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Abstract

Session-based Social Recommendation (SSR)
aims to use users’ social networks and histori-
cal sessions to provide more personalized rec-
ommendations for the current session. Unfor-
tunately, existing SSR methods have two lim-
itations. First, they do not screen users’ use-
less social relationships and noisy irrelevant
interactions. However, user preferences are
mainly affected by several close friends and
key interactions. Second, when modeling the
current session, they do not take full advan-
tage of user preference information. To tackle
these issues, we propose a novel Social-aware
Sparse Attention Network for SSR, abbreviated
as SSAN. It mainly consists of the Heteroge-
neous Graph Embedding (HGE) module and
the Social-aware Encoder-decoder Network
(SEN) module. In the HGE module, we adopt a
modified heterogeneous graph neural network,
which focuses more on close friends and key
historical interactions, to enhance user/item rep-
resentations. In the SEN module, we use the
user representation as a bridge between the En-
coder and Decoder to incorporate user prefer-
ences when modeling the current session. Ex-
tensive experiments on two benchmark datasets
demonstrate the superiority of SSAN over the
state-of-the-art models.

1 Introduction

Session-based Social Recommendation (SSR) is
proposed based on Session-based Recommenda-
tion (SR). Initially, SR aims to predict the next item
for the current anonymous session. The anonymous
session is a sequence of items clicked in a transac-
tion, without user IDs and users’ social networks.
Later, with the boom of modern network and social
media, user IDs can be tracked, and it becomes
more common for users to have a social network.
Therefore, SSR has been proposed, which aims

∗Equal contribution.
†Corresponding author.

to capture user preferences based on their social
networks and historical sessions to provide more
personalized recommendations (Song et al., 2019).

SSR is initially proposed in DGRec (Song et al.,
2019), which uses graph neural networks (GNNs)
to aggregate the preferences of neighbors for each
user. Afterward, SERec (Chen and Wong, 2021)
proposes to use a heterogeneous graph neural net-
work to learn user and item representations that in-
tegrate the knowledge from social networks. Since
they take advantage of users’ social networks and
historical interactions, they have a significant per-
formance improvement over previous conventional
SR methods (Li et al., 2017; Liu et al., 2018).

However, most of the existing SSR models suf-
fer from two defects: (a) They follow a strong
underlying assumption that users’ all friends and
interactions can influence their preferences. There-
fore, they aggregate the features of all friends and
historical interactions to model the user and do not
screen the irrelevant items when modeling the cur-
rent session. However, user preferences are mainly
affected by several close friends and key interac-
tions. Moreover, it has been shown in the litera-
ture that irrelevant items can interfere with session
modeling (Yuan et al., 2021). In other words, ag-
gregating all information without filtering can lead
to bias in modeling user preferences. (b) When
modeling the current session, they do not make
full use of the user’s personalized information. For
example, SERec (Chen and Wong, 2021) only con-
catenates user representations at the last stage of
model inference, which limits the expressiveness
of the personalized knowledge of the user.

To tackle these issues, we propose to eliminate
the low-confidence information, and incorporate
personalized knowledge into the modeling of the
current session. Hence, we put forward a novel
Social-aware Sparse Attention Network for SSR,
abbreviated as SSAN. It mainly consists of the Het-
erogeneous Graph Embedding (HGE) module and
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the Social-aware Encoder-decoder Network (SEN)
module. The HGE module aims to model user pref-
erences based on users’ social relationships and
historical interactions. In the HGE module, we
use a heterogeneous graph neural network, which
focuses more on close friends and important histor-
ical interactions, to enhance user/item representa-
tions. It can alleviate the impact of invalid social
relationships and useless historical interactions on
user modeling. The SEN module aims to model
the current session based on user preferences and
interactions in the current session. In the SEN
module, we mine the latent intents from the in-
teractions and inject user preference information
into the modeling process of the current session. It
can alleviate the impact of unreliable interactions
and take full advantage of the personalized knowl-
edge of users. Extensive experiments on two public
benchmark datasets demonstrate the superiority of
SSAN. Further ablation experiments demonstrate
the effectiveness of the HGE and SEN modules.

To summarize, we mainly make the following
contributions:

• Mine latent key information. We construct
the HGE module that concentrates on close
friends and key historical interactions to en-
hance user/item representations. Besides, we
use the sparse transformation function to miti-
gate the impact of irrelevant interaction items.

