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Abstract

Discriminative pre-trained language models,
such as ELECTRA, have achieved promising
performances in a variety of general tasks.
However, these generic pre-trained models
struggle to capture domain-specific knowledge
of domain-related tasks. In this work, we
propose a novel domain-adaptation method
for ELECTRA, which can dynamically select
domain-specific tokens and guide the discrimi-
nator to emphasize them, without introducing
new training parameters. We show that by re-
weighting the losses of domain-specific tokens,
ELECTRA can be effectively adapted to dif-
ferent domains. The experimental results in
both computer science and biomedical domains
show that the proposed method can achieve
state-of-the-art results on the domain-related
tasks.

1 Introduction

Pre-trained language models (Devlin et al., 2019;
Clark et al., 2020) have demonstrated significant
capabilities in various NLP tasks. While most lan-
guage models follow the BERT-style (Devlin et al.,
2019) to predict original tokens of the masked po-
sitions, ELECTRA (Clark et al., 2020) trains a
discriminator to predict whether each token in a
corrupted input is replaced by a generator. BERT
mainly learns from the masked subset of input to-
kens, but ELECTRA could predict all input tokens,
significantly improving sample efficiency and lead-
ing to strong results on general tasks (Chi et al.,
2022; He et al., 2021; Meng et al., 2021; Xu et al.,
2020; Meng et al., 2022; Bajaj et al., 2022; Shen
et al., 2021). Domain adaptation of BERT-style
models has been proved to consistently improve on
the domain-related tasks (Gururangan et al., 2020;
Lee et al., 2020; Yao et al., 2021). However, the
adaptation of ELECTRA is still under-explored.
This leads us to investigate domain adaptation of

∗Contribution during internship at Microsoft

Generator Snapshot of 
Generator

hypotension occurred 
with standing

changes occurred 
with standing

[MASK] occurred [MASK] standing

Re-weight 
discriminator loss

ℒ!"#$%&'()$' ×（1 + %）

Figure 1: Workflow of the snapshot-guided method,
where Lhypotension is the discriminator loss of the token
“hypotension” and β is the augmented loss weight.

ELECTRA, so as to optimize its performance on
the domain-related tasks.

Recent research suggests that domain-specific
tokens and texts can benefit the pre-trained models
in certain domains and tasks (Gururangan et al.,
2020; Lee et al., 2020; Gu et al., 2020). Specifically,
Gu et al. (2020) proposed a task-specific method
to selectively mask domain-specific tokens in pre-
training. However, the pre-trained model for one
task could be a deterrent for the other tasks in the
same domain. On the other hand, task-agnostic
methods (Gururangan et al., 2020; Lee et al., 2020;
Miolo et al., 2021) are more widely applicable—
the model trained once on the domain can be used
for multiple downstream tasks in the domain.

In this paper, we propose SnapshOt-guided
Domain Adaptation (SODA) for ELECTRA,
which is also agnostic to downstream tasks.
SODA leverages the difference between the gen-
erator at the current training step and the one at
an earlier step to imitate the domain shift during
adaption, which is then employed to dynamically
find the domain-specific tokens. During continued

2226



pre-training on the domain, the ELECTRA genera-
tor of an earlier training step is named as the snap-
shot. As shown in Figure 1, given the masked input,
SODA finds the domain-specific token “hypoten-
sion” by comparing the generator to the snapshot,
and then emphasizes the domain-specific token by
re-weighting the discriminator loss. In model im-
plementation, the snapshot is loaded from a saved
checkpoint of an earlier step, thus no additional
training parameters are introduced. Furthermore,
SODA employs different snapshots during differ-
ent training intervals, to dynamically select the to-
kens specific to the domain shift at hand (van der
Wees et al., 2017).

We conduct experiments in both computer sci-
ence and biomedical domains, SODA achieves
state-of-the-art results on the domain-related tasks.
We also evaluate different methods to select
domain-specific tokens, to demonstrate the effec-
tiveness of our method.

