
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 2184–2190
December 7-11, 2022 ©2022 Association for Computational Linguistics

SparseAdapter: An Easy Approach for Improving the
Parameter-Efficiency of Adapters

Shwai He1, 4∗ Liang Ding1† Daize Dong4 Miao Zhang2 Dacheng Tao1, 3

1JD Explore Academy
2Aalborg University 3The university of Sydney

4University of Electronic Science and Technology of China
shwai.he@gmail.com, dingliang1@jd.com, dzdong2019@gmail.com,

miaoz@cs.aau.dk, dacheng.tao@gmail.com

Abstract

Adapter Tuning, which freezes the pretrained
language models (PLMs) and only fine-tunes
a few extra modules, has become an appeal-
ing efficient alternative to the full model fine-
tuning. Although computationally efficient,
the recent adapters often increase parameters
(e.g. bottleneck dimension) for matching the
performance of full model fine-tuning, which
we argue goes against their original intention.
In this work, we re-examine the parameter-
efficiency of adapters through the lens of net-
work pruning (we name such plug-in concept as
SparseAdapter) and find that SparseAdapter
can achieve comparable or better performance
than standard adapters when the sparse ra-
tio reaches up to 80%. Based on our find-
ings, we introduce an easy but effective setting
“Large-Sparse” to improve the model capac-
ity of adapters under the same parameter bud-
get. Experiments on five competitive adapters
upon three advanced PLMs show that with
proper sparse method (e.g. SNIP) and ratio
(e.g. 40%) SparseAdapter can consistently out-
perform their corresponding counterpart. En-
couragingly, with the Large-Sparse setting, we
can obtain further appealing gains, even out-
performing the full fine-tuning by a large mar-
gin. Our code will be released at: https:
//github.com/Shwai-He/SparseAdapter.

1 Introduction

The “pretrain-finetune” paradigm has become the
de facto standard for the community of natural
language processing (NLP) (Devlin et al., 2019;
Liu et al., 2019). Given a pretrained language
model (PLM), the conventional fine-tuning man-
ner is tuning the entire parameters, i.e., full fine-
tuning, for each downstream task (Devlin et al.,
2019). Considering the ever-increasing size of
PLMs (Brown et al., 2020), full fine-tuning has

∗Work was done when Shwai was interning at JD Explore
Academy.

†Corresponding author

0.5 0.9 1.3 1.7 2.1
Fine-tuned Parameters (%)

77.5

78.0

78.5

79.0

79.5

Av
er

ag
e

Sc
or

e

Houlsby

Pfeiffer

Full Fine-tuning

LS - Houlsby

S - Houlsby

LoRA

LS - LoRA

LS - fPfeif er
S - LoRA

S - ePfeiff r

Figure 1: Performance of different parameter-efficient
tuning methods on tasks from GLUE benchmark with
RoBERTa-base encoder. We report the performance of
Houlsby Adapters, Pfeiffer Adapters, LoRA as well as
that used in our plug-in method SparseAdapter, where
we denoted the normal sparse (in Table 1 and 4) as “S-”
and Large-Sparse (in Table 3) as “LS-” in prefix.

become prohibitively expensive, limiting the appli-
cability of PLMs to a broader range of tasks. Hence,
various parameter-efficient fine-tuning approaches
are explored (Houlsby et al., 2019; Hu et al., 2021;
Zhong et al., 2022), among which Adapter Tuning,
that only tunes the extra light-weighted modules
and keeps the original PLM frozen, has attached
great attention.

Despite the progress, existing adapters match the
performance of full fine-tuning by increasing the
bottleneck dimension (Houlsby et al., 2019; Wang
et al., 2022). This increases the overall parame-
ters and FLOPs, violating the original intention
of adapters. In this work, we turn to investigate
the parameter-efficiency property (the nature of
adapters) to answer the following questions: 1

Whether the current adapters can be further effi-
cient? 2 How can we increase the representation
capacity of adapters within the original parameter
budget?