• Integrate personalized knowledge. We de-
vise the SEN module to closely integrate user
preference information to make more person-
alized recommendations for current session.

• Excellent performance. We perform exten-
sive comparisons with recent SSR and SR
methods on two public real-world datasets,
demonstrating the superiority of SSAN.

2 Related Work

In this section, we retrospect the existing work
related to our research, which mainly consists of
the following three subsections.

2.1 Session-based Recommendation

Session-based Recommendation can be mainly di-
vided into Anonymous Session-based Recommen-
dation (ASR) and Personalized Session-based Rec-
ommendation (PSR).

2.1.1 Anonymous Session-based
Recommendation (ASR)

Let I = {i1, i2, . . . , iN} denote the set of items,
where N is the total number of items. A session
is represented as a list S = [is,1, is,2, . . . , is,t] or-
dered by the timestamp and is,k ∈ I(1 ≤ k ≤ t)
represents an interacted item of the anonymous
user. The task of ASR is to predict the next item
is,t+1 for an anonymous session S.

Early ASR studies (Rendle et al., 2010) focused
on extracting sequence information from session
data using Markov chains. Following these works,
GRU4Rec (Hidasi et al., 2015) is the first research
that formally defines ASR and proposes a multi-
layered GRU model. NextItNet (Yuan et al., 2019)
applies dilated convolutional layers to model the lo-
cal item dependence. Recently, GNNs have drawn
increasing attention in various tasks, including
ASR. SR-GNN (Wu et al., 2019) represents ses-
sions as directed subgraphs and apply GNN to cap-
ture the item transitions. GCE-GNN (Wang et al.,
2020) exploits global-level item-transitions over
all sessions to learn global-level contextual infor-
mation. Since these methods are designed for the
anonymous session, they do not leverage the knowl-
edge of users’ social networks. Moreover, most of
them ignore the randomness of user behavior and
do not consider the reliability of user interactions.

2.1.2 Personalized Session-based
Recommendation (PSR)

Let the sets of users and items be denoted by
U = {u1, u2, . . . , uM} and I = {i1, i2, . . . , iN},
respectively. The historical session set D con-
tains all sessions of each user. Let Du =
{Su

1 , S
u
2 , . . . , S

u
|Du|} represents the session set as-

sociated with user u ∈ U , where Su
T ∈ Du denotes

the T th session of user u, and Su
T [t] ∈ I denotes

the tth item in session Su
T . The task of PSR is

to predict the next item Su
T [t + 1] for session Su

T .
Different from ASR, PSR knows which user the
sequence belongs to, so it can model the user’s
preferences and exploit them.

In recent years, various attempts have been made
for PSR. Quadrana et al. (Quadrana et al., 2017)
use hierarchical recurrent neural networks to cap-
ture users’ evolving interests. Then, Zhang et al.
(Zhang et al., 2020) explicitly model the effect of
the users’ historical interests on the current ses-
sion by the attention mechanism. Guo et al. (Guo
et al., 2019) improve the attention mechanism by
applying Matrix Factorization to users’ historical
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interactions. These methods leverage users’ long-
term interaction history to provide more personal-
ized recommendations, but they fail to capture the
impact of users’ social networks.

2.2 Social Recommendation

It is a growing trend towards leveraging social net-
works to make recommendations more personal-
ized and effective. Ma et al. (Ma et al., 2011)
regularize the latent user factors so that connect
users with similar latent factors and make recom-
mendations. Zhao et al. (Zhao et al., 2014) apply
matrix factorization to extract additional training
instances from social networks. Wang et al. (Wang
et al., 2017) propose to distinguish strong and weak
relationships and learn personalized preferences
from social networks. Xiao et al. (Xiao et al.,
2017) propose to model user-items interactions and
recognize the social relationships of the user using
transfer learning. Wang et al. (Wang et al., 2019)
maintain a heterogeneous social graph to extract
the social knowledge to enhance the user represen-
tations. These methods only utilize collaborative
information from user-item interactions and users’
social networks without considering the sequen-
tial information of interactions. Thus, they are not
suitable for the session-based recommendation.

