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Abstract

Quantitative data is important in many do-
mains. Information extraction methods draw
structured data from documents. However, the
extraction of quantities and their contexts has
received little attention in the history of infor-
mation extraction. In this review, an overview
of prior work on measurement extraction is pre-
sented. We describe different approaches to
measurement extraction and outline the chal-
lenges posed by this task. The review con-
cludes with an outline of potential future re-
search. Research strains in measurement ex-
traction tend to be isolated and lack a common
terminology. Improvements in numerical rea-
soning, more extensive datasets, and the con-
sideration of wider contexts may lead to signifi-
cant improvements in measurement extraction.

1 Introduction

Humanity is accumulating more and more knowl-
edge at an ever faster pace. Cast into large amounts
of documents, relevant knowledge is no longer
graspable by a few individuals. Information ex-
traction (IE) is a task in natural language pro-
cessing (NLP) and assists in managing the amount
of information hidden in documents by automati-
cally extracting and organizing information from
semi- and unstructured sources (e.g., populating
a database from information conveyed in natural
language). In the early 1990s, the Message Un-
derstanding Conferences (MUC) fostered research
in IE trough challenges in template filling (Grish-
man, 2019). Later MUCs and the Automatic Con-
tent Extraction (ACE) program split IE into sev-
eral sub-challenges, helping named entity recog-
nition (NER), relation extraction, event extraction
and coreference resolution to emerge as individual
research subjects (Grishman and Sundheim, 1996;
Doddington et al., 2004; Weischedel and Boschee,
2018; Grishman, 2019). Today, IE is applied in
many domains, such as biomedicine (Wang et al.,

Figure 1: Measurement extraction is the extraction of
quantities and related information.

2018), chemistry and materials science (Kononova
et al., 2021). However, measurements and their
contexts have received little attention in the history
of IE (Hundman and Mattmann, 2017; Kang and
Kayaalp, 2013; Alonso and Sellam, 2018; Lamm
et al., 2018a; Roy et al., 2015).

Numbers form a cornerstone of our society, on
which science, engineering, trade and much more is
built. Numerical reasoning is therefore an essential,
albeit underexplored, problem in NLP (Thawani
et al., 2021b), the addressing of which seems to
even enhance the general literacy of language mod-
els (Thawani et al., 2021a). The task of measure-
ment extraction is to identify quantities and related
information in texts, tables and figures. In this re-
view, we focus on measurement extraction from
text (cf. Figure 1). When specifying measure-
ments, the transition from natural to mathemat-
ical language is seamless, making measurement
extraction a special task within NLP. The variety
of relevant problems to which measurement extrac-
tion is applied further highlights its importance.
Research on measurement extraction is focused
on highly quantitative domains, in particular clini-
cal, biomedical, chemistry, and materials research.
Accordingly, most systems are applied to scien-
tific publications and clinical documents. Within
the medical domain, more frequent applications
include the extraction of eligibility criteria from
clinical trials (Hao et al., 2016; Kang et al., 2017),
the extraction of lab test information (Kang and

2191



Kayaalp, 2013; Liu et al., 2017), the extraction
of measurements from narrative radiology reports
(Sevenster et al., 2013, 2015b,a; Bozkurt et al.,
2019) and the extraction of the left ventricular ejec-
tion fractions of hearts (Kim et al., 2017c; Garvin
et al., 2012; Kim et al., 2013; Meystre et al., 2017).
Within chemistry and materials science, informa-
tion on experiments (Hawizy et al., 2011; Deus
et al., 2017; Friedrich et al., 2020), materials syn-
thesis (Kim et al., 2017b; Kononova et al., 2019)
and nanoscience (Xiao et al., 2013; Jones et al.,
2014; Dieb et al., 2012, 2015, 2014) is extracted.
Beyond that, application domains include patent
analysis (Agatonovic et al., 2008; Aras et al., 2014),
automated chart generation (Lamm et al., 2018b),
fact-checking (Vlachos and Riedel, 2015), earth
science (Hundman and Mattmann, 2017; Petersen
et al., 2021), engineering design (Opasjumruskit
et al., 2019a; Hsiao et al., 2020), information re-
trieval (Maiya et al., 2015; Ho et al., 2020; Li et al.,
2021), automated compliance checking (Zhang and
El-Gohary, 2016), and more. However, research
strains tend to be isolated within these domains
(see Figure B1), indicating a lack of an overview.

In this paper, we define measurement extraction
(Section 2) and survey prior research (Section 3).
Subsequently, we highlight special challenges (Sec-
tion 4) and provide several recommendations for
future research (Section 5). Section 6 describes the
limitations of this review. To the best of our knowl-
edge, the present review is the first that focuses on
measurement extraction.

2 Task definition

The language around measurement extraction lacks
standardization (see Section 5). Likewise, the
scope of measurement extraction is not well-
defined. We define it as follows:

Quantity Extraction is the task of identifying
quantities. A quantity (e.g., ‘1 kg’) is composed
of a numeric value and, if applicable, a unit. The
meaning of a quantity is often altered by modifiers
such as ‘average’, ‘approx.’ or ‘above’. Modifiers
adjacent to numeric values are sometimes included
in the quantity spans (Friedrich et al., 2020; Harper
et al., 2021). A quantity might be given as a range,
enumeration, with an uncertainty specification, or
all together. Numeric values might be expressed as
numeric numbers (e.g., ‘27’), alphabetic numbers
(e.g., ‘twenty-seven’), combinations (e.g., ‘2 mil-
lion’), imprecise quantities (e.g., ‘a couple’; cf.

Hanauer et al., 2019) or constants (e.g., ‘room tem-
perature’ or ‘speed of light’). Within a quantity
span, the unit might be identified. Units are of-
ten abbreviated according to their symbol (e.g., ‘J’
for Joule). Note that nouns, such as in ‘9 fam-
ily houses’, are sometimes considered units (Roy
et al., 2015). Quantities can be normalized to base
SI units. As some unit symbols are ambiguous,
the kind of quantity might be identified first (e.g.,
length for ‘1 µm’). Furthermore, the notions of
change (e.g., ‘decreased’) might be extracted for
quantities that are given relative to another quan-
tity (e.g., in “the GDP decreased by 4.6 %”). The
boundary between quantities and equations is fuzzy.
Hence, formulaic expressions are considered to dif-
fering extents.

Measurement Extraction adds to the identifica-
tion of quantities by extracting their related mea-
sured properties and measured entities (cf. Fig-
ure 1). A measured property might be given im-
plicitly. Measurement extraction can be generic
or simplified by only targeting specific measured
entities and properties (e.g., if particle sizes should
be identified, only length units must be consid-
ered). Furthermore, additional qualifiers such as
constraints, measuring methods or references that
qualify a quantitative statement might be extracted.
Measured entities, properties, units and relevant
context might be disambiguated against a knowl-
edge base (that is, entity linking).

Related tasks that involve numerical reasoning
besides measurement extraction from other modali-
ties are, amongst others, product attribute value ex-
traction (Dong et al., 2020), equation parsing (Roy
et al., 2016), solving math word problems (Zhang
et al., 2020a), quantity entailment (Roy et al.,
2015), number sense disambiguation (Chen et al.,
2018), numeral attachment (Chen et al., 2019a),
and masked measurement prediction (Spokoyny
et al., 2022) (see Appendix A). The interested
reader is directed to the surveys of Thawani et al.
(2021b) and Yoshida and Kita (2021), which pro-
vide extensive overviews of various NLP tasks in-
volving numeracy.

3 Prior work on measurement extraction

Various systems for measurement extraction have
been proposed. The first research efforts focusing
on measurement extraction date back to at least
2006 (Moriceau, 2006). We identified 80 publi-
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cations describing one or more systems for mea-
surement extraction. This section summarizes their
approaches according to the following subtasks:

• Pre-processing (Section 3.1)

• Identification of quantities, measured entities,
properties and qualifiers (Section 3.2)

• Identification of units (Section 3.3)

• Quantity modifier extraction (Section 3.4)

• Relation extraction (Section 3.5)

• Post-processing (Section 3.6)

Tabular overviews of the methods (Table B2 and
B3) and scopes of the systems (Table B1), as well
as a citation graph of the corresponding publica-
tions (Figure B1) are given in the Appendix B.

Varying scopes. Most systems do not cover all
subtasks and the respective concept types of the
general pipeline depicted above, which fails to re-
flect the large variations in their scopes. Only a few
systems cover the identification of measured enti-
ties, properties, further context, and their relations
in addition to quantity extraction (see Table B1).
Many of those are submissions to MeasEval (task 8
at SemEval 2021; Harper et al., 2021). Frequently,
the other systems do not distinguish between mea-
sured entities and properties. The rule-based (sym-
bolic) systems tend to have a narrower scope than
the learning-based systems; that is, instead of iden-
tifying measurement concepts generically, only par-
ticular concepts, which are specific to the domain
and use case, are identified. Covering only a small
set of concepts facilitates normalization and entity
linking. In fact, with symbolic approaches, this in-
formation is often already evident from the match-
ing patterns. Many systems do not approach the
extraction of quantity modifiers and qualifiers. All
systems that approach quantity modifier extraction
only consider a small set of modifier classes. Only
a few systems consider the notions of change (e.g.,

‘increased’) for relative quantities (Moriceau, 2006;
Roy et al., 2015; Lamm et al., 2018b). In MeasE-
val, phrases that indicate change are regarded as
qualifiers.1 Only a few articles explicitly state that
co-references (Mykowiecka et al., 2009; Roy et al.,
2015; Ho et al., 2022) and negations are considered.
(Mykowiecka et al., 2009; Yim et al., 2016; Zhang
and El-Gohary, 2016; Kang et al., 2017).

1https://github.com/harperco/MeasEval/tree/
main/annotationGuidelines

3.1 Pre-processing

Pre-processing regularly involves optical character
recognition, PDF parsing, correcting misspellings
and parsing errors, document section and sentence
boundary detection, filtering, text normalization,
and tokenization. Normalization can include the
conversion of alphabetic numbers into numeric
numbers and the unification of punctuation, spe-
cial symbols, digit delimiters, and interchangeably-
used characters (Hao et al., 2016; Kang et al., 2017;
Swain and Cole, 2016). Karia et al. (2021) found
replacing all numerals with ‘0’ to increase quantity
identification performance. Madaan et al. (2016)
exclude sentences that match change words from
a gazetteer. Custom tokenization rules can im-
prove the performance, as quantities often include
special symbols. For example, numeric values are
prevented from being split at their decimal sepa-
rator (Zhang and El-Gohary, 2016; Lathiff et al.,
2021) and separated from adjacent mathematical
symbols (Lathiff et al., 2021) and units (Swain and
Cole, 2016; Foppiano et al., 2019b,b; Therien et al.,
2021). Nevertheless, the subword tokenization of
BERT-like encoders will split numbers that are out
of vocabulary into multiple tokens (Thawani et al.,
2021b; Therien et al., 2021). Therefore, Loukas
et al. (2022) detect numbers during pre-processing
using regular expressions and experimented with
replacing numbers by a [NUM] pseudo-token and
special tokens mimicking their shape [X.XX]. Both
approaches yield improvements, with the latter be-
ing superior to the former. This is possibly be-
cause using [NUM] tokens prohibits the models
from considering the magnitude when numerical
reasoning is required. Finally, some applications
require special pre-processing routines such as pa-
tient anonymization (Mykowiecka et al., 2009).