To this end, we examine the parameter-efficiency
of adapters through the lens of network prun-

2184

https://github.com/Shwai-He/SparseAdapter
https://github.com/Shwai-He/SparseAdapter

ing (Mozer and Smolensky, 1989; Janowsky, 1989),
which reduces the model size of neural networks by
pruning redundant parameters and training the rest
ones, therefore, improving the network efficiency.
We call such pruned adapters SparseAdapter.
Specifically, we systematically investigate five rep-
resentative pruning methods in §2.2 to check at
what sparse ratio can the adapters maintain the
effectiveness. Note that to maintain the efficient
nature of adapters, we prune all adapters at ini-
tialization such that there are no extra computa-
tional costs. We find that 1 SparseAdapter
can achieve comparable (or even better) perfor-
mance than standard adapters when the sparse ratio
reaches up to 80%. Such encouraging performance
could hold even using the random pruning method
(See Figure 2) on GLUE benchmark (Wang et al.,
2018). Based on these insights, we introduce a
frustratingly easy setting, namely Large-Sparse,
for SparseAdapter. We find that 2 Scaling up
the bottleneck dimension of SparseAdapter with a
correspondingly larger sparse ratio (to ensure the
same parameter budget, for example, 2× dimen-
sion scaling with 50% sparse ratio) can effectively
yield significant improvement by augmenting the
model capacity.

We validate the concept of our proposed
SparseAdapter upon five advanced adapters, i.e.,
Houlsby (Houlsby et al., 2019), Pfeiffer (Pfeif-
fer et al., 2020b), LoRA (Hu et al., 2021), MAM
Adapter (He et al., 2022) and AdapterFusion (Pfeif-
fer et al., 2021), spanning both natural language
understanding (GLUE and SQuAD) and generation
(XSum) benchmarks. We show that with proper
sparsity, e.g. 40%, SparseAdapter could consis-
tently outperform their correspondingly counter-
part baselines. And with our Large-Sparse setting,
SparseAdapter could even beat the full fine-tuning
method significantly, e.g. 79.6 vs. 79.0 in Fig-
ure 1.

2 Methodology

Motivation. Adapters are bottleneck modules
plugged in PLMs, with bottleneck dimension r and
model dimension d. In standard Adapter Tuning,
only adapter layers are trainable while the param-
eters of original parameters are frozen, where the
number of trainable parameters determines the ca-
pacity of adapters. The common recipe to augment
the capacity is to increase the bottleneck dimension,
which requires more computation cost, violating

the original intention of adapters.
To check whether augmenting adapters by in-

creasing the parameters is an optimal choice, we
decide to revisit the nature of adapters, i.e., parame-
ter efficiency, by pruning the redundant parameters.
As shown in Figure 2, randomly pruned adapters
can achieve comparable or even better performance
than standard adapters, which indicates the exis-
tence of redundant parameters. The comparable
performance could even be held under 80% spar-
sity. Such preliminary study urges us to investigate
the research questions 1 and 2 . We decide to
approach them by systematically investigating the
effects of different pruning methods.

Figure 2: The comparison between randomly pruned
adapters and standard adapters on datasets from GLUE.

0 20 40 60 80
Sparsity(%)

60
65
70
75
80
85
90
95

Pe
rfo

rm
an

ce

BERT-Large

0 20 40 60 80
Sparsity(%)

60
65
70
75
80
85
90
95

Pe
rfo

rm
an

ce

RoBERTa-Large
CoLA MRPC STS-B RTE

Figure 3: Schematic comparison of (a) standard adapter
and (b) our proposed SparseAdapter.

Fine-tune

Adapter
Fine-tuned

Adapter

(a) Standard Adapter Tuning.

Prune

Initialization

Fine-tune

Adapter SparseAdapter
Fine-tuned

SparseAdapter

(b) SparseAdapter Tuning.