2.3 Session-based Social Recommendation
(SSR)

SSR is proposed to predict users’ next click in the
current short-term session based on social networks
and historical sessions. It aims to combine the ad-
vantages of session-based recommendation and so-
cial recommendation and provide more accurate
and personalized recommendations. The first SSR
model is DGRec (Song et al., 2019), which uses a
graph attention network to model the social influ-
ence of the user. Then, SERec (Chen and Wong,
2021) proposes to use a heterogeneous graph to
process related users and items when making pre-
dictions for the current session.

Unfortunately, while these models are laud-
able attempts to integrate social networks for the
session-based recommendation, they still fail to
take full advantage of the personalized knowledge
of the user when modeling the current session.
Moreover, they ignore the fact that users’ prefer-
ences are influenced mainly by several close friends
and key interactions.

3 Task Definition

Let U = {u1, u2, . . . , uM}, I = {i1, i2, ..., iN}
denote the set of users and items, respectively.
M,N are the total number of users and items, re-
spectively. Let D represents the set of all historical
sessions of users. The set of all sessions of a user is
represented by Du = {Su

1 , S
u
2 , . . . , S

u
|Du|}, where

session Su
T = [iu1 , i

u
2 , ..., i

u
t ] is the T th session in

Du containing a sequence of interacted items of
user u. We denote by Cu

T = [cu1 , c
u
2 , ..., c

u
t ] the

original embedding set corresponding to Su
T . For

briefly, the superscript and/or the subscript in Su
T

and Cu
T may be dropped if there is no ambiguity.

Different from PSR, SSR has a social network for
each user, which is a graph denoted as G = (U,E).
The node set U is the user set U , and the edge set
E indicates the users’ social relationships. Specif-
ically, an edge (u, v) ∈ E from user u to user v
represents u is followed by v.

The task of SSR is to predict the next item of
a new session Su /∈ Du based on social network
G and the set of all previous sessions Du. It can
be formalized as predicting the probability of user
interaction with each item i ∈ I at time step t+ 1:

p
(
it+1

(Su) = î | (Su,G,Du)
)
, (1)

where î ∈ I represents the candidate item.
Since a recommender usually needs to provide

multiple recommendations for users, SSR will rec-
ommend top-K items according to the scores.

4 Method

In this section, we introduce the SSAN in detail.

4.1 Sparse Transformation Function
In general, the attention mechanism uses softmax
(Bridle, 1990) to convert weights into probabili-
ties. Essentially, softmax is a mappings function
from Rd to △d−1, where △d−1 = {p ∈ Rd|1⊤p =
1, p ≥ 0}. However, it may assign weights to the
useless data due to its nonzero probability, affect-
ing the ability to find the relevant items. Then, a
sparse transformation method is proposed to assign
zero for the low-scoring items, named sparsemax
(Martins and Astudillo, 2016):

sparsemax(x) = argmax
p∈△d−1

∥p− x∥2 (2)

where x is the input weights, and p is the output
probabilities vector. Recently, a novel transfor-
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Figure 1: The architecture of SSAN. It is mainly composed of HGE and SEN modules.

mation function α-entmax (Peters et al., 2019) is
proposed to replace the softmax:

α-entmax(x) = argmax
p∈△d−1

p⊤x+H⊤
α (p),where

H⊤
α (p) =





1

α(α− 1)

∑

j

(pj − pαj ) ,α ̸= 1

HS(p) ,α = 1
(3)

where H⊤
α (p) is the Tsallis α-entropies (Tsallis,

1988). In particular, 1-entmax equals the softmax
function and 2-entmax (Peters et al., 2019) equals
the Sparsemax. In this paper, we replace the trans-
formation function with α-entmax in the attention
mechanism, to filter the irrelevant interactions in
the current session.

4.2 Architecture
The architecture of SSAN is depicted in Figure 1.
SSAN mainly consists of the following parts:

• Heterogeneous Graph Embedding (HGE)
module. In this module, we employ social
networks and historical sessions to enhance
the user/item representations.

• Social-aware Encoder-decoder Network
(SEN) module. In this module, we inte-
grate user preference information based on the
sparse attention network to model the current
session. Besides, we also mine the short-term
intent of the user.

• Prediction and Optimization. In this part,
we evaluate the probability of each candidate
item using the final session representation.

We will introduce the above parts in detail in the
rest of this section.

4.3 Heterogeneous Graph Embedding (HGE)
module

To integrate users’ social networks and histori-
cal sessions to enhance user/item representations,
we construct the HGE module inspired by SERec
(Chen and Wong, 2021). Moreover, it can alleviate
the impact of useless social relationships and in-
valid interactions when modeling user preferences.