In summary, our contributions include:
• To the best of our knowledge, we are the first

to explore domain adaptation for ELECTRA.
• We propose a snapshot-guided domain adap-

tation method to dynamically emphasize
domain-specific tokens.

• According to the experimental results in two
specific domains, SODA achieves promising
performances on four domain-related tasks.

2 Background: ELECTRA

ELECTRA (Clark et al., 2020) trains a discrimi-
nator to predict whether each token in a corrupted
input is replaced by a generator.

Given an original sequence x = [x1, x2, ..., xn],
15% of the tokens are randomly replaced with
[MASK] symbols. For each masked position i,
the generator predicts a distribution pG (x|hi), and
then samples one token xRi ∼ pG (x|hi) to replace
the original token xi, resulting in a corrupted se-
quence xR. Here {hi}ni=1 are the contextualized
representations generated by the Transformer.

Given the corrupted sequence xR, the discrimi-
nator D is trained to distinguish each replaced to-
ken xRi against the original token xi via the binary
classification loss:

LD = E
(
−

∑

xR
i =xi

log pD
(
xRi = xi|hi

)

−
∑

xR
i ̸=xi

log
(
1− pD

(
xRi = xi|hi

)))
,

(1)

where pD
(
xRi = xi|hi

)
= sigmoid

(
w⊤hi

)
and

w is a learnable weight vector.

3 Method

Selecting Domain-specific Tokens. Grangier
and Iter (2022); Moore and Lewis (2010) revealed
that the domain-specific data can be selected ac-
cording to the prediction differences between an
in-domain model and an out-of-domain model.
SODA selects domain-specific tokens with the
help of a snapshot, where the snapshot represents
the generator of an earlier step. We assume that
the snapshot with fewer training steps is more “out-
of-domain” than the current generator. Based on
this assumption, we could select domain-specific
tokens by comparing predictions of the current gen-
erator with those of the snapshot.

Specifically, for each masked position i in the
input, the generator G and the snapshot S each
predict a distribution. Suppose their predictions
are pG (x|hi) and pS (x|hi) respectively, then we
make a binary decision bG,S(xi) of whether token
xi is domain-specific as follows:

bG,S (xi) =

{
1 xGi ̸= xSi
0 xGi = xSi ,

(2)

where xGi and xSi are sampled from the vocabulary
V by:

xGi = argmax
x∈V

pG (x|hi)

xSi = argmax
x∈V

pS (x|hi) .
(3)

Emphasizing Domain-specific Tokens. Given
the domain-specific tokens, we propose to em-
phasize them by assigning them a higher loss
weight in the discriminator loss. Suppose ωi is
the loss weight assigned to the token xi, then we
set ωi = 1+ β if xi is domain-specific, and ωi = 1
otherwise, where β is the augmented loss weight.
Based on Eq. 2, the loss weight of xi is formulated
as:

ωi = 1 + bG,S (xi)β. (4)

The re-weighted loss function based on Eq. 1 is

LSODA
D = E

(
−

∑

xR
i =xi

ωi log pD
(
xRi = xi|hi

)

−
∑

xR
i ̸=xi

ωi log
(
1− pD

(
xRi = xi|hi

)))
.

(5)
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Method Computer Science Biomedical

ACL-ARC SCIERC Average ChemProt RCT Average
BERT as source model

BERT 70.963.00 81.130.80 76.05 84.760.29 87.640.14 86.20
DAPT 74.412.80 81.691.29 78.05 85.090.52 87.810.04 86.45
AdaLM♢ 73.61 81.91 77.76 - - -

RoBERTa as source model
RoBERTa♡ 63.005.80 77.301.90 70.15 81.901.00 87.200.10 84.55
DAPT♡ 75.402.50 80.801.50 78.10 84.200.20 87.600.10 85.90