2.1 Pruning Adapters at Initialization

As is shown in Figure 3, we intend to prune
out redundant parameters and then fine-tune the
SparseAdapter, instead of directly tuning all pa-
rameters (standard Adapter Tuning). By pruning
adapters at initialization, we can abandon the re-
dundant parameters at the early stage and avoid the
time-consuming iterative pruning process (Fran-
kle and Carbin, 2018). Specifically, considering
an adapter with weights wl inserted in the layer

2185

l ∈ {1, · · · , L}, parameters can be pruned by a bi-
nary mask ml as w̃l

i = wl
i ⊙ml

i, where w̃l
i denotes

the pruned parameters, wl
i and ml

i denote the i-th
element of wl and ml, respectively. Given the tar-
get sparsity s, we assign scores z to all parameters
w and then remove redundant parameters whose
scores are below the threshold zs (the s-th lowest
percentile of z). The pruning process is shown in
Algorithm 1.

Algorithm 1: Pruning on Adapters
Require: adapter paramters w, sparse ratio s

1: w ← Initialization(w)
2: z = score(w)
3: Compute the s-th percentile of z as zs
4: m← 1 [z − zs ≥ 0]
5: w̃ ← m⊙ w

2.2 Pruning Methods

Random. Random pruning assigns a random
score z ∼ Uniform(0, 1) to each parameter and
removes parameters with the lowest scores.

Magnitude. Magnitude pruning assigns each pa-
rameter with its magnitude z = |w| as its score and
removes parameters with the lowest scores. Magni-
tude pruning is a standard way to prune during (or
after) training (Janowsky, 1989; Han et al., 2015).
Here we follow Frankle et al. (2020) to employ
magnitude pruning at the initialization stage.

Erdős-Rényi (ER). Mocanu et al. (2018); Evci
et al. (2020) specify each layer with a random topol-
ogy in which larger layers are allocated with higher
sparsity than smaller layers. The layer-wise spar-
sity is scaled proportional to 1− nin+nout

nin·nout
, where

nin and nout refers to the number of input and out-
put neurons, respectively.

SNIP. Lee et al. (2018) compute the gradients gl
for each layer with sampled mini-batch of training
data, assign scores zl = −wl ⊙ gl, and remove
the weights with the highest scores in one iteration.
The method prunes the weights with the lowest
“effect on the loss” (either positive or negative).

GraSP. Wang et al. (2020) compute the Hessian-
gradient product hl for each layer, issue scores
zl = −wl ⊙ hl, and remove the weights with the
highest scores in one iteration. The method re-
moves weights that “reduce gradient flow” while
preserving weights that “increase gradient flow”.

3 Experiments

Setup. Experiments were conducted on three
widely-used benchmarks, spanning understanding
and generation tasks: (1) GLUE (Wang et al.,
2018), containing understanding tasks like natural
language inference, sentiment analysis, and sen-
tence similarity evaluation; (2) XSum (Narayan
et al., 2018), a summarization dataset where the
models are required to generate a short summary
for a given article; (3) SQuAD v1.1 (Rajpurkar
et al., 2016), a pair-wise dataset for questions and
Wikipedia paragraphs where models select the an-
swer span to the question from the paragraph.

We use Adam (Kingma and Ba, 2014) as the
optimizer with β1, β2 = 0.9, 0.98. For regulariza-
tion, we set the weight decay as 0.1 and grid-search
the learning rate from {1e-5, 2e-5, 5e-5, 1e-4, 2e-
4}, where we warm up the learning rate in the
first 10% steps (of the total training steps). For
different data scales, we grid-search the training
epoch and batch size from {5, 10, 15, 20}, and {8,
16, 32, 64}, respectively. The maximum length is
512 for GLUE and 384 for SQuAD. For XSum,
we set the max length of source articles to be 512
and the max length of the target summary to be
128. For the GLUE benchmark, we follow previ-
ous works (Phang et al., 2018; Lee et al., 2020;
Dodge et al., 2020) to fine-tune the pretrained lan-
guage models, e.g. BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), on the downstream
training set and report results on the dev set using
the last checkpoint. For the other tasks, we report
the test results.