3.2 Identification of quantities, measured
entities, properties, and qualifiers

Quantity extraction is typically framed as a span
identification task, as quantities are rarely given
implicitly and the unit is in most cases adjacent
to the value. In fact, NER tag sets have long in-
cluded percentages, monetary expressions (Chin-
chor, 1998; Grishman and Sundheim, 1995) and
quantities (Weischedel et al., 2013). Also, the ex-
traction of measured entities, properties, qualifiers,
and units are often framed as span identification
tasks.
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3.2.1 Rule-based approaches
Whereas machine learning systems learn to solve a
task based on exemplary data, rule-based systems
employ the knowledge of domain experts who de-
fine patterns and rules to solve a task. As such,
rule-based approaches are predominated by combi-
nations of rules, patterns and keyword-, gazetteer-,
ontology- or dictionary-matching2. Patterns are
defined using regular expressions, finite-state au-
tomata or grammars in frameworks like GATE
(Cunningham et al., 2013). Besides string match-
ing, patterns often involve syntactic rules based
on part-of-speech (POS) tags. The extraction of
quantities and units is sometimes supported by ex-
isting quantity, unit or temporal expression taggers
(Liu et al., 2017; Madaan et al., 2016). Analo-
gously, existing NER taggers can support the ex-
traction of measured entities (Hawizy et al., 2011;
Madaan et al., 2016). Ontology-based approaches
for measurement extraction construct gazetteers
from ontology terms rather than to extensively ex-
ploit their semantic structure and rules (Xiao et al.,
2013; Jones et al., 2014). Combining many of the
aforementioned approaches, Maiya et al. (2015),
for example, use multiple regular expressions to
extract numeric values, including the sign, uncer-
tainty and powers of ten. Units are identified using
a unit ontology and rules that support multiples and
sub-multiples, as well as derived units. Measured
properties are extracted using syntactic rules on
POS tags. The POS tag set is extended by an addi-
tional tag for mathematical symbols of equivalence
and one or two character symbols in order to match,
i.a., Greek letters.

3.2.2 Learning-based approaches
For systems targeting scientific publications and di-
verse web sources, there is a trend towards machine
learning systems. In clinical systems, this trend is
not observable. It might be reasoned that medical
applications require higher levels of traceability
and favor precision over recall. Tailored rule-based
systems can indeed yield very high levels of pre-
cision (cf. Table 6 in Liu et al., 2021b). Patterson
et al. (2017), for example, extract heart function
measurements from echocardiogram reports using
rules and dictionary-matching and reach an average
F1 score and precision of 86.4 and 96.2, respec-
tively. Certain components of rule-based systems

2For brevity, in the following the term dictionary-matching
is sometimes used regardless of the sources of external knowl-
edge (i.e., gazetteers, ontologies, or dictionaries).

can be easily applied to machine learning systems
making a hybrid approach a potentially effective
option (Kang and Kayaalp, 2013). Many of the
learning-based systems discussed below are in fact
hybrid systems relying on rules for one or more
subtasks.

Sequence labeling and extractive question an-
swering. Learning-based approaches mostly cast
the span identification tasks as sequence labeling
problems using an IOB tagging scheme. In ac-
cordance with IE in general, Conditional Random
Field (CRF) models (Lafferty et al., 2001), Bidirec-
tional Long Short-Term Memory (BiLSTM) mod-
els (Huang et al., 2015), and transformer-based
models (Vaswani et al., 2017), in particular BERT-
based models (Devlin et al., 2019), have been fre-
quently applied. A popular CRF-based system is
Grobid-quantities (Foppiano et al., 2019b), which
identifies and normalizes physical measurements
in scientific and technical documents. It uses mul-
tiple CRF taggers: the first model identifies quan-
tity spans and distinguishes them by their type
(viz. value, list, base, range, least, and most).
Subsequently, the units and values sub-models ap-
ply more fine-grained labels. According to the
most recent evaluation, the quantity, unit and value
model (now using BiLSTM+CRF) yield F1 scores
of 88.10, 98.45 and 98.57, respectively3. The CRF-
only setup achieves almost equal results. The ex-
traction of measured entities and properties (which
are not distinguished) is an experimental feature.
Grobid-quantities was used in several other works,
which extended the system to detect different mea-
surement contexts (Hundman and Mattmann, 2017;
Foppiano et al., 2019a; Petersen et al., 2021). For
BiLSTM and transformer models, a CRF layer
is often stacked on top, the benefits of which can-
not be formulated in general terms (Schweter and
Akbik, 2021; Loukas et al., 2022). However, some
empirical evidence suggests that, when using sub-
word tokenization, adding a CRF layer improves
the performance in measurement extraction-related
sequence labeling tasks (Panapitiya et al., 2021;
Loukas et al., 2022). Varying scopes and evalu-
ation criteria render a quantitative comparison of
different approaches across multiple publications
inadequate. However, ablation studies of individual
publications suggest that BiLSTM and transformer
models outperform CRF models in measurement

3https://github.com/kermitt2/
grobid-quantities
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extraction (Friedrich et al., 2020; Liu et al., 2021b).
There is inconsistent evidence as to whether BERT-
based models are superior to BiLSTMs in mea-
surement extraction (Friedrich et al., 2020; Loukas
et al., 2022). Often, BERT-based models are only
compared to each other, with different results as to
which is superior (Avram et al., 2021; Panapitiya
et al., 2021; Therien et al., 2021; Karia et al., 2021;
Gangwar et al., 2021).

Most systems using pre-trained transformer mod-
els are submissions to MeasEval, that is, task 8 at
SemEval 2021 (Harper et al., 2021). Within the
given paragraphs, all quantities and units had to
be identified. Subsequently, quantities had to be
classified into different modifiers4. Hereinafter,
measured entity, property and qualifier spans had
to be identified. Finally, relations between the iden-
tified spans had to be extracted5. Sharing the same
task and evaluation allows for a fair comparison of
the systems: all submissions accompanied by a sys-
tem paper are learning systems, most of which cast
quantity span identification as a sequence labeling
problem and approach it with a transformer-based
model. In addition, many systems utilize a cas-
caded approach, in which the quantity is identified
in a first stage and the other spans and relations are
extracted in a second stage. Davletov et al. (2021)
cast quantity span extraction as a sequence label-
ing problem and fine-tune a LUKE NER model
(Yamada et al., 2020) on it. A RoBERTa-based
model (Liu et al., 2019) extracts all other spans in
a question answering style multi-task learning set-
ting without question prefixes. They use a simple
data augmentation approach and surround quantity
spans with special tokens. Likely limited by the
small training set, the system ranked first yield-
ing an overlap F1 score of 51.9 (averaged over all
subtasks). Resembling the inter-annotator agree-
ments, the results are significantly better for quan-
tity (86.1 F1) and unit identification (72.2 F1) and
much worse for qualifier identification (16.3 F1).
Similarly, CONNER (Cao et al., 2021) (ranking
2nd) uses a transformer-based cascaded approach.
Quantities are identified with an ensemble of a
RoBERTa encoder with a PointerNet (Vinyals et al.,
2017) and a CRF layer on top, respectively. For
each identified quantity, relation-specific taggers
(Wei et al., 2020), which extend the same architec-

4viz., approx., count, range, list, mean, median, tolerance,
mean with standard deviation, mean with tolerance, and range
with tolerance

5viz. has quantity, has property and qualifies

ture, identify the other spans. Gangwar et al. (2021)
(3rd) and Karia et al. (2021) (6th) formalize quan-
tity span extraction as a sequence labeling prob-
lem for which they employ a SciBERT+CRF (Belt-
agy et al., 2019) and BioBERT (Lee et al., 2020)
model, respectively. For each identified quantity,
the related measured entities, properties and quali-
fiers are identified in consecutive sequence labeling
passes by surrounding already predicted spans with
special symbols using multiple SciBERT+CRF
models and a BioBERT model in a multi-task learn-
ing setting, respectively. Avram et al. (2021) (5th)
identifies quantities using a RoBERTa+CRF model
for IOB sequence labeling and extracts related mea-
sured entities, properties and qualifiers by treating
span extraction as multi-turn question answering
(Li et al., 2019) using the same pre-trained lan-
guage model and relation-specific question tem-
plates. Lathiff et al. (2021) (8th) classify token
pairs from dependency tree sub-graphs between
tokens tagged as cardinal number (CD tag) and
other nodes with a deep graph convolution neu-
ral network (Zhang and Chen, 2018). Diverging
from the cascaded approach, Therien et al. (2021)
(4th) extract all span types in a single sequence
labeling pass. Although this has the advantage of
joint inference across all spans, only one class is
assigned to each token, yet the dataset includes in-
stances where, for example, a quantity is a qualifier
of another quantity (Harper et al., 2021). As to-
kens are not distinguished in being inside or at the
beginning of a span, adjacent tokens of the same
class are merged into a single annotation. Relation
extraction is performed based on a distance-based
heuristic. Few-shot learning using GPT-3 (Brown
et al., 2020) turned out to be an unsuccessful ap-
proach (Kohler and Jr, 2021).

Some systems diverge from casting measured
property extraction as another span identification
problem, but classify the quantity (or given text)
into its corresponding measured property (Bakalov
et al., 2011; Gruss et al., 2018; Foppiano et al.,
2019a) or extract relational triples in which the
measured property is a relation between the mea-
sured entity and quantity (Hoffmann et al., 2010;
Vlachos and Riedel, 2015; Madaan et al., 2016;
Saha et al., 2017; Hsiao et al., 2020). Ning et al.
(2022) extract the measured property, as well as the
spatial and temporal scope of a quantitative state-
ment in a sequence-to-sequence approach using the
T5 language model (Raffel et al., 2020).
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Extraction of relational triples. For systems ex-
tracting relational triples, it is common to use ap-
proximate matching when comparing quantities
against seed facts or entries in a knowledge base
(Hoffmann et al., 2010; Vlachos and Riedel, 2015;
Madaan et al., 2016; Saha et al., 2017). LUCHS
(Hoffmann et al., 2010) extracts triples using many
relation-specific CRF extractors for both numerical
and textual attributes. The relation-specific extrac-
tors are distantly supervised by matching facts from
Wikipedia infoboxes with sentences from the arti-
cles they are embedded in. In this way, the system
scales to a large number of relations. However, this
approach does not generalize well beyond the sim-
plified setting of matching facts within the same
article (Vlachos and Riedel, 2015; Madaan et al.,
2016). Hence, Vlachos and Riedel (2015) propose
an algorithm for extracting numerical triples (e.g.,
<Germany, Population, 83 000 000>) from general
text based on facts in a knowledge base. Similarly,
Madaan et al. (2016) describe a rule-based system
(NumberRule) and a distantly supervised learning-
based system (NumberTron) for the extraction of
numerical, geopolitical relations. Having a much
higher recall and a slightly higher precision than
NumberRule, NumberTron achieves an F1 score of
63.78, which is slightly above the F1 score of 61
achieved by LUCHS.