ELECTRA as source model
ELECTRA 73.933.70 81.950.42 77.94 83.990.44 87.840.07 85.92
From Scratch 70.052.76 79.080.85 74.57 85.080.80 87.760.08 86.42
DAPT 76.572.00 82.670.76 79.62 85.930.28 88.020.07 86.98
DAPT with Random G 74.074.27 82.971.59 78.52 86.140.19 87.980.04 87.06
SODA 77.132.14 83.100.84 80.12 86.200.61 88.080.09 87.14

Table 1: Results of different model-based strategies on the domain-related tasks (♢ from (Yao et al., 2021) and
♡ from (Gururangan et al., 2020)). We report averages across five random seeds, with standard deviations as
subscripts.

Training Framework. SODA continues to pre-
train ELECTRA on the domain corpus using dif-
ferent snapshots for each training interval. Assume
the minimum gap between the snapshot and the
current generator is W, and the snapshot interval is
T. Our strategy is to utilize the snapshot taken at
step nT to assist token selection during the interval
from W+ nT to W+ (n+ 1)T.

For example, at training step W+nT, the gener-
ator at step nT is loaded as the snapshot to assist to-
ken selection. As the training progresses, we expect
that the selection should prefer the tokens that are
more specific to the current domain shift (van der
Wees et al., 2017). Therefore, at the beginning of
the next interval (step W+ (n+ 1)T), we replace
the snapshot with the generator at the step (n+1)T
which is closer to the current generator.

4 Experiment

4.1 Datasets
We use the same pre-training corpora as
AdaLM (Yao et al., 2021); the computer science
corpus is collected from arXiv1 and the biomedi-
cal corpus is the latest collection from PubMed2.
For the downstream tasks, we use ACL-ARC (Ju-
rgens et al., 2018) and SCIERC (Luan et al.,
2018) for computer science, chemProt (Kringelum
et al., 2016) and RCT (Dernoncourt and Lee, 2017)
for biomedical domain. Specifications of these
datasets are shown in Appendix A.

1https://www.kaggle.com/Cornell-University/arxiv
2https://pubmed.ncbi.nlm.nih.gov/

4.2 Implementation

We use ELECTRABASE (Clark et al., 2020) as
our source model. Our pre-training code is built
upon Fairseq3. Detailed experimental settings of
the continued pre-training are listed in Appendix B.
For snapshot settings, the minimum gap W is 30K
steps. We set the interval T as 35K steps for com-
puter science domain and 20K steps for biomedical
domain. Analysis of the snapshot interval is in
Section 4.4. In the re-weighed loss function, the
augmented loss weight β is 0.2 for computer sci-
ence domain and 0.5 for biomedical domain. We
recommend using β values less than 1 because a
too high β value will negatively impact the learning
of other tokens.

Our fine-tuning code is based on AdaLM4.
We run hyperparameter search to find the best-
performing models. The search settings and results
are listed in Appendix B.

4.3 Main results

We present the downstream tasks results of differ-
ent competitive methods in Table 1. For each of the
source models, the first row is the general model
without continued pre-training, and DAPT (Guru-
rangan et al., 2020) is the vanilla continued pre-
training on the domain corpus.

SODA achieves the best performances across
the tasks in both domains when ELECTRA is the
source model, demonstrating the effectiveness of

3https://github.com/facebookresearch/fairseq
4https://github.com/microsoft/unilm/tree/master/adalm
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Computer Science Biomedical

ACL-ARC SCIERC ChemProt RCT
DAPT 76.572.00 82.670.76 85.930.28 88.020.07
Rand 76.281.74 82.291.39 86.030.36 88.010.03
Know 76.332.56 81.620.81 86.160.25 88.030.06
Freq 76.732.00 82.590.68 86.060.28 88.020.08
SODA 77.132.14 83.100.84 86.200.61 88.080.09

Table 2: Results of different token selection methods.
We report averages across five random seeds, with stan-
dard deviations as subscripts.

emphasizing domain-specific tokens in the contin-
ued pre-training. ELECTRA outperforms BERT-
and RoBERTa-based methods through vanilla con-
tinued pre-training, which suggests the great poten-
tial of ELECTRA as the source model for domain
adaptation. We also observe that whether to ran-
domly initialize the generator has an insignificant
impact on the continued pre-training of ELECTRA:
DAPT with Random G performs better than DAPT
in biomedical domain but worse than DAPT in
computer science domain.