3.1 Results

SparseAdapters with Different Pruning
Methods. In Table 1, we carefully compare
SparseAdapters (with aforementioned pruning
methods: “Rand.”, “Mag.”, “ER”, “SNIP”,
“GraSP”) to the standard adapter (Houlsby et al.,
2019) (“Adapter”) on GLUE benchmark for two
backbone pretrained language models BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019), where we set the bottleneck dimension
to 64 for all adapter layers. As shown in Ta-
ble 1, all SparseAdapters achieve comparable or
even better performance compared to Houlsby
Adapter (Houlsby et al., 2019) with lower com-
putational overhead. Notably, SNIP (Lee et al.,
2018) based SparseAdapter could achieve up to
0.6% average improvement compared to standard

2186

Table 1: Experimental results of different SparseAdapters on GLUE benchmark, where we perform pruning
with the same sparsity ratio 40% for a fair comparison. CoLA is evaluated using Matthew’s correlation. STS-B is
evaluated using Pearson’s correlation coefficient. MRPC and RTE are evaluated using accuracy. Average scores on
all tasks are underlined. The best results are bold. We report the results of full fine-tuning “Fine-Tune” as reference.

Method #Param. BERT RoBERTa

(Trained) CoLA MRPC STS-B RTE Avg. CoLA MRPC STS-B RTE Avg.

Fine-Tune 100% 59.4 83.1 87.2 68.3 74.5 61.8 88.0 90.8 75.2 79.0

Adapter 2.0% 59.1 82.1 86.6 66.5 73.6 61.3 87.4 90.4 74.1 78.3
w/ Rand.

1.2%

58.4 82.9 86.7 66.8 73.7 61.0 87.5 90.5 73.2 78.1
w/ Mag. 58.2 82.8 86.7 66.3 73.2 60.6 87.0 90.6 73.3 77.9
w/ ER 58.6 82.2 86.8 67.0 73.7 60.9 87.2 90.2 73.6 78.0
w/ SNIP 59.4 82.3 87.0 68.2 74.2 61.4 87.6 90.3 75.0 78.6
w/ GraSP 59.0 82.7 86.9 67.2 74.0 61.2 87.1 90.7 74.4 78.4

adapter and nearly reach the performance of full
fine-tuning, which is therefore left as the default
setting in the following experiments.

Table 2: Effect on different sparse ratios and dif-
ferent tasks. Xsum and SQuAD are evaluated with
ROUGE-2 and F1 score, respectively. We denote
SparseAdapter with their sparse ratios.

Method GLUE XSum SQuAD

#Para. Avg. #Para. R2 #Para. F1

Fine-Tune 100% 79.0 100% 21.9 100% 87.8

Adapter 2.0% 78.3 4.5% 21.6 8.8% 87.4
s = 0.2 1.6% 78.7 3.6% 21.6 7.0% 87.5
s = 0.4 1.2% 78.6 2.7% 21.8 5.3% 87.7
s = 0.6 0.8% 78.2 1.8% 21.5 3.5% 87.4
s = 0.8 0.4% 77.9 0.9% 21.3 1.8% 87.0

Effect on Different Downstream Tasks. Utiliz-
ing the proper sparse method, i.e., SNIP with 40%
sparse ratio, we validate SparseAdapter on more
downstream tasks, including GLUE, XSum, and
SQuAD in Table 2. We use RoBERTa-base (Liu
et al., 2019) for GLUE (Wang et al., 2018), BART-
large (Lewis et al., 2020) for Xsum (Narayan et al.,
2018) and BERT-base (Devlin et al., 2019) for
SQuAD v1.1 (Rajpurkar et al., 2016). For XSum
and SQuAD, The bottleneck dimension is set to
512 and 256 respectively to match the performance
of full fine-tuning. Clearly, SparseAdapter outper-
forms the standard adapters in three tasks, showing
the universality of SparseAdapter.

Effect on Different Sparse Ratios. In Table
2, we investigate the effect of different sparse
ratios for SparseAdapter (Pfeiffer et al., 2021).

We use BERT-base (Devlin et al., 2019) and
RoBERTa-base (Liu et al., 2019) as backbones.
SparseAdapters outperform the standard adapters
when s ≤ 40% and maintained stable performance
while increasing the sparse ratio. Considering the
trade-off between performance and parameters, we
set 40% as the default sparse ratio in our work.

