC11, each update has up to 8192× 2× 2 to-
kens. We use 8 80G-A100 GPUs from distributed
clusters to train our model on WMT14 dataset with
CUDA version 11.1 and 2 40G-A100 GPUs for
other datasets with CUDA version 11.2.

datasets Ours Transformer

IWSLT14-De2En 80min 70min
IWSLT14-En2De 80min 80min

NC11-En2De 80min 80min
NC11-De2En 80min 80min
ASPEC-Ch2Ja 12h 12h

WMT14-En2De 9h 8.5h

Table 4: Training time of Different Datasets

Since our incorporation of syntactic information
is based on explicit calculation of syntactic distance
and local attention pattern mask by external syn-
tactic parser, we do not introduce extra parameters
compared with original Transformer model. The
number of parameters is 50M for configuration of
WMT dataset, 99M for ASPEC dataset and 30M

for the other datasets.
The training time of Transformer and our dis-

tance enhanced model are listed as in table 4. Ba-
sically, our model costs about the same time for
training as Transformer.
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