Unlike the aforementioned systems, Saha et al.
(2017) approaches measurement extraction in an
Open IE setting. Hundman and Mattmann (2017)
argue that the recall of standard Open IE systems
is lower for measurement extraction because such
systems are “centered on verb-mediated proposi-
tions and measurement context occurs in a variety
of other forms such as adverbials”.

Template filling and event extraction. Other
systems cast measurement extraction as a template
filling (Mykowiecka et al., 2009; Zhang and El-
Gohary, 2016; Lamm et al., 2018b; Friedrich et al.,
2020) or event extraction task (Intxaurrondo et al.,
2015). Friedrich et al. (2020) identify entity men-
tions (that is, material, quantity, device and exper-
iment) and slot-fillers in two consecutive IOB se-
quence labeling passes. Intxaurrondo et al. (2015)
frame the extraction of information about earth-
quakes from tweets as an event extraction task. Nu-
merical event arguments such as magnitude, depth
or deaths are considered. Feature aggregation to
better handle ambiguity, as well as approximate
matching to cope with inaccuracies when using

distant supervision significantly improves perfor-
mance. Lamm et al. (2018a) define “A Seman-
tic Role-Labeling Schema for Quantitative Facts”,
which is more generally applicable than the afore-
mentioned templates, and apply it in the identifica-
tion of analogous and distinct roles of quantitative
facts (Lamm et al., 2018b). The task imposes sev-
eral constraints whose enforcement by solving an
integer linear program improves performance.

3.3 Unit span identification

Unit spans, which are typically located within
the respective quantity spans, are detected us-
ing character-level BiLSTM (Avram et al., 2021;
Gangwar et al., 2021; Mehta et al., 2021; Liu
et al., 2021b), character-level CRF (Foppiano et al.,
2019b) or transformer models (Davletov et al.,
2021; Liu et al., 2021a; Kohler and Jr, 2021; Panapi-
tiya et al., 2021). Presumably, character-level meth-
ods are more prevalent, because they are better
able to represent units given as combinations of
one-character-long symbols (e.g., ‘k’, ‘m’, ‘/’, ‘s’)
and unit spans are often identified considering only
the relatively short quantity strings. Many other
systems identify units using rules and dictionaries.
In MeasEval, a simple rule-based approach ranked
third in unit span identification (Karia et al., 2021).
In fact, despite solving other subtasks with machine
learning methods, many systems leverage rules and
dictionaries to identify units (Lathiff et al., 2021;
Cao et al., 2021; Therien et al., 2021).

3.4 Quantity modifier extraction

Quantity modifier extraction is also approached via
rules and keywords (Roy et al., 2015; Liu et al.,
2021b; Karia et al., 2021), CRF (Foppiano et al.,
2019b), char-level BiLSTM (Avram et al., 2021)
and BERT-based models (Gangwar et al., 2021;
Therien et al., 2021; Lathiff et al., 2021; Liu et al.,
2021a; Cao et al., 2021; Davletov et al., 2021). In
MeasEval, quantity modifier extraction is framed as
a quantity span classification. Interestingly, CON-
NER (Cao et al., 2021) predicts the quantity modi-
fier based on only the quantity span, as additional
context proved to be detrimental. For rule-based
systems, the unit span and type of quantity is often
inherent to the pattern that matches the quantity
(Xiao et al., 2013; Jones et al., 2014; Patterson
et al., 2017).
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3.5 Relation extraction
For both rule- and learning-based systems, relation
extraction or the grouping of identified spans is
often already inherent to the approaches for span
identification. It is either implicit in the span ex-
traction patterns, relation-specific tagging, or to
modeling measurement extraction as a template
filling task. Relation-specific tagging anchored at
already identified quantities appears advantageous
in MeasEval compared to the more traditional ap-
proach of performing span identification for all
concept types, followed by a pairwise relation clas-
sification (Harper et al., 2021). Since they are rela-
tively easy to identify, most sequential approaches
start with identifying quantities. In such a multi-
stage approach, errors in the first stage propagate
to all other subtasks, rendering them sensitive to
quantity span extraction (Avram et al., 2021; Karia
et al., 2021). However, when adopting relation-
specific tagging, span identification and relation
extraction are jointly performed for the remaining
concepts, which shortens the error cascade. For ex-
ample, when answering the relation-specific ques-
tion “Which property is quantified by 150 W?” in
an extractive question answering pass, the respec-
tive span and its relation to the quantity are jointly
extracted. In addition, fusing the input texts with
predictions of earlier stages provides additional
valuable information in later stages. A sequential
approach starting with quantity span identification
also proves valuable for rule-based systems; Zhang
and El-Gohary (2016) compared a sequential ap-
proach with a concurrent one for the rule-based ex-
traction of quantitative information and found the
sequential approach to both require fewer patterns
and yield better results. In LaTeX-Numeric (Mehta
et al., 2021), the B and I labels for quantities are
attribute-specific (e.g., B-WEIGHT). Hence, quan-
tities are identified and assigned to a measured
property in a single step. Especially in rule-based
systems, it is common to relate concepts to each
other via proximity heuristics, that is, to assume
all concepts within a sentence, paragraph, charac-
ter window or those that are closest to each other
belong together. Other systems rely on depen-
dency tree analyses (Nanba et al., 2007; Madaan
et al., 2016; Kim et al., 2017b,a; Kononova et al.,
2019), whilst pairwise classification on the identi-
fied spans (Yim et al., 2016; Kang et al., 2017) is
rarely performed.

3.6 Post-processing

In post-processing, candidates might be normal-
ized and filtered according to different criteria. Ill-
formed intervals, quantities outside a viable range,
quantities possessing inappropriate units or that do
not contain digits and strings like ‘two’ or ‘teen’
are dropped (Tetko et al., 2016; Hao et al., 2016;
Wu et al., 2018; Liu et al., 2021a). Based on viable
ranges, missing units can be inferred (Cai et al.,
2019). Implicitly stated values might be replaced
by known numeric values (e.g., ‘room temperature’
→ 21 ◦C; Roy et al., 2015; Kuniyoshi et al., 2021),
absolute values might be calculated for relative val-
ues (Mykowiecka et al., 2009) and non-scientific
units might be replaced with WordNet synsets (Roy
et al., 2015). Furthermore, task-specific constraints
might be enforced (Sevenster et al., 2015b; Lamm
et al., 2018b). Depending on the use case, addi-
tional tasks and post-processing steps might be
performed, such as the pairing of measurements
with prior measurements (Sevenster et al., 2013,
2015b,a), determining whether a lab test is nor-
mal or abnormal (Jiang et al., 2020) or calculating
balanced chemical equations from the extracted
quantitative data (Kononova et al., 2019).

4 Challenges

Quantities are easy to identify in text, both numbers
and units, which facilitates anchoring semantic role
labeling schemata (Lamm et al., 2018a). In addi-
tion, many numerical relations are accompanied
by only a few keywords (Madaan et al., 2016) and
values of numerical attributes “can be estimated
even if they are not explicitly mentioned in the
text” (Davidov and Rappoport, 2010). Nonetheless,
measurement extraction poses various challenges:

Measurements are diversely expressed. Quan-
tities can be expressed in a myriad of different sur-
face forms, yet alone by different levels of rounding
and combinations of units. In addition, different
writing styles for decimal and thousands separa-
tors exist. Also, complex patterns involving mul-
tiple quantities such as “group 1, 2 and 3 were
given 4, 5 and 6 µg

mL , respectively” are common
(Deus et al., 2017) and measurement extraction
might include parsing formulaic expressions (e.g.,

“t(29) = −1.85, p = 0.074”; Epp et al., 2021).

Modifiers have a great impact on meaning. A
subtle change of its modifiers can dramatically alter
the meaning of a quantity (e.g., consider the differ-
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ence in ‘above’ instead of ‘well below’ 1.5 ◦C).
Thus, quantity modifiers must be correctly ex-
tracted. The same applies to change words like

‘increase’ (Madaan et al., 2016). Additionally, mod-
ifiers concerning measured entities or properties
can subtly alter the scope of a quantitative state-
ment. There is a huge semantic difference in ‘India’
and ‘rural India’, or ‘cell efficiency’ and ‘system
efficiency’ (Madaan et al., 2016). Even the seman-
tics of bare numerals are still being analyzed in the
linguistic literature (Bylinina and Nouwen, 2020).

Qualifiers are difficult to identify. Quantities
are precise and, as such, are only valid under spe-
cific constraints. Thus, the constraints for which
the quantity holds true must also be precisely de-
fined. However, even humans struggle to agree on
what is deemed a qualifier; in Harper et al. (2021)
the inter-annotator agreement for identifying qual-
ifiers was worse than for all other concept types.
In addition, relevant context is often distant. IE is
often performed sentence by sentence. Yet, the con-
text given by a single sentence is often much too
narrow for understanding measurement contexts
(Weikum, 2020).

The document genres that measurement extrac-
tion is applied to are often written in domain-
specific and complex languages. Clinical reports
and notes, for example, include various quantita-
tive information like ages, laboratory test results,
dates, severity, odds ratios, and more (Hanauer
et al., 2019). However, clinical reports pose vari-
ous challenges for NLP, i.a., misspellings, tempo-
rality, hedge phrases and negation (Hanauer et al.,
2019; Nadkarni et al., 2011; Edinger et al., 2012;
Mykowiecka et al., 2009). Some abbreviations and
acronyms are ambiguous or equal stopwords (e.g.,
‘OR’ for operating room; Hanauer et al., 2019).
Medical texts are often written in a complex and
informal manner that is sometimes even confus-
ing for humans (Patterson et al., 2017), rendering
POS tags and syntactic features less effective (Liu
et al., 2021b). Other document genres like product
data sheets make heavy use of tables and technical
drawings to communicate information (Opasjum-
ruskit et al., 2019a). Additionally, many systems
start from PDF documents as input. Parsing PDF
documents into machine-readable formats creates
noise. The situation is worse for measurement ex-
traction, as mathematical formatting is likely to
be lost and special characters are inconsistently

converted (e.g., ‘103m2’ → ‘103m2’ and ‘e2015’
→ ‘V2015’) (Maiya et al., 2015; Foppiano et al.,
2019a). In the context of measurement extraction,
the wrongly parsed tokens are often only one or
a few characters long, which makes their correct
recovery more difficult. For example, it is harder
to recover ‘e’ from ‘V’ than ‘photovoltaic’ from

‘photo2oltaic’.