Effect on Different Adapter Variants. Since
SparseAdapter can be plugged into any adapter
variants, we further validate its effectiveness on
other four variants besides Houlsby Apdaters in
the above experiments, including Pfeiffer (Pfeif-
fer et al., 2020a), LoRA (Hu et al., 2021), Mix-
And-Match Adapters (“MAM”) (He et al., 2022),
and AdapterFusion (“AF”) (Pfeiffer et al., 2021).
We choose RoBERTa-base (Liu et al., 2019) as
the backbone. Following previous experiments
on GLUE benchmark for MAM Adapters (He
et al., 2022), we divide the trainable parameters
equally into adapters in feed-forward layers and
Prefix-Tuning (Li and Liang, 2021) in attention lay-
ers. Our SparseAdpater could consistently improve
the accuracy with 40% fewer training parameters,
showing the generalization of our plug-in method.
Experimental results are listed in Table 4.

Augmenting SparseAdapter with Large-Sparse
Setting. One strength of SparseAdapter is the po-
tential to exploit large adapter (with a correspond-
ingly large sparse ratio) to augment the adapter
capacity under the same parameter budget, namely
Large-Sparse setting. To validate our claim, we
scale the bottleneck dimension by {2×, 3×, 4×}
with correspondingly {50%, 67%, 75%} sparse ra-
tios. As shown in Table 3, while maintaining the
same amount of parameters, with bottleneck dimen-

2187

Table 3: Experimental results of scaling the bottleneck dimension. (2×, 3×, 4×) of SparseAdapters using
the same amount of parameters, coined as Large-Sparse setting (“LS-” in the prefix), on GLUE benchmark.
We correspondingly increase the sparsity to ensure the same number of parameters for SparseAdapters with larger
bottleneck dimensions.

Method Setting BERT RoBERTa

r s CoLA MRPC STS-B RTE Avg. CoLA MRPC STS-B RTE Avg.

Adapter 64 0% 59.1 82.1 86.6 66.5 73.6 61.3 87.4 90.4 74.1 78.3

LS-Adapter
128 50% 59.9 82.3 87.6 67.5 74.3 61.7 88.2 90.3 75.5 78.9
192 67% 60.1 82.7 87.7 67.7 74.6 61.8 88.7 90.4 75.3 79.1
256 75% 60.6 83.3 88.2 68.2 75.1 62.1 89.5 90.5 76.2 79.6

Table 4: Effects on other different adapter variants.
“S-” means equipped with our SparseAdatper.

Method CoLA MRPC STS-B RTE Avg.

Pfeiffer 61.2 85.8 89.2 74.7 77.7
S-Pfeiffer 61.1 86.0 89.3 75.2 77.9

LoRA 62.0 87.5 88.5 74.5 78.1
S-LoRA 62.1 87.7 88.8 74.6 78.2

MAM 61.3 86.5 89.7 74.6 78.0
S-MAM 61.5 87.6 89.8 74.3 78.3

AF 63.1 89.7 90.9 76.0 79.9
S-AF 63.3 90.0 90.8 76.4 80.1

Figure 4: The comparison between SparseAdapters with
Large-Sparse setting and standard adapters.

0 25 50 75 100
Training Percentage(%)

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

MRPC: RoBERTa-base

r=256, s=75%
r=192, s=67%
r=128, s=50%
r=64, s=0%

0 25 50 75 100
Training Percentage(%)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Pe
ar

so
n

C
or

re
la

tio
n

CoLA: RoBERTa-base

r=256, s=75%
r=192, s=67%
r=128, s=50%
r=64, s=0%

sion increases, Large-Sparse could consistently
gain better performance, achieving up to +1.3%
and +0.6% average improvements against the stan-
dard adapter and full fine-tuning, respectively.