4.3.1 Build Heterogeneous Graph
In this layer, we build a heterogeneous graph based
on users’ social networks and historical sessions.

Formally, let K = {N , E} be the heterogeneous
graph. For simplicity, we use the symbols of the
users U and items I to indicate the type of the
corresponding node. N = U ∪ I denotes the node
set of the graph consisting of all users and items
involved in D. E is the edge set contains three
types of directed edges, i.e., user-user edges (UU ),
user-item edges (UI),and item-item edges (II).

Specifically, a user-user edge (u, v) ∈ E if user
u is followed by user v. a user-item edge (u, i) ∈ E
if user u clicks item i in any session. Besides, a
user-item edge (i1, i2) ∈ E if a transition from i1
to i2 appears in any session.

4.3.2 Learn Enhanced Representation
To capture the user preference information con-
tained in the user’s social relationships and histori-
cal interactions, we apply the heterogeneous graph
neural network on the graph K.

Let Rl[v] denotes the representation of node v
at layer l, where v is a user or an item, where
R0[v] ∈ Rd is the initial user/item embedding,
where d is the embedding size. To generate a new
representation for node v from layer l − 1 to layer
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l, we calculate the importance of each connection
node of v in the graph K:

auv = θl · (σ(MLP(Rl−1[u] · Rl−1[v])) + el),
(4)

where θl ∈ Rd is a learnable parameter, el ∈ Rd

is the feature vector of edge (u, v), u, v ∈ N , σ
denotes the sigmoid activation function, MLP in-
dicates the multi-layer perceptron, Rl−1[u] means
the representation of node u at layer l − 1, and ·
means the element-wise multiplication. Then, we
normalize the score auv:

âuv =
auv∑

k∈Hu
auk

, (5)

where Hu indicates the neighbors of node u. We
argue that the neighbors with low weight may not
benefit to the update of the representation, so we
set the values âuv less than β as 0:

ãuv =

{
âuv, âuv > β.

0, âuv ≤ β.
(6)

Then, we re normalize them so that
∑

ãuv = 1.
Finally, we aggregation the neighbor nodes by:

R̃l−1[u] =
∑

k∈Hu

ãuk(MLP(Rl−1[k])),

Rl[u] = ReLU(MLP([R̃l−1[u]||Rl−1[u]])),

(7)

where ReLU is the activation function, and || de-
notes concatenate operation.

In particular, in the HGE module, we set differ-
ent MLP for different edges and different layers.
After Lgnn layers of the above process, we obtain
R = RL[N ], which is the final enhanced user/item
representation set.

4.4 Social-aware Encoder-decoder Network
(SEN) module

To make full use of user preference information and
alleviate the negative impact of users’ unreliable
interaction signals, we construct the SEN module.
It is mainly made up of the Encoder and Decoder.

4.4.1 Encoder
The Encoder aims to mine the user’s latent intent
sequence based on the interaction sequence of the
current session.

First, for a session S = [i1, i2, . . . , it] corre-
sponding to a user u, where t is the length of current
session, we can obtain the enhanced item represen-
tation set R = [r1, r2, . . . , rt], r ∈ Rd, and the

enhanced user representation û ∈ Rd from set R.
To capture the sequence information of the session,
we employ a learnable positional embedding mod-
ule (Sun et al., 2019). Formally, for each item i of
input session, the hidden representation is:

x = r + p, (8)

where x ∈ Rd denotes the hidden representation
of item i, and p ∈ Rd is the position embedding.
Thus, we obtain the hidden representation set X =
[x1, x2, . . . , xt] ∈ Rt×d for session S.

Latent Intent Modeling. In this layer, we mine
the latent intents of the user based on the interac-
tion sequence of the current session and eliminate
the low-confidence items. Specifically, we use the
sparse attention network to encode the interaction
sequence to obtain the latent intent sequence:

Q = ReLU(MLP(X)),

L′ = SparseAttention(Q,X,X),
(9)

where L′ ∈ Rt×d, MLP indicates the multi-layer
perceptron, ReLU is the activation function, and
the SparseAttention can be formalized as:

SparseAttention(Q,K, V ) = α-entmax(
Q⊤K√

d
)V,

(10)
where Q,K, and V are the input matrices, and
SparseAttention is a multi-head network. It is
worth mentioning that the model performance is
not sensitive to the number of heads, so we empiri-
cally set it to 4. Besides, we use the mask matrix
to ensure that the mining for t-th item can depend
only on its previous items. Then we endow the
model with more non-linearity:

L′ = ReLU(MLP(L′)), (11)

where MLP indicates the multi-layer perceptron,
and all sessions will share the same parameters.