Common sense and domain knowledge is re-
quired for understanding quantitative statements
when information is omitted due to brevity, when
dealing with constants like ‘speed of light’, to in-
fer whether an interval includes or excludes its
endpoints, or in cases of quantities given relative
to a standard (e.g., “1.15 times the upper limit
of normal”; Hao et al., 2016). Implicit assump-
tions and world knowledge are common when de-
scribing physical processes (Kuehne and Forbus,
2004). Also, gapping and unit ellipsis are common
phenomena (Lamm et al., 2018b). Furthermore,
measurements must be distinguished from irrele-
vant quantifications such as “he had two priorities”
(Alonso and Sellam, 2018) and from references to
chemical entities (Hawizy et al., 2011), figures, ta-
bles and cited literature (Agatonovic et al., 2008;
Aras et al., 2014).

Numeracy has received little attention in NLP
until recently (Thawani et al., 2021b). Yet, the
relevance of numerical reasoning for natural lan-
guage understanding is evident from a simple ex-
ample: “The battery of the hybrid Toyota Prius
lasts well over 100,000 miles.” (Weikum, 2020).
Considering the order of magnitude, most humans
will infer that this statement refers to the battery
lifetime and not the driving range possible with
a single charge. For language models to do so, a
good representation of numbers is required. How-
ever, common models in NLP, such as BERT, suffer
from sub-optimal number representations (Wallace
et al., 2019; Zhang et al., 2020b; Thawani et al.,
2021a). This limits them in tasks that require nu-
merical reasoning and possibly even beyond (Dua
et al., 2019; Thawani et al., 2021a).

Weaker distant supervision. Distant supervi-
sion is based on a simple heuristic: If a sentence
includes a pair of entities for which a relation in
a knowledge base exists, there is a high chance
that this sentence expresses that relation (Mintz
et al., 2009). “However, since quantities can ap-
pear in far more contexts than typical entities, dis-
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tantly supervised training data becomes much more
noisy”, especially “for small whole numbers that
appear unit-less or with popular units” (Madaan
et al., 2016). Furthermore, many quantities change
over time (e.g., consider the rising CO2 concentra-
tion in the atmosphere). In addition, even the same
quantity in different documents might be expressed
with different numbers of decimal places or with
different units. Thus, normalization and partial
matching (that is, approximate rather than exact
matching) is required (Madaan et al., 2016; Vla-
chos and Riedel, 2015; Intxaurrondo et al., 2015).
This also illustrates why keyword-search is inappro-
priate for quantities (Agatonovic et al., 2008) and
why it is difficult to generate numerical answers in
question answering (Liu et al., 2016).

5 A vision for the future

Having arranged and summarized the prior work
in measurement extraction, we now provide sev-
eral recommendations that might positively shape
future research. These go beyond addressing the
aforementioned challenges, which must inevitably
be dealt with, in that they are concrete recommen-
dations for action.

A common terminology is what language
around quantitative information extraction is lack-
ing. Although standardization efforts exist (Hao
et al., 2017, 2018), different terms are used for
the same concept and the same terms are used for
different concepts. For example, the terms measure-
ment entity (Yim et al., 2016), numeric property
(Aras et al., 2014), and value (Friedrich et al., 2020)
are all used for referring to a quantity. Adding to
the confusion, in Lamm et al. (2018a) a quantity
denotes a measured property. Aiming to end this
confusion, we propose to adopt the terminology of
MeasEval, which defines the terms quantity, mea-
sured entity, measured property, quantity modifiers,
and qualifiers (Harper et al., 2021). In line with
the unit ontology QUDT (Ray, 2011), a quantity is
composed of a numeric value and a unit.

More extensive datasets that cover quantities
as well as their contexts could greatly improve re-
sults in measurement extraction. The dataset used
in MeasEval, for example, consists of only 428
paragraphs (Harper et al., 2021), limiting the per-
formance of the learning-based methods (Lathiff
et al., 2021). More generic annotations could ren-
der datasets for measurement extraction more sus-

tainable. We argue that the reuse of datasets is
hindered by incompatible annotations. For exam-
ple, the sets of quantity modifier classes in the
datasets of MeasEval and Grobid-quantities do not
match. Also, the sets of modifiers are selective,
not considering all occurring modifiers and com-
binations. Therefore, we propose annotating the
quantity spans with pseudo-mathematical represen-
tations that can be parsed into classes depending on
the task or directly used for sequence-to-sequence
approaches.

Improving the numerical reasoning capabil-
ities of the models may well improve the per-
formance of measurement extraction systems.
Character-level embeddings, for example, outper-
form word- and subword-level methods (Wallace
et al., 2019). Altering the surface form of all num-
bers during pre-processing can improve model per-
formance (Wallace et al., 2019; Zhang et al., 2020b;
Nogueira et al., 2021). Furthermore, extending
language models with special representations of
numbers improves numerical reasoning capabilities
(Thawani et al., 2021a). Andor et al. (2019) pro-
pose the extension of language models with a set of
executable programs for symbolic reasoning. Still,
recent advances in numerical reasoning have been
barely considered in the literature on measurement
extraction.

Document understanding remains an ambitious
objective. Systems for measurement extraction that
consider document context and incorporate infor-
mation from other modalities are rare (Swain and
Cole, 2016; Mavračić et al., 2021; Hsiao et al.,
2020). In fact, many systems operate on a sentence-
level or truncate the processed text after a fixed
token limit. We argue that both context from other
modalities (e.g., joint inference from text and ta-
bles) and distant context should be considered.

6 Limitations

Relevant literature has been iteratively identified
using different academic search engines, foremost
Semantic Scholar6, and by tracing the references
in already identified publications. Publications dis-
closing systems whose scope is too narrow or offset,
that target figures or tables, or that lack detailed in-
formation are dropped. Related work that was not
deemed relevant is listed in Appendix A. That said,
many systems extract quantities, amongst other

6https://www.semanticscholar.org/
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concepts, but do not elaborate on it. It is likely
that additional systems exist that identify quantities
and their contexts, but which are not included in
this review. It was decided against a quantitative
assessment of the systems’ performance, as both
their scopes and evaluations differ from each other,
making a fair comparison difficult.
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Horák, Ivan Kopeček, and Karel Pala, editors, Text,
Speech and Dialogue, volume 8655, pages 101–107.
Springer International Publishing, Cham.

Vinh Thinh Ho, Yusra Ibrahim, Koninika Pal, Klaus
Berberich, and Gerhard Weikum. 2019. Qsearch:
Answering Quantity Queries from Text. In The Se-
mantic Web – ISWC 2019, Lecture Notes in Com-
puter Science, pages 237–257, Cham. Springer Inter-
national Publishing.

Vinh Thinh Ho, Koninika Pal, Niko Kleer, Klaus
Berberich, and Gerhard Weikum. 2020. Entities with
Quantities: Extraction, Search, and Ranking. In Pro-
ceedings of the 13th International Conference on Web
Search and Data Mining, pages 833–836, New York,
NY, USA. Association for Computing Machinery.

Vinh Thinh Ho, Daria Stepanova, Dragan Milchevski,
Jannik Strötgen, and Gerhard Weikum. 2022. En-
hancing Knowledge Bases with Quantity Facts. In
Proceedings of the ACM Web Conference 2022,
WWW ’22, pages 893–901, New York, NY, USA.
Association for Computing Machinery.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S. Weld. 2011. Knowledge-
Based Weak Supervision for Information Extraction
of Overlapping Relations. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
541–550, Portland, Oregon, USA. Association for
Computational Linguistics.

Raphael Hoffmann, Congle Zhang, and Daniel S. Weld.
2010. Learning 5000 Relational Extractors. In Pro-
ceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 286–295,
Uppsala, Sweden. Association for Computational
Linguistics.

Luke Hsiao, Sen Wu, Nicholas Chiang, Christopher Ré,
and Philip Levis. 2020. Creating Hardware Compo-
nent Knowledge Bases with Training Data Genera-
tion and Multi-task Learning. ACM Transactions on
Embedded Computing Systems, 19(6):42:1–42:26.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional LSTM-CRF Models for Sequence Tagging.

Kyle Hundman and Chris A. Mattmann. 2017. Mea-
surement Context Extraction from Text: Discovering
Opportunities and Gaps in Earth Science. CoRR.

Ander Intxaurrondo, Eneko Agirre, Oier Lopez de La-
calle, and Mihai Surdeanu. 2015. Diamonds in the
Rough: Event Extraction from Imperfect Microblog
Data. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 641–650, Denver, Colorado. Association
for Computational Linguistics.

Zach Jensen, Edward Kim, Soonhyoung Kwon, Terry
Z. H. Gani, Yuriy Román-Leshkov, Manuel Moliner,
Avelino Corma, and Elsa Olivetti. 2019. A Machine
Learning Approach to Zeolite Synthesis Enabled by
Automatic Literature Data Extraction. ACS Central
Science, 5(5):892–899.

Kun Jiang, Tao Yang, Chunyan Wu, Luming Chen,
Longfei Mao, Yongyou Wu, Lizong Deng, and
Taijiao Jiang. 2020. LATTE: A knowledge-based
method to normalize various expressions of labora-
tory test results in free text of Chinese electronic
health records. Journal of Biomedical Informatics,
102:103372.

David E. Jones, Sean Igo, John Hurdle, and Julio C.
Facelli. 2014. Automatic Extraction of Nanoparti-
cle Properties Using Natural Language Processing:
NanoSifter an Application to Acquire PAMAM Den-
drimer Properties. PLOS ONE, 9(1):e83932.

Tian Kang, Shaodian Zhang, Youlan Tang, Gregory W
Hruby, Alexander Rusanov, Noémie Elhadad, and
Chunhua Weng. 2017. EliIE: An open-source infor-
mation extraction system for clinical trial eligibility
criteria. Journal of the American Medical Informat-
ics Association, 24(6):1062–1071.

Yanna Shen Kang and Mehmet Kayaalp. 2013. Extract-
ing laboratory test information from biomedical text.
Journal of Pathology Informatics, 4(1):23.

Neel Karia, Ayush Kaushal, and Faraaz Mallick. 2021.
KGP at SemEval-2021 Task 8: Leveraging Multi-
Staged Language Models for Extracting Measure-
ments, their Attributes and Relations. In Proceed-
ings of the 15th International Workshop on Semantic
Evaluation (SemEval-2021), pages 387–396, Online.
Association for Computational Linguistics.

Edward Kim, Kevin Huang, Adam Saunders, Andrew
McCallum, Gerbrand Ceder, and Elsa Olivetti. 2017a.
Materials Synthesis Insights from Scientific Liter-
ature via Text Extraction and Machine Learning.
Chemistry of Materials, 29(21):9436–9444.