Besides the encouraging performance, we com-
pare SparseAdapters with Large-Sparse setting
to standard adapters on the training convergence
speed in Figure 4. SparseAdapters maintain a per-
formance advantage at the same training percent-
age and converge at least 25% ahead in the train-
ing process. For both tasks, Large-Sparse setting
contributes to a faster convergence rate and higher
performance.

4 Conclusion

In this work, we systematically reexamine the
parameter efficiency property of adapter Tuning
through the lens of network pruning. Based
on our findings, we propose a plug-in strategy,
i.e., SparseAdapter, for existing adapters. Our
study empirically indicates the potential to make
SparseAdapter (especially with the Large-Sparse
setting) a golden standard efficient transfer learning
strategy for the NLP community.

The future work includes applying our pro-
posed SparseAdapter to more tasks (e.g. multi-
lingual PLM based machine translation (Zan et al.,
2022a,b)) and benchmarks, and investigating the
parameter efficiency of of other neural network
models, especially for scenarios where high effi-
ciency is required, e.g. Prompt (Lester et al., 2021).

Acknowledgements

We are grateful to the anonymous EMNLP review-
ers and the area chair for their insightful comments
and suggestions.

Limitations

Despite the progress we made, there still exist limi-
tations in our work. On the one hand, we only in-
vestigated some classic pruning methods and found
that SNIP (Lee et al., 2018) performs the best in
selected criteria. However, there may exist other ad-
vanced pruning methods that can further improve
the performance, which deserves exploration in
future work. On the other hand, since we only con-
sider BERT, RoBERTa, and Bart in limited tasks,
it would be valuable to consider other architecture
families (e.g. XLNET (Yang et al., 2019), ELEC-
TRA (Clark et al., 2020)) and tasks (e.g. machine
translation).

2188

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel
Castro, and Erich Elsen. 2020. Rigging the lot-
tery: Making all tickets winners. In International
Conference on Machine Learning, pages 2943–2952.
PMLR.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M
Roy, and Michael Carbin. 2020. Pruning neural net-
works at initialization: Why are we missing the mark?
arXiv preprint arXiv:2009.08576.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. Advances in neural infor-
mation processing systems, 28.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea

Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Steven A Janowsky. 1989. Pruning versus clipping in
neural networks. Physical Review A, 39(12):6600.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
2020. Mixout: Effective regularization to finetune
large-scale pretrained language models. ICLR.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. 2018. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint
arXiv:1810.02340.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Decebal Constantin Mocanu, Elena Mocanu, Peter
Stone, Phuong H Nguyen, Madeleine Gibescu, and
Antonio Liotta. 2018. Scalable training of artificial
neural networks with adaptive sparse connectivity in-
spired by network science. Nature communications,
9(1):1–12.

2189

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353

Michael C Mozer and Paul Smolensky. 1989. Using
relevance to reduce network size automatically. Con-
nection Science, 1(1):3–16.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503, Online. Association for Computational Lin-
guistics.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020a. Adapterhub: A
framework for adapting transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 46–54.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020b. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Jason Phang, Thibault Févry, and Samuel R Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint arXiv:1811.01088.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. 2020.
Picking winning tickets before training by preserving
gradient flow. arXiv preprint arXiv:2002.07376.

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu,
Jing Gao, Ahmed Hassan Awadallah, and Jian-
feng Gao. 2022. Adamix: Mixture-of-adapter for

parameter-efficient tuning of large language models.
arXiv preprint arXiv:2205.12410.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Changtong Zan, Liang Ding, Li Shen, Yu Cao, Weifeng
Liu, and Dacheng Tao. 2022a. On the complemen-
tarity between pre-training and random-initialization
for resource-rich machine translation. In COLING.

Changtong Zan, Keqin Peng, Liang Ding, Baopu Qiu,
Boan Liu, Shwai He, Qingyu Lu, Zheng Zhang,
Chuang Liu, Weifeng Liu, et al. 2022b. Vega-mt:
The jd explore academy translation system for wmt22.
arXiv preprint.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2022. Panda: Prompt transfer meets
knowledge distillation for efficient model adaptation.
ArXiv, abs/2208.10160.

2190

https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446