4.4 Ablation analysis
Token Selection Method. We compare our
snapshot-guided token selection method with three
alternatives: (1) Rand: randomly select 10% in-
put tokens; (2) Know: select the tokens that are
wrongly predicted by generator, because such to-
kens contain more knowledge (Wang et al., 2022);
(3) Freq: select the tokens with high frequency
differences between the target and source domain
corpus, where we use Wikipedia corpus (Zhu et al.,
2015) to represent the source domain. As shown in
Table 2, SODA consistently outperforms all the al-
ternatives. This suggests that dynamics is a crucial
factor for token selection in domain adaptation.

Snapshot Interval Length. We test the snapshot
interval lengths T at 70K, 35K, 20K steps to ana-
lyze the effects. As shown in Figure 2, compared
to 70K, a relatively shorter interval (i.e., 35K for
computer science and 20K for biomedical domain)
can improve performance, because the shorter in-
terval makes it possible to change the snapshots
more frequently, so as to dynamically select the
tokens that are more specific to the domain shift at
hand.

We also record ratios of the selected tokens of all
masked tokens in each interval. Figure 3 shows the
records of the best-performing models in computer
science and biomedical domains, of which the in-

86.98

87.02

87.06

87.10

87.14

Biomedical

Av
er
ag
e

70K 35K 20K

78.60

79.00

79.40

79.80

80.20

Computer Science

Av
er

ag
e 

70K 35K 20K
Computer Science Biomedical

86.98

87.02

87.06

87.10

87.14

Biomedical

Av
er
ag
e

70K 35K 20K

79.62

DAPT
86.98

DAPT

Snapshot Interval

Figure 2: Experiments with different snapshot intervals.
The Y-axis represents the average score of tasks in the
domain.
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Figure 3: Changes of the selected ratio, the Y-axis rep-
resents the ratio of the selected tokens in all masked
tokens.

terval lengths are 35K and 20K respectively. The
snapshot is loaded for the first time at step 30K,
at which the ratio jumps from 0 to a high value.
After that, the ratio drops every T steps until the
end (95K). This is intuitive because as the model
converges, there should be fewer domain-specific
tokens to learn.

Domain Specificity. In this paper, we use do-
main specificity to summarize the prediction differ-
ences due to different pre-training steps for do-
main adaptation. We also analyze the domain-
specificity from the perspective of token frequency:
first, make a domain-specific token set of the to-
kens with high frequency differences between the
target and source (Wikipedia (Zhu et al., 2015))
domains. Second, measure specificity by calculat-
ing the ratio of the tokens belonging to the specific
token set. Specificity of the predicted tokens by
the snapshot and generator, and specificity of the
selected tokens by SODA are as in Table 3.

From the results, specificity of the generator is
higher than that of the snapshot, and most tokens
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Computer Science Biomedical
Snapshot 0.45 0.39
Generator 0.69 0.66
Selected tokens 0.71 0.73

Table 3: Specificity of the predicted tokens by the snap-
shot and generator, and specificity of the selected tokens
by SODA.

selected by SODA belong to the domain-specific
token set. We also filter out the tokens not in the
specific token set to check their impacts. From
the results, filtering out such tokens leads to per-
formance degradation, with an average score drop
of 0.50 in the computer domain and 0.14 in the
biomedical domain, proving that SODA could dy-
namically select tokens that are beneficial to con-
tinued pre-training, even if some of them are not
specific in terms of token frequency.