2203

https://doi.org/10.18653/v1/2021.semeval-1.38
https://doi.org/10.18653/v1/2021.semeval-1.38
https://doi.org/10.18653/v1/2021.semeval-1.38
https://doi.org/10.1186/1758-2946-3-17
https://doi.org/10.1186/1758-2946-3-17
https://doi.org/10.1007/978-3-319-10816-2_13
https://doi.org/10.1007/978-3-319-10816-2_13
https://doi.org/10.1007/978-3-319-10816-2_13
https://doi.org/10.1007/978-3-319-10816-2_13
https://doi.org/10.1007/978-3-030-30793-6_14
https://doi.org/10.1007/978-3-030-30793-6_14
https://doi.org/10.1145/3485447.3511932
https://doi.org/10.1145/3485447.3511932
https://doi.org/10.1145/3391906
https://doi.org/10.1145/3391906
https://doi.org/10.1145/3391906
https://doi.org/10.48550/arXiv.1508.01991
https://doi.org/10.48550/arXiv.1508.01991
https://doi.org/10.48550/arXiv.1710.04312
https://doi.org/10.48550/arXiv.1710.04312
https://doi.org/10.48550/arXiv.1710.04312
https://doi.org/10.3115/v1/N15-1066
https://doi.org/10.3115/v1/N15-1066
https://doi.org/10.3115/v1/N15-1066
https://doi.org/10.1021/acscentsci.9b00193
https://doi.org/10.1021/acscentsci.9b00193
https://doi.org/10.1021/acscentsci.9b00193
https://doi.org/10.1016/j.jbi.2019.103372
https://doi.org/10.1016/j.jbi.2019.103372
https://doi.org/10.1016/j.jbi.2019.103372
https://doi.org/10.1016/j.jbi.2019.103372
https://doi.org/10.1371/journal.pone.0083932
https://doi.org/10.1371/journal.pone.0083932
https://doi.org/10.1371/journal.pone.0083932
https://doi.org/10.1371/journal.pone.0083932
https://doi.org/10.1093/jamia/ocx019
https://doi.org/10.1093/jamia/ocx019
https://doi.org/10.1093/jamia/ocx019
https://doi.org/10.4103/2153-3539.117450
https://doi.org/10.4103/2153-3539.117450
https://doi.org/10.18653/v1/2021.semeval-1.46
https://doi.org/10.18653/v1/2021.semeval-1.46
https://doi.org/10.18653/v1/2021.semeval-1.46
https://doi.org/10.1021/acs.chemmater.7b03500
https://doi.org/10.1021/acs.chemmater.7b03500


Edward Kim, Kevin Huang, Alex Tomala, Sara
Matthews, Emma Strubell, Adam Saunders, An-
drew McCallum, and Elsa Olivetti. 2017b. Machine-
learned and codified synthesis parameters of oxide
materials. Scientific Data, 4(1):170127.

Edward Kim, Zach Jensen, Alexander van Grootel,
Kevin Huang, Matthew Staib, Sheshera Mysore,
Haw-Shiuan Chang, Emma Strubell, Andrew Mc-
Callum, Stefanie Jegelka, and Elsa Olivetti. 2020. In-
organic Materials Synthesis Planning with Literature-
Trained Neural Networks. Journal of Chemical In-
formation and Modeling, 60(3):1194–1201.

Youngjun Kim, Jennifer Garvin, Julia Heavirland, and
Stéphane M. Meystre. 2013. Improving heart failure
information extraction by domain adaptation. Studies
in Health Technology and Informatics, 192:185–189.

Youngjun Kim, Jennifer H. Garvin, Mary K. Gold-
stein, Tammy S. Hwang, Andrew Redd, Dan Bolton,
Paul A. Heidenreich, and Stéphane M. Meystre.
2017c. Extraction of left ventricular ejection fraction
information from various types of clinical reports.
Journal of Biomedical Informatics, 67:42–48.

Curt Kohler and Ron Daniel Jr. 2021. What’s in a
Measurement? Using GPT-3 on SemEval 2021 Task
8 - MeasEval. CoRR, page 11.

Olga Kononova, Tanjin He, Haoyan Huo, Amalie Tre-
wartha, Elsa A. Olivetti, and Gerbrand Ceder. 2021.
Opportunities and challenges of text mining in mate-
rials research. iScience, 24(3):102155.

Olga Kononova, Haoyan Huo, Tanjin He, Ziqin Rong,
Tiago Botari, Wenhao Sun, Vahe Tshitoyan, and Ger-
brand Ceder. 2019. Text-mined dataset of inorganic
materials synthesis recipes. Scientific Data, 6(1):203.

Taku Kudo and Yuji Matsumoto. 2003. Fast Methods
for Kernel-Based Text Analysis. In Proceedings of
the 41st Annual Meeting of the Association for Com-
putational Linguistics, pages 24–31, Sapporo, Japan.
Association for Computational Linguistics.

Sven E Kuehne and Kenneth D Forbus. 2004. Capturing
QP-relevant Information from Natural Language Text.
In Proceedings of the 18th International Qualitative
Reasoning Workshop, page 8.

Fusataka Kuniyoshi, Jun Ozawa, and Makoto Miwa.
2021. Analyzing Research Trends in Inorganic Mate-
rials Literature Using NLP. In Machine Learning and
Knowledge Discovery in Databases. Applied Data
Science Track: European Conference, ECML PKDD
2021, Bilbao, Spain, September 13–17, 2021, Pro-
ceedings, Part V, pages 319–334, Berlin, Heidelberg.
Springer-Verlag.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Se-
quence Data. Departmental Papers (CIS).

Matthew Lamm, Arun Chaganty, Dan Jurafsky, Christo-
pher D Manning, and Percy Liang. 2018a. QSRL:
A Semantic Role-Labeling Schema for Quantitative
Facts. page 8.

Matthew Lamm, Arun Chaganty, Christopher D. Man-
ning, Dan Jurafsky, and Percy Liang. 2018b. Textual
Analogy Parsing: What’s Shared and What’s Com-
pared among Analogous Facts. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 82–92, Brussels,
Belgium. Association for Computational Linguistics.

Nihatha Lathiff, Pavel PK Khloponin, and Sabine
Bergler. 2021. CLaC-np at SemEval-2021 Task
8: Dependency DGCNN. In Proceedings of the
15th International Workshop on Semantic Evaluation
(SemEval-2021), pages 404–409, Online. Association
for Computational Linguistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. BioBERT: A pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Tongliang Li, Lei Fang, Jian-Guang Lou, Zhoujun Li,
and Dongmei Zhang. 2021. AnaSearch: Extract,
Retrieve and Visualize Structured Results from Un-
structured Text for Analytical Queries. In Proceed-
ings of the 14th ACM International Conference on
Web Search and Data Mining, WSDM ’21, pages
906–909, New York, NY, USA. Association for Com-
puting Machinery.

Xiaoya Li, Fan Yin, Zijun Sun, Xiayu Li, Arianna Yuan,
Duo Chai, Mingxin Zhou, and Jiwei Li. 2019. Entity-
Relation Extraction as Multi-Turn Question Answer-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
1340–1350, Florence, Italy. Association for Compu-
tational Linguistics.

Patrick Liu, Niveditha Iyer, Erik Rozi, and Ethan A.
Chi. 2021a. Stanford MLab at SemEval-2021 Task
8: 48 Hours Is All You Need. In Proceedings of
the 15th International Workshop on Semantic Eval-
uation (SemEval-2021), pages 1245–1248, Online.
Association for Computational Linguistics.

Shanshan Liu, Wenjie Nie, Dongfa Gao, Hao Yang,
Jun Yan, and Tianyong Hao. 2021b. Clinical quan-
titative information recognition and entity-quantity
association from Chinese electronic medical records.
International Journal of Machine Learning and Cy-
bernetics, 12(1):117–130.

Shanshan Liu, Xiaoyi Pan, Boyu Chen, Dongfa Gao,
and Tianyong Hao. 2018. An Automated Approach
for Clinical Quantitative Information Extraction from
Chinese Electronic Medical Records. In Health Infor-
mation Science, Lecture Notes in Computer Science,
pages 98–109, Cham. Springer International Publish-
ing.

2204

https://doi.org/10.1038/sdata.2017.127
https://doi.org/10.1038/sdata.2017.127
https://doi.org/10.1038/sdata.2017.127
https://doi.org/10.1021/acs.jcim.9b00995
https://doi.org/10.1021/acs.jcim.9b00995
https://doi.org/10.1021/acs.jcim.9b00995
https://doi.org/10.1016/j.jbi.2017.01.017
https://doi.org/10.1016/j.jbi.2017.01.017
https://doi.org/10.48550/arXiv.2106.14720
https://doi.org/10.48550/arXiv.2106.14720
https://doi.org/10.48550/arXiv.2106.14720
https://doi.org/10.1016/j.isci.2021.102155
https://doi.org/10.1016/j.isci.2021.102155
https://doi.org/10.1038/s41597-019-0224-1
https://doi.org/10.1038/s41597-019-0224-1
https://doi.org/10.3115/1075096.1075100
https://doi.org/10.3115/1075096.1075100
https://doi.org/10.1007/978-3-030-86517-7_20
https://doi.org/10.1007/978-3-030-86517-7_20
https://doi.org/10.18653/v1/D18-1008
https://doi.org/10.18653/v1/D18-1008
https://doi.org/10.18653/v1/D18-1008
https://doi.org/10.18653/v1/2021.semeval-1.48
https://doi.org/10.18653/v1/2021.semeval-1.48
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1145/3437963.3441694
https://doi.org/10.1145/3437963.3441694
https://doi.org/10.1145/3437963.3441694
https://doi.org/10.18653/v1/P19-1129
https://doi.org/10.18653/v1/P19-1129
https://doi.org/10.18653/v1/P19-1129
https://doi.org/10.18653/v1/2021.semeval-1.177
https://doi.org/10.18653/v1/2021.semeval-1.177
https://doi.org/10.1007/s13042-020-01160-0
https://doi.org/10.1007/s13042-020-01160-0
https://doi.org/10.1007/s13042-020-01160-0
https://doi.org/10.1007/978-3-030-01078-2_9
https://doi.org/10.1007/978-3-030-01078-2_9
https://doi.org/10.1007/978-3-030-01078-2_9


Sijia Liu, Liwei Wang, Donna Ihrke, Vipin Chaudhary,
Cui Tao, Chunhua Weng, and Hongfang Liu. 2017.
Correlating Lab Test Results in Clinical Notes with
Structured Lab Data: A Case Study in HbA1c and
Glucose. AMIA Summits on Translational Science
Proceedings, 2017:221–228.

Yaqing Liu, Lidong Wang, Rong Chen, Yingjie Song,
and Yalin Cai. 2016. A PUT-Based Approach to
Automatically Extracting Quantities and Generating
Final Answers for Numerical Attributes. Entropy,
18(6):235.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach.

Patrice Lopez. 2009. GROBID: Combining Automatic
Bibliographic Data Recognition and Term Extrac-
tion for Scholarship Publications. In Research and
Advanced Technology for Digital Libraries, Lecture
Notes in Computer Science, pages 473–474, Berlin,
Heidelberg. Springer.

Lefteris Loukas, Manos Fergadiotis, Ilias Chalkidis,
Eirini Spyropoulou, Prodromos Malakasiotis, Ion
Androutsopoulos, and Georgios Paliouras. 2022.
FiNER: Financial Numeric Entity Recognition for
XBRL Tagging. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4419–4431,
Dublin, Ireland. Association for Computational Lin-
guistics.