After that, we add a Residual Connection and
Layer Normalization to the result to alleviate the in-
stability of model training. We also add the dropout
mechanism to alleviate the overfitting. The En-
coder is stackable, and we let Lenc denote the num-
ber of the Encoder layers. The output of last layer
is L = [l1, l2, . . . , lt] ∈ Rt×d, which represents the
latent intent sequence.

4.4.2 Decoder
The Decoder aims to achieve the social-aware mod-
eling of the current session based on user prefer-
ence information and the latent intent sequence.
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Short-term Intent Modeling. To mine more
sequence information in the interaction sequence,
we employ GRU (Cho et al., 2014) on the enhanced
interaction sequence:

ST = GRU(R), (12)

where R ∈ Rt×d is the set of enhanced item rep-
resentation. ST ∈ Rd is the last hidden state of
GRU, and we view it as the short-term intent repre-
sentation of the current session.

User Information Fusing. Considering that
only focusing on the interactions in the current
session and ignoring the use of user preference in-
formation will limit the performance of the model.
In this layer, we integrate the user preference infor-
mation into the modeling of the current session.

Specifically, we fuse the representation of short-
term intent ST with the enhanced user representa-
tion û from the HGE module, to obtain the person-
alized intent representation:

P = ReLU(MLP(ST + û)), (13)

where P ∈ Rd is the personalized intent represen-
tation that integrates user preference information
and short-term intent.

Session Modeling. In this layer, we implement
the social-aware decoding on the output L of the
Encoder based on the personalized representation.
Technically, we input P and the latent intent se-
quence L into the sparse attention network for de-
coding to model the current session:

F ′ = SparseAttention(P,L, L),

F ′ = ReLU(MLP(F ′)),
(14)

where L ∈ Rt×d is the final output of the Encoder.
Similarly, we add a Residual Connection and

Layer Normalization on the result to alleviate the in-
stability of model training, and also add the dropout
mechanism to alleviate the overfitting. Moreover,
the Decoder is stackable, and we let Ldec denote
the number of the Dncoder layers. The output of
the last layer is F ∈ Rd, which is the final session
representation.

4.5 Prediction and Optimization
In this part, we complete the prediction of the cur-
rent session. First, to capture the user’s intent at
the end of the session and make full use of the
user’s preference information, we integrate some
key information:

O = Wo[F ||rt||û], (15)

where O ∈ Rd is the final representation used to
make recommendations, rt ∈ Rd represents the
enhanced representation of the last item, û ∈ Rd is
the enhanced user representation, and Wo ∈ Rd×3d

is the projection matrix.
Since the next item prediction can convert into a

probability distribution of items, we calculate the
similarity of all items to the representation O:

zi = O⊤ci, (16)

where ci ∈ Rd is the initial embedding of candidate
item i ∈ I , and zi is similarity score. We use the
softmax function to normalize the similarity score:

ŷi = softmax(zi), (17)

where ŷi is the probability of item i appearing in
the next click in the current session.

For any given session, the loss function is de-
fined as the cross-entropy of the ground truth yi

and the prediction result ŷi:

L = −
I∑

i=1

yi log (ŷi) + (1− yi) log (1− ŷi) ,

(18)
where y is the ground truth probability distribution,
which is a one-hot vector.

5 Experiments

We conduct experiments on two real-world bench-
mark datasets and mainly aim to answer the follow-
ing research questions:

RQ1: How does SSAN compare to other state-
of-the-art (SOTA) models?

RQ2: Whether using the users’ social networks
and historical sessions is conducive to predicting
the user’s next click?

RQ3: Whether HGE module is beneficial to the
final performance?

RQ4: Whether SSAN is efficient?
RQ5: How the modules and layers of SSAN

affect the final performance?