4.5 Case study

We conduct case study to analyze the tokens se-
lected at different training steps. Table 4 shows
the results. We observe that the snapshot could
help find the domain-specific tokens such as “pa-
per” and “sorting” in the computer science domain
and “inhibit” and “chemical” in the biomedical do-
main. Compared with the tokens selected at step
50K, the tokens at step 85K are fewer and more
domain-specific, which proves SODA could dy-
namically select the domain-specific tokens as the
training progresses.

5 Conclusion

In this paper, we design a snapshot-guided domain
adaptation method for ELECTRA to capture the
token-level domain knowledge by comparing gen-
erators of different training steps. Our method
can dynamically select and emphasize the domain-
specific tokens, which can benefit domain adapta-
tion. Experimental results show that our method
achieves state-of-the-art results without introduc-
ing additional training parameters.
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Input: The paper is divided into two parts.
Given a graph with vertices, sorting number. . .

50K

G50K: The network is divided into two parts.
Given a graph with vertices, sorting number. . .
S0K: The model is divided into two parts.
Given a basis with vertices, such number. . .

85K

G85K: The network is divided into two parts.
Given a graph with vertices, sorting number. . .
S35K: The problem is divided into two parts.
Given a way with vertices, sorting number. . .

Input: Transport was inhibit ##ed by an applied
chemical gradient. . . clinical investigation. . .

50K

G50K: Transport was inhibit ##ed by an applied
proton gradient. . . clinical investigation. . .
S0K: Transport was affect ##ed by an applied
electrical force. . . good investigation. . .

85K

G85K: Transport was inhibit ##ed by an applied
chemical gradient. . . clinical investigation. . .
S35K: Transport was inhibit ##ed by an applied
proton gradient. . . clinical investigation. . .

Table 4: The tokens selected at training step 50K/85K
(shown in red) of the computer science and biomedical
domains. Input is the original text, where tokens in
boldface are masked. S and G stand for the snapshot
and the generator respectively, with the trained steps as
subscripts.

Limitations

We only conduct experiments on ELECTRA, future
research may experiment on BERT-style models
by replacing the discriminator with a BERT-style
model to effectively adapt the model. Besides, we
set the loss weights for the domain-specific tokens
as static values, future research may explore dy-
namic loss weights to improve the performance.
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Appendices

A Downstream Tasks Details

Dom. Task Train Dev. Test Classes

CS
ACL-ARC 1688 114 139 6
SCIERC 3219 455 974 7

Bio.
ChemProt 4169 2427 3469 13
RCT 18040 30212 30135 5

Table 5: Specifications of the fine-tuning task datasets in
computer science (CS) and biomedical (Bio.) domains.

B Pre-training and Fine-tuning Settings

Computing Infrastructure 8 A100 GPUs
Runtime 10.5h
Number of Parameters 1.7e8
FLOPs of Snapshot 5.4e17
FLOPs of ELECTRA 1.66e19

Hyperparameter Assignment
Number of steps 95K
Batch size 512
Maximum sequence length 512
Maximum learning rate 1e-4 (CS) or 2e-4 (Bio.)
Learning rate optimizer Adam
Adam epsilon 1e-6
Adam beta weights 0.9, 0.98
Learning rate scheduler warmup linear
Weight decay 0.01
Warmup steps 10K
Learning rate decay linear

Table 6: Pre-training hyperparameters on computer sci-
ence (CS) and biomedical (Bio.) domains.

Search Method Uniform sampling
Criterion macro-F1 (CS) or micro-F1 (Bio.)
Search Trails 16
LR bound 1e-5∼1e-4
WR bound 0.01∼0.15

Dom. Task Epochs LR WR Batch Size

CS
ACL-ARC 30 7e-5 0.15 32
SCIERC 30 9e-5 0.1 32

Bio.
ChemProt 30 7e-5 0.01 32
RCT 4 2e-5 0.01 128

Table 7: Fine-tuning hyperparameter search settings for
learning rate (LR) and warmup ratio (WR) for all the
comparative methods, and configurations for the best-
performing SODA, the weight decay is 0.1.
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