Daniel M. Lowe and Roger A. Sayle. 2015. LeadMine:
A grammar and dictionary driven approach to entity
recognition. Journal of Cheminformatics, 7(1):S5.

Aman Madaan, Ashish Mittal, Mausam, Ganesh Ra-
makrishnan, and Sunita Sarawagi. 2016. Numeri-
cal relation extraction with minimal supervision. In
Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, AAAI’16, pages 2764–2771,
Phoenix, Arizona. AAAI Press.

Arun S. Maiya, Dale Visser, and Andrew Wan. 2015.
Mining Measured Information from Text. In Pro-
ceedings of the 38th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, SIGIR ’15, pages 899–902, New York, NY,
USA. Association for Computing Machinery.
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A Related work that is not considered

Systems whose scope is too narrow or offset are
not considered in this review. The pure identifica-
tion of units is not considered measurement extrac-
tion. Shbita et al. (2019) parses unit strings into a
structured semantic representation using the QUDT
ontology (Ray, 2011) and thereby allows the trans-
formation of (compound) units. Zhou et al. (2021)
perform entity linking of units in text against a
knowledge graph. They also extract numbers but
do not elaborate on it. Furthermore, the identi-
fication and parsing of numerals (e.g., Paulheim,
2017; Chen et al., 2019b) is not considered. Not
all numerals are part of measurements, for exam-
ple, ordinal numbers (e.g.,. ‘Fig. 1’), or nominal
numbers (e.g., postal codes). Pouran Ben Veyseh
et al. (2021) approaches only the relation extraction
subtask of MeasEval and is therefore not consid-
ered. Moreover, systems targeting other modalities
than text are not considered. Subercaze (2017), for
example, extracts measurements from Wikipedia
infoboxes.

Furthermore, systems that, alongside other infor-
mation, extract quantities, but do not elaborate on it,
are not covered. For example, GATE (Cunningham
et al., 2013) has a plugin for tagging measurements,
but further information is missing. Ayadi et al.
(2020) extract information, including quantities,
but without addressing these specifically. Wu and
Marian (2007) aggregate numeric results for web
search queries without sharing details on their IE
system. Quantalyze7 is a product from max.recall
information systems GmbH. It seemed to have poor
recall (Hundman and Mattmann, 2017) and sup-
ported only a small set of units (Aras et al., 2014).
Quantulum8 is a Python library for the extraction
of quantities from text, which is able to perform
unit disambiguation based on Wikipedia and GloVe
vector representations. Other IE systems extract
quantitative information from data sheets but do
not elaborate on it (Barkschat, 2014; Hsiao et al.,
2020). Many systems have been proposed that ex-
tract attribute values from product profile pages,
but do so without specifically discussing numeric
values (Qiu et al., 2015; Zheng et al., 2018; Rezk
et al., 2019; Dong et al., 2020).

Lastly, we did not consider systems that target
related but distinct tasks from measurement extrac-
tion such as the identification of text fragments that

7https://www.quantalyze.com/
8https://github.com/nielstron/quantulum3

contain measurements and their contexts (Alonso
and Sellam, 2018), the extraction of molar ratios of
material compositions (Jensen et al., 2019), the pre-
diction if a numeral in a sentence is a claim or fact
(Chen et al., 2020), the classification of numerals
in financial tweets into different categories (Chen
et al., 2018, 2019c), financial numeral attachment
(Chen et al., 2019a, 2021), extracting relation cardi-
nalities (e.g., the cardinality for <Obama, hasChil-
dren> is two, as he has two children; Mirza et al.,
2017) and generating descriptions of quantities that
put them into relation with other quantities (e.g.,

“about twice the median income for a year” given
a sentence that contains the quantity ‘100 000 $’;
Chaganty and Liang, 2016). Spokoyny et al. (2022)
argue that language models should jointly reason
about numbers and units to learn good represen-
tations of measurements and propose the task of
masked measurement prediction.

B Overview of the considered systems

This review covers 80 publications that disclose
systems for measurement extraction. To provide
an overview, Figure B1 depicts these publications
in a citation graph and Table B1 summarizes the
scopes of the corresponding systems. Table B2 and
B3 give an overview of the methods employed in
the rule-based and machine learning systems, re-
spectively. The system characterizations are based
on the authors’ interpretation of the respective sci-
entific publications accompanying the systems. It
should be noted that we also include systems that
perform measurement extraction but have a differ-
ent primary purpose (e.g., automated compliance
checking). We do not distinguish between hybrid
and machine-learning systems, as rules are often
employed at some stage of a learning-based system
and authors tend to under-report them (Chiticariu
et al., 2013). Furthermore, we do not regard an oth-
erwise rule-based system as a learning-based one
if for a subtask an existing learning-based model is
used without updating its weights (e.g., for POS or
NER tagging). The category of diverse web sources
includes, i.a., newspaper, tweets and Wikipedia ar-
ticles. The category of regulatory documents in-
cludes decision summaries by the U.S. Food and
Drug Administration, construction regulatory doc-
uments and financial business reports.
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Citation graph. Figure B1 arranges the publica-
tions that describe systems for measurement extrac-
tion in a citation graph. We used Grobid9 (Lopez,
2009) to detect the references within PDF files and
queried bibliographic APIs (Semantic Scholar10

and OpenCitations11) for citation data. Subse-
quently, the citation network was created by ag-
gregating the information from all sources. The
code for generating the citation graph is published
under an open-source license at https://github.
com/FZJ-IEK3-VSA/citation-graph-builder.

Scope definitions. In Table B1, the respective
scopes are set to fully fulfilled if potentially all
quantities, measured entities, etc. are considered
by a system or the number of classes is very high.
The scope is deemed partially fulfilled if only a
small set of quantities (e.g., only scalar values),
measured properties (e.g., only left ventricular ejec-
tion fraction) and so forth is considered. Quantity
normalization is considered fully fulfilled if the
identified quantities are converted into a canonical
form (e.g., into the respective SI units). Quantity
normalization is considered partially fulfilled if the
unit and value are obvious from the quantity identi-
fication patterns or if operations, such as creating a
chart, are performed on the quantities. If quantity
extraction is performed via patterns, unit extraction
is assumed to be in scope, as the required informa-
tion is already inherent to the patterns. Similarly,
if only measured entities or properties of a small
set of concepts are considered, entity linking is as-
sumed to be within the scope, as the concepts are
known beforehand.

9https://github.com/kermitt2/grobid
10https://www.semanticscholar.org/product/api
11https://opencitations.net/querying
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Figure B1: A citation graph of publications describing systems for measurement extraction. Each node represents
a publication and the directed edges represent citations to other publications. Note that only citations within the
considered set of publications are shown. The application domains envisioned are represented by the color of the
node. The allocation to subdomains, Grobid-quantities and MeasEval is highlighted by the colored areal clusters.
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Quantity Meas. Entity Meas. Property Qualifier/ Unit Quantity
Extraction Extraction Extraction Context

Extr.
Extr. Modifier

Extr.

A
pp

ro
ac

h

Doc. Genre Paper System Name Sco
pe

Norm
ali

za
tio

n

Sco
pe

Enti
ty

Link
ing

Sco
pe

Enti
ty

Link
ing

Scope Scope Scope

L
ea

rn
in

g-
ba

se
d

Clinical
documents

Liu et al. (2021b)  #  # # # #  G#
Bozkurt et al. (2019) G# G# G# # # # G# G# #

Liu et al. (2018)  # G# # � � #  G#
Kang et al. (2017) EliIE  # G#  # # G# # #
Kim et al. (2017c) TUCP, TUCP+Pred. G# # # # G#  # # #

Meystre et al. (2017) CHIEF ADAHF G# # # # G#  # # #
Yim et al. (2016) G# G# G# # # # G# G# #
Kim et al. (2013) CHIEF EF G# # # # G#  # # #

Diverse web
sources

Ho et al. (2022) QL     G# N/A #  #
Ning et al. (2022) G# # G#  � � G# # #

Li et al. (2021) AnaSearch N/A G#   � � G# N/A G#
Ho et al. (2019, 2020) Qsearch     � #   �

Gruss et al. (2018)   # # G#  # G# G#
Lamm et al. (2018b)  G#  # � �   G#

Saha et al. (2017) BONIE    #t  #t #  G#
Madaan et al. (2016) NumberTron N/A   N/A G#  #  #

Intxaurrondo et al. (2015) G# G# G#  G#  G# G# #
Roy et al. (2015) Illinois Quantifier   # # # # #  G#

Vlachos and Riedel (2015) G# G# G#  G#  # # #
Hoffmann et al. (2010) LUCHS  #  #  # # # #

Reg. doc. Loukas et al. (2022) G# # # # �  # # #

Product
descriptions

Mehta et al. (2021) LaTeX-Numeric G# # # # G# # # G# #
Opasjumruskit et al. (2019a,b) ConTrOn  N/A # # G#  # N/A N/A

Wu et al. (2018); Hsiao et al. (2020) G# # G# # G#  # # #
Bakalov et al. (2011) SCAD G#  N/A N/A G#  # G# #

Scientific
publications

Avram et al. (2021)M UPB  #  #  #   G#
Cao et al. (2021)M CONNER  #  #  #   G#

Davletov et al. (2021)M LIORI  #  #  #   G#
Gangwar et al. (2021)M Counts@IITK  #  #  #   G#

Harper et al. (2021)M MeasEval Baseline 1  #  #  #   #
Karia et al. (2021)M KGP  #  #  #   G#

Kohler and Jr (2021)M GPT-3  #  #  # #  #
Kuniyoshi et al. (2021)   # # G#  G# G# G#

Lathiff et al. (2021)M CLaC-np  #  #  #   G#
Liu et al. (2021a)M Stanford MLab  # # # # # #  G#

Mavračić et al. (2021) ChemDataExtr... 2.0   G# N/A G#  G# G# G#
Panapitiya et al. (2021) G# # G# # G#  # G# #
Petersen et al. (2021)G Geo-Quantities    # # # G#  G#
Therien et al. (2021)M CLaC-BP  #  #  #   G#
Friedrich et al. (2020) G# # G# # G#  G# # #

Foppiano et al. (2019a)G G# # G# N/A G#  #  G#
Foppiano et al. (2019b)G,* Grobid-quantities    a # � � #  G#

Kononova et al. (2019) G# G# N/A N/A G#  G# N/A G#
Hundman and Mattmann (2017)G Marve    # � � �  G#

Kim et al. (2017b,a) G# G# G# N/A G# N/A G# G# #
Swain and Cole (2016) ChemDataExtractor G# G# G# N/A G#  G# G# #

Dieb et al. (2014, 2015) NaDevEx G# # # # G# # G# # #
Dieb et al. (2012) G# # # # G# # G# # #

R
ul

e-
ba

se
d

Clinical
documents

Jiang et al. (2020) LATTE G#  G#  G#  G# G# #
Cai et al. (2019) EXTEND G# G# G#  � � # G# G#