5.1 Experimental Settings

Dataset # items # sessions # users
Gowalla 41,229 258,732 33,661
Delicious 5793 60,397 1313

Table 1: Statistics of the two datasets.
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5.1.1 Datasets
We conduct extensive experiments on the following
two public datasets:

Gowalla1: it comes from a location-based social
networking website, where users can share their lo-
cation by checking in. Following SERec (Chen and
Wong, 2021), we divide the two check-in records
into two sessions, if the interval between them is
longer than 1 day. Delicious2: it comes from an on-
line bookmarking system, where users can assign
various semantic tags to bookmarks. Following
SERec, we take a series of tag operations with a
small timestamp gap as a session.

We follow the same data processing method as
SERec. For each dataset, we take the first 60%
as the training set, 20% as the validation set, and
the rest 20% as the test set. Then, we filter the
short sessions and the infrequent items, and apply
a data augmentation technique described in SERec
on these two datasets. The statistics of datasets
after preprocessing are shown in Table 1.

5.1.2 Evaluation Metrics
We adopt three commonly used ranking-based
metrics to evaluate all models: HR@K (Hit Ra-
tio), MRR@K (Mean Reciprocal Rank (Voorhees,
2001)), and NDCG@K (Normalized Discounted
Cumulative Gain (Järvelin and Kekäläinen, 2000)),
where the values of K included {10, 20}.

5.1.3 Implementation Details
For a fair comparison, we implement our model on
the public pre-processed version datasets provided
by SERec (Chen and Wong, 2021). Not only that,
we also following SERec to make the following
settings: We use Adam (Kingma and Ba, 2015) op-
timizer with learning rate 0.001, and the weight de-
cay coefficient is 0.0001. We use 128-dimensional
embeddings for items and users. We apply early
stopping if the performance does not improve in 2
epochs on the validation set. We set the number of
epochs to 30 and set the mini-batch size to 128.

Besides, we search for the number of GNN lay-
ers Lgnn in {1, 2, 3} and finally set it to 1. The
Lenc and Ldec are tuned amongst {1, · · · , 4} and
finally set to 3 and 1, respectively. The α of α-
entmax is tuned amongst {1.1, · · · , 1.9} and finally
set to 1.5. The β in HGE module is tuned amongst
{0.01, 0.02, · · · , 0.2} and finally set to 0.05.

1 https://snap.stanford.edu/data/loc-gowalla.
html

2 https://grouplens.org/datasets/hetrec-2011/

5.1.4 Baselines

We compare SSAN with the following represen-
tative SOTA recommendation methods. They can
be categorized into session-based recommendation
models and SSR models:

Item-KNN (Sarwar et al., 2001), which recom-
mends items similar to the last item in the ses-
sion. FPMC (Rendle et al., 2010), which is a tradi-
tional sequential method based on Markov Chain.
NARM (Li et al., 2017) 3, which utilizes RNN
and attention mechanism to capture the main pur-
pose of the session. STAMP (Liu et al., 2018) 4,
which uses the self-attention mechanism to cap-
tures the long-term and short-term preferences of
sessions. SR-GNN (Wu et al., 2019) 5, which em-
ploys gated graph convolutional neural networks
to capture complex transitions of items to achieve
promising results. SSRM (Guo et al., 2019), which
proposes a Matrix Factorization based attention
model. NextItNet (Yuan et al., 2019) 6, which is
a classic CNN-based method for sequential rec-
ommendation. GCE-GNN7 (Wang et al., 2020),
which is a widely compared GNN-based model
that learns global and local information of sessions.
DSAN (Yuan et al., 2021) 8, which utilizes sparse
attention mechanism to alleviate the effect of unre-
lated items that clicked by users.

And we compare SSAN with the following SSR
models: DGRec (Song et al., 2019) 9, which
uses RNN and graph attention neural network to
model the dynamic interests and social influences.
SERec (Chen and Wong, 2021) 10 is the state-of-
the-art method for SSR, which has an efficient and
effective knowledge embedding framework.

For a fair comparison, our implementation pro-
vides user and item representations of the Hetero-
geneous Graph Embedding (HGE) module for SR
models. In addition, since some models miss some
metrics to varying degrees in the public results,
for a fair comparison, we report the best results in
the original paper (if available) and the reproduced
results on the same device as SSAN.

3https://github.com/lijingsdu/sessionRec_NARM
4https://github.com/uestcnlp/STAMP
5https://github.com/CRIPAC-DIG/SR-GNN
6https://github.com/fajieyuan/

WSDM2019-nextitnet
7https://github.com/CCIIPLab/GCE-GNN
8https://github.com/SamHaoYuan/DSANForAAAI2021
9https://github.com/chensi01/DGRec

10https://github.com/twchen/SEFrame
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Dataset Gowalla Delicious
Model H10 M10 N10 H20 M20 N20 H10 M10 N10 H20 M20 N20

ItemKNN 33.27 18.47 - 39.11 18.88 - 20.84 9.98 - 27.82 10.46 -
FPMC 35.31 17.66 - 42.57 18.17 - 29.59 14.46 - 38.26 15.02 -
NARM 41.56 22.50 26.23 49.55 23.04 28.24 37.18 19.76 23.88 46.39 20.40 26.23
STAMP 41.93 22.55 25.48 49.68 23.10 27.47 37.56 19.95 24.10 46.48 20.57 26.37
NextItNet 39.87 21.51 25.62 47.80 22.12 26.92 35.14 18.04 22.53 44.62 18.69 25.43
SR-GNN 41.56 22.39 26.88 49.58 22.94 28.94 37.98 20.37 24.65 47.41 20.99 26.92
SSRM 41.63 22.45 26.88 49.64 22.98 28.87 37.51 19.83 23.83 46.57 20.46 26.15
GCE-GNN 41.88 22.56 26.93 49.77 23.02 28.96 37.32 19.82 23.67 46.40 20.36 26.14
DSAN 41.75 22.71 27.23 49.60 23.24 29.18 37.54 19.96 24.09 46.53 20.62 26.38
G_NARM 44.94 24.03 29.16 52.64 24.56 31.11 39.82 21.09 25.46 49.15 21.73 27.96
G_STAMP 45.42 24.44 29.59 52.88 25.16 31.49 38.93 20.66 24.94 48.45 21.32 27.18
G_NextItNet 45.83 25.03 29.92 53.39 25.55 31.79 39.32 21.02 25.47 48.63 21.67 27.78
G_SR-GNN 45.45 25.04 29.96 53.15 25.57 31.87 39.96 21.37 25.76 49.15 22.01 28.08
G_SSRM 45.51 24.44 29.46 53.27 24.98 31.42 40.02 21.24 25.68 49.43 21.90 28.06
G_GCE-GNN 45.90 25.09 29.95 53.54 25.98 31.71 40.12 21.19 25.71 49.32 21.35 27.95
G_DSAN 46.00 25.39 30.11 53.63 25.93 31.64 40.01 21.26 25.98 49.54 21.40 28.06
DGRec 42.10 23.11 27.49 49.98 23.64 29.51 37.60 20.22 24.33 47.19 20.86 26.64
SERec 46.01 25.14 30.10 53.72 25.67 31.96 40.02 21.29 25.88 49.53 21.98 28.15

SSAN 46.67 25.95 30.90 54.61 26.51 32.91 42.66 23.52 28.07 52.27 24.15 30.39
Improv. (%) 1.43 2.21 2.62 1.66 2.00 2.97 6.33 10.06 8.04 5.51 9.72 7.96

Table 2: The performance of all models in % on Gowalla and Delicious datasets, where H, M, and N represent HR,
MRR, and NDCG, respectively. G represents that the model uses HGE module, i.e., the model uses the enhanced
user/item representations. The best result is in bold, and the second best result is underlined.

5.2 Experimental Results

In this section, we investigate SSAN in detail ac-
cording to the experimental results.

5.2.1 Overall Performance
The experimental results of overall performance are
reported in Table 2, and we can draw the following
conclusions:

(RQ2). All variants of non-social-aware meth-
ods (e.g., G_NARM) significantly outperform orig-
inal models (e.g., NARM), which strongly demon-
strates the superiority of using social knowledge.

(RQ3). The performance of these variants is
close to or even better than SERec, which shows
the superiority of the HGE module which pays at-
tention to close friends and important interactions.

(RQ1). SSAN is overwhelmingly superior to all
baseline models, which indicates the effectiveness
of SSAN. We believe the performance improve-
ment of our model mainly comes from the follow-
ing aspects: (1) We construct the HGE module,
which uses an improved heterogeneous graphical
neural network to inject social knowledge and his-
torical interaction information into the user mod-
eling process. (2) We construct the SEN module
based on the sparse transformation function. It can

Model Training Inference Model