Yehia et al. (2019) G# # G#  � � G# # #
Liu et al. (2017) G# G# G#  � � G# N/A G#

Patterson et al. (2017) EchoExtractor G# G# G#  � � # G# G#
Hao et al. (2016) Valx G#  # # G#  #  G#

Sevenster et al. (2013, 2015b,a) G#  # # # # G# G# #
Garvin et al. (2012) CUIMANDREef G# # # # G#  G# G# G#

Mykowiecka et al. (2009) G# N/A G#  G#  G# G# G#

Diverse web
sources

Madaan et al. (2016) NumberRule N/A #  # #  #  #
Skopinava and Hetsevich (2013)  G# # # # # # G# #

Nanba et al. (2007) G# G# G# # � � G# G#i #
Moriceau (2006) QRISTAL   G# N/A � �   G#

Bekavac et al. (2009) G# # # # # # # G# G#

Patents
Tetko et al. (2016) G#  G# # G#  G# G# G#
Aras et al. (2014)   # # # # #  G#

Agatonovic et al. (2008) G# # # # # # # G# G#
Regulatory
documents

Zhang and El-Gohary (2016) G# # G#  G# N/A G# G# G#
Kang and Kayaalp (2013) G# # G# N/A G# N/A # G# #

Scientific
publications

Schneider et al. (2021) G# # G#  # # # # #
Deus et al. (2017)   # # # # # G# #

Maiya et al. (2015)* MQSearch G# # # #  # #  #
Jones et al. (2014) NanoSifter G# G# # # G#  # G# G#
Xiao et al. (2013) G# G# G#  G#  G# G# G#

Hawizy et al. (2011) ChemicalTagger G# G# G#  G# N/A G# G# #

 = Fully fulfilled;G# = Partially fulfilled;# = Not fulfilled; �(�) = Mixed with subtask on the right (left); N/A = Aspect not evident to the authors;
†Ensemble; *Also targeted at technical documents; MPart of MeasEval; GRelated to Grobid-quantities; aExperimental feature;

tMatching against a KB only during seed fact generation; iThe unit and measured entity are input to the system

Table B1: The scopes of systems for measurement extraction with regard to different subtasks.
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Quantity Meas. Entity Meas. Prop- Qualifier Unit of Quantity Grouping
Extraction Extraction erty Extr. or Context Measurement Modifier or Relation
(QE) (MEE) (MPE) Extraction Extraction Extraction Extraction

C
lin

ic
al

do
cu

m
en

ts

Jiang et al. (2020)
(LATTE)

REGEX Rules
& dict.-matching

Dict.-matching Keywords
& rules

Dict.-matching – Prox. heuristic

Cai et al. (2019)
(EXTEND)

Patterns Patterns
& dict.-matching

Mixed with MEE – Rules/patterns Patterns Prox. heuristic

Yehia et al. (2019) Dict.-matching
of noun phrases

Dict.-matching
of noun phrases

Mixed with MEE Dict.-matching
of noun phrases

– – Prox. heuristic,
sentence clf.,
ontology

Liu et al. (2017) REGEX
& temporal
expression tagger

REGEX
& domain knowl.
from Valx

Mixed with MEE Temporal
expression tagger

Implicit by
rules for QE

REGEX Prox. heuristic

Patterson et al. (2017)
(EchoExtractor)

REGEX & se-
mantic patterns

Dict.-matching,
REGEX

Mixed with MEE – Implicit by
rules for QE

Implicit by
rules for QE

Patterns

Hao et al. (2016)
(Valx)

REGEX – Patterns
& dicts

– Dict.-matching
& rules

– Patterns

Sevenster et al. (2013,
2015b,a)

REGEX – – Max. entropy
classifier

Implicit by
rules for QE

– –

Garvin et al. (2012)
(CUIMANDREef)

Rules/patterns – Rules/patterns Rules/patterns Implicit by
rules for QE

Rules/patterns Rules/patterns

Mykowiecka et al.
(2009)

Rules/patterns
(ontology, dict,
morph.)

Rules/patterns
(ontology, dict,
morph.)

Rules/patterns
(ontology, dict,
morph.)

Rules/patterns
(ontology, dict,
morph.)

Rules/patterns
(ontology, dict,
morph.)

Rules/patterns
(ontology, dict,
morph.)

Rules
& prox. heuristic

D
iv

er
se

w
eb

so
ur

ce
s

Madaan et al. (2016)
(NumberRule)

UnitTaggeru NER tagger Keywords
& filter rules

– UnitTaggeru – Dep. tree analysis
& prox. heuristic

Skopinava and
Hetsevich (2013);

Hetsevich and
Skopinava (2014)

FSA-based
grammar

– – – Inherent to QE
patterns

– Inherent to patterns

Bekavac et al. (2009) REGEX
& lexical resources

– – – REGEX
& lexical resources

REGEX
& lexical resources

Inherent to patterns

Nanba et al. (2007) Patterns Keyword-matching Mixed with MEE Statistical syn-
tactic parser
(CaboCha)

Patterns – Dep. tree analysis
& cue phrases
& prox. heuristic

Moriceau (2006)
(QRISTAL)

Rules/patterns Rules/patterns Mixed with MEE Rules/patterns Rules/patterns Rules/patterns Probably inherent
to patterns
& prox. heuristic

Pa
te

nt
s

Tetko et al. (2016) LeadMinef

(based on FSA
& dict)
& additional dict

LeadMinef

(based on FSA
& dict)

LeadMinef

(based on FSA
& dict)

LeadMinef

(based on FSA
& dict)

Probably based
on LeadMinef

grammars

LeadMinef

(based on FSA
& dict)

ChemicalTagger
& LeadMinef

(both based on
grammars)

Aras et al. (2014) FSA-based
grammar

– – – Probably
dict.-matching

Implicit by
rules for QE

–

Agatonovic et al.
(2008)

FSA-based
grammar

– – – Dict.-matching Implicit by
rules for QE

–

R
eg

ul
at

or
y

do
c. Zhang and El-Gohary

(2016)
Rules/patterns
(ontology, dict,
grammar & POS)

Rules/patterns
(ontology, dict,
grammar & POS)

Rules/patterns
(ontology, dict,
grammar & POS)

Rules/patterns
(ontology, dict,
grammar & POS)

Rules/patterns
(ontology, dict,
grammar & POS)

Rules/patterns
(ontology, dict,
grammar & POS)

Prox. heuristic
& patterns

Kang and Kayaalp
(2013)

REGEX,
trigger events

Dict.-matching,
lexical rules,
trigger events

Dict.-matching,
lexical rules,
trigger events

– Dict.-matching,
lexical rules,
trigger events

– Inherent to patterns

Sc
ie

nt
ifi

c
pu

bl
ic

at
io

ns

Schneider et al. (2021) Rules Dict.-matching – – – – Prox. heuristic
Deus et al. (2017) Patterns (POS) – – – Patterns (POS) – –

Maiya et al. (2015)*

(MQSearch)
REGEX – Patterns (POS,

custom tags)
– Unit ontology

& rules
– Inherent to patterns

Jones et al. (2014)
(NanoSifter)

REGEX – Dict.-matching – Inherent to QE
patterns

Inherent to QE
patterns

Prox. heuristic

Xiao et al. (2013) REGEX Dict.-matching Keyword-matching Dict.-matching Inherent to QE
patterns

Inherent to QE
patterns

Prox. heuristic
& REGEX

Hawizy et al. (2011)
(ChemicalTagger)

Phrase parsing
(POS, REGEX
tags)

Chemical entity
tagger
& REGEX

Probably inherent
to QE patterns

Chemical entity
tagger
& REGEX

REGEX – Rule-based
creation of
parse tree

= Rules or patterns; = Dictionary-, gazetteer-, keyword- or ontology-matching; = Constituency or dependency parse tree analysis; = External model;
= Concepts are related based on proximity heuristics; = Not distinguished between subtasks; = Subtask is indirectly fulfilled;

N/A = Aspect not evident to the authors; uUnitTagger (Sarawagi and Chakrabarti, 2014); fLeadMine (Lowe and Sayle, 2015);
wWord2Vec (Mikolov et al., 2013); cCaboCha (Kudo and Matsumoto, 2003); *Also targeted at technical documents;

Abbreviations: clf. = classification; prox. = proximity; POS = Part-Of-Speech tags; REGEX = REGular EXpressions; FSA = Finite State Automata

Table B2: The methods of the rule-based approaches to measurement extraction per subtask.
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Quantity Meas. Entity Meas. Prop- Qualifier Unit of Quantity Grouping
Extraction Extraction erty Extr. or Context Measurement Modifier or Relation
(QE) (MEE) (MPE) Extraction Extraction Extraction Extraction

C
lin

ic
al

do
cu

m
en

ts

Liu et al. (2021b) Char.-level
BiLSTM-CRF

Char.-level
BiLSTM-CRF

– – Char.-level
BiLSTM-CRF

Dict & rules Prox. heuristics
& random forest

Bozkurt et al. (2019) REGEX CRF (POS, dict) – REGEX & CRF
(POS, dict)

REGEX – Probably
prox. heuristics

Liu et al. (2018) Learned patterns
& REGEX & dict

Learned patterns
& dict.-matching

Mixed with MEE – Learned patterns
& dict.-matching

Learned patterns
& Rules

Inherent to patterns
& prox. heuristic

Kang et al. (2017)
(EliIE)

CRF CRF – CRF – – SVM on
relation pairs

Kim et al. (2017c)
(TUCP,

TUCP+Prediction)

MIRA (i.a. pred.
of multiple models)

– MIRA (i.a. pred.
of multiple models)

– – – –

Meystre et al. (2017)
(CHIEF ADAHF)

MIRA (i.a. pred of
CUIMANDREef)

– MIRA (i.a. pred of
CUIMANDREef)

– – – –

Yim et al. (2016) REGEX CRF – CRF Inherent to
QE rules

– Max. entropy
classifier

Kim et al. (2013)
(CHIEF EF)

MIRA (i.a. pred of
CUIMANDREef)

– MIRA (i.a. pred of
CUIMANDREef)

– – – –

D
iv

er
se

w
eb

so
ur

ce
s

Ho et al. (2022) (QL) Illinois Quantifier Open IEo

& coref. res.
& entity linker

Semantic distance
between input prop.
and Open IEo prop.

– Illinois Quantifier – Ranking & filter-
ing of candidates
from Open IEo

Ning et al. (2022) BERT
(large, cased)

T5-large Mixed with MEE T5-large – – Inherent to sequen-
tial approach

Li et al. (2021)
(AnaSearch)

Recognizers-Textr Constituency
parse tree &
Text Analytics APIz

Mixed with MEE Constituency
parse tree & rules &
Text Analytics APIz

Recognizers-Textr Recognizers-Textr Inherent to MEE &
qualifier extraction

Ho et al. (2019, 2020)
(Qsearch)

Illinois Quantifier
& rules

NER tagger Mixed with Quali-
fier extraction

BiLSTM Illinois Quantifier
& rules

Mixed with Quali-
fier extraction

Inferred from rel.-
specific tagging

Gruss et al. (2018) REGEX – Naïve Bayes
classifiers

– Dict & rules Probably REGEX Inherent to framing
task as quantity
span clf.

Lamm et al. (2018b) CNN+CRF CNN+CRF Mixed with MEE CNN+CRF Patterns CNN+CRF Rel. embeddings
& shallow NN

Saha et al. (2017)
(BONIE)

Illinois Quantifier Bootstrapping to
learn dep. patterns

Bootstrapping to
learn dep. patterns
& UnitTaggeru

for implicit rel.

– Illinois Quantifier – Inherent to patterns

Madaan et al. (2016)
(NumberTron)

UnitTaggeru NER tagger Graphical modelh

(keywords, dep. tree,
POS, num. features)

– UnitTaggeru – Inherent to MPE

Intxaurrondo et al.
(2015)

CRF & noisy-orn Inherent to
semantic frame

Inherent to
semantic frame

CRF & noisy-orn Inherent to
semantic frame

– Inherent to model-
ing task as slot-
filling problem

Roy et al. (2015)
(Illinois Quantifier)

Bank of classi-
fiers

– – – Rule-based
& coref. res.
& SRL

list of phrases Coref. res. &
SRL if unit not
in quantity span

Vlachos and Riedel
(2015)

Learned patterns Learned patterns Learned patterns
(ranking by devia-
tion to value in KB)

– – – Inherent to patterns

Hoffmann et al. (2010)
(LUCHS)

Rel.-spec.
CRF extractors
(learned lexicons)

Rel.-spec.
CRF extractors
(learned lexicons)

Rel.-spec.
CRF extractors
(learned lexicons)

– – – Inferred from rel.-
specific tagging

R
eg

.
do

c. Loukas et al. (2022) BERT trained
from scratch

– Mixed with QE – – – Inherent to framing
QE as entity typing

Pr
od

uc
td

es
cr

ip
tio

ns

Mehta et al. (2021)
(LaTeX-Numeric)

BiLSTM-CNN-
CRF

– Inherent to QE
(property spec.
BIO labels)

– BiLSTM-CNN-
CRFl

– Inherent to QE
& MPE

Opasjumruskit et al.
(2019a,b) (ConTrOn)

Rules/patterns
(learning by
user feedback)

– Keyword-search
(ontology, user
feedback)

– Rules/patterns N/A Patterns
& prox. heuristic

Wu et al. (2018); Hsiao
et al. (2020)

Rule-based
candidate
generation

Rule-based
candidate
generation

Log. regression
(doc. structure,
tables, images)

– Rule-based
candidate
generation

– Inherent to
property
relation clf.

Bakalov et al. (2011)
(SCAD)

Probably patterns
& dict

N/A Multi-class log.
regression & int.
linear program

– Patterns & dict – Inherent to MPE

Continued on the next page...
= Rules or patterns; = Dictionary-, gazetteer-, keyword- or ontology-matching; = Constituency or dependency parse tree analysis; = External model;
= Concepts are related based on proximity heuristics; = Not distinguished between subtasks; = Subtask is indirectly fulfilled; = CRF-based model;

= BiLSTM-based model; = Transformer-based model; N/A = Aspect not evident to the authors;
uUnitTagger (Sarawagi and Chakrabarti, 2014); nnoisy-or (Surdeanu et al., 2012); rhttps://github.com/microsoft/Recognizers-Text;
hBased on MultiR (Hoffmann et al., 2011); zhttps://azure.microsoft.com/en-us/services/cognitive-services/text-analytics;

oOpen IE (Saha et al., 2017; Saha and Mausam, 2018); *Also targeted at technical documents;
lLaTeX-Numeric uses a unit list for matching in a distant supervision setting, however, only during training;

Abbreviations: MIRA = Margin-Infused Relaxed Algorithm; KB = Knowledge Base; rel. = relation; clf. = classification; prox. = proximity; char. = character;
coref. res. = coreference resolution; SRL = Semantic Role Labeling; NN = Neural Network; CNN = Convolutional Neural Network;

POS = Part-Of-Speech tags; SVM = Support Vector Machine; REGEX = REGular EXpressions
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Quantity Meas. Entity Meas. Prop- Qualifier Unit of Quantity Grouping
Extraction Extraction erty Extr. or Context Measurement Modifier or Relation
(QE) (MEE) (MPE) Extraction Extraction Extraction Extraction

Sc
ie

nt
ifi

c
pu

bl
ic

at
io

ns

Avram et al. (2021)M

(UPB)
RoBERTa+CRF RoBERTa (QA) RoBERTa (QA) RoBERTa (QA) Char.-level

BiLSTM
Char.-level
BiLSTM

Inferred from rel.-
specific tagging

Cao et al. (2021)M

(CONNER /
jarvis@tencent)

RoBERTa enc.
& PointerNet†

& CRF

RoBERTa enc.
& rel.-spec. tagger

RoBERTa enc.
& rel.-spec. tagger

RoBERTa enc.
& rel.-spec. tagger

Rules RoBERTa enc.
& plain classifier

Inferred from rel.-
specific tagging

Davletov et al. (2021)M

(LIORI)
LUKE NER† RoBERTa (QA) RoBERTa (QA) RoBERTa (QA) RoBERTa (QA) RoBERTa (QA) Inferred from rel.-

specific tagging
Gangwar et al. (2021)M

(Counts@IITK)
SciBERT+CRF SciBERT+CRF 2nd SciBERT+CRF 3rd SciBERT+CRF Char.-level

BiLSTM
BERT Inferred from rel.-

specific tagging
Harper et al. (2021)M

(MeasEval Baseline 1)
spaCy NERs spaCy NERs spaCy NERs spaCy NERs Dict.-matching – Prox. heuristics

Karia et al. (2021)M

(KGP)
BioBERT 2nd BioBERT 2nd BioBERT 2nd BioBERT Dict.-matching Keywords

& rules
Inferred from rel.-
specific tagging

Kohler and Jr (2021)M

(GPT-3)
GPT-3 (few-shot) GPT-3 (few-

shot)
GPT-3 (few-shot) – GPT-3 (few-shot) – Inherent to prompt

Kuniyoshi et al. (2021) ELMo for mate-
rials synthesise

& rules

– Inherent to framing
QE as entity typing

ELMo for mate-
rials synthesise

Rules Inherent to
normalization
rules

–

Lathiff et al. (2021)M

(CLaC-np)
DGCNN on
dep. parse trees

DGCNN on
dep. parse trees

DGCNN on
dep. parse trees

DGCNN on
dep. parse trees

Dict.-matching SciBERT (from
Therien et al., 2021)

Inferred from rel.-
specific tagging

Liu et al. (2021a)M

(Stanford MLab)
BERT large – – – BERT large Multi-label clf. –

Mavračić et al. (2021);
Court and Cole (2018)

(ChemDataExtractor 2.0)

Snowball pat-
tern learning

Probably chem.
NER tagger (CRF,
dicts & REGEX)

Snowball pat-
tern learning

Snowball pat-
tern learning

Snowball pat-
tern learning

N/A Inherent to phrase
parsing grammars

Panapitiya et al. (2021) SciBERT+CRF SciBERT+CRF Inherent to tagging
ME & Q for one
spec. property

– SciBERT+CRF – –

Petersen et al. (2021)G

(Geo-Quantities)
Grobid-quantities Grobid-quantities – CRF Grobid-quantities Grobid-quantities Prox. heuristics

Therien et al. (2021)M

(CLaC-BP)
SciBERT SciBERT SciBERT SciBERT Rules 2nd SciBERT Prox. heuristics

& rules
Friedrich et al. (2020) BiLSTM or

SciBERT
Inherent to
semantic frame?

BiLSTM or
SciBERT

BiLSTM or
SciBERT

– – Inherent to model-
ing task as slot-
filling problem

Foppiano et al.
(2019a)G

Grobid-quantities CRF & chem.
NER tagger

Quantity clf. with
dict.-matching

– Grobid-quantities Grobid-quantities Prox. heuristics

Foppiano et al.
(2019b)G,*

(Grobid-quantities)

CRF & unit dict Dep. tree analysis
(later CRF)a

Mixed with MEE – Char.-level CRF
& unit dict

CRF Inherent to MEE

Kononova et al. (2019) REGEX
& dict.-matching

– Implicit by
rules for QE

NN (dep. tree,
Word2Vecw)

Probably implicit
by rules for QE

Probably implicit
by rules for QE

Dep. tree analysis

Hundman and
Mattmann (2017)G

(Marve)

Grobid-quantities Patterns (POS,
dep. tree)

Mixed with MEE Mixed with MEE Grobid-quantities Grobid-quantities
& Mixed with MEE

Inherent to patterns

Kim et al. (2017b,a) NN, dict &
DB matching &
existing models

NN, dict &
DB matching &
existing models

NN, dict &
DB matching &
existing models

NN, dict &
DB matching &
existing models

NN, dict &
DB matching &
existing models

– Dep. tree analysis,
prox. heuristics

Swain and Cole (2016)
(ChemDataExtractor)

Rule-based
phrase parsing
(NER, POS)

Chem. NER tagger
(CRF, REGEX
& dict.-matching)

Rule-based
phrase parsing
(NER, POS)

Rule-based
phrase parsing
(NER, POS)

Rule-based
phrase parsing
(NER, POS)

– Inherent to phrase
parsing grammars

Dieb et al. (2014, 2015)
(NaDevEx)

CRF (POS,
REGEX,
unit dict)

CRF (POS,
REGEX,
chem. NER tagger)

CRF (POS,
REGEX, dict,
SVM clf.)

– – – –

Dieb et al. (2012) YamChay (POS,
REGEX)

YamChay (POS,
REGEX, chem.
NER tagger)

YamChay (POS,
REGEX)

– – – –

= Rules or patterns; = Dictionary-, gazetteer-, keyword- or ontology-matching; = Constituency or dependency parse tree analysis; = External model;
= Concepts are related based on proximity heuristics; = Not distinguished between subtasks; = Subtask is indirectly fulfilled; = CRF-based model;

= BiLSTM-based model; = Transformer-based model; N/A = Aspect not evident to the authors;
†Ensemble; MPart of MeasEval; GRelated to Grobid-quantities; sSpacy (Montani et al., 2022);

eELMo for materials synthesis (Kim et al., 2020); yhttp://chasen.org/~taku/software/yamcha/; *Also targeted at technical documents;
aExperimental feature described at https://grobid-quantities.readthedocs.io/en/latest/guidelines.html;

Abbreviations: DB = Database; QA = Question Answering; enc. = encoder; rel. = relation; clf. = classification; prox. = proximity; char. = character; NN = Neural Network;
DGCNN = Deep Graph Convolution Neural Network; POS = Part-Of-Speech tags; SVM = Support Vector Machine; REGEX = REGular EXpressions

Table B3: The methods of the learning-based approaches to measurement extraction per subtask. Note that this
table starts on the previous page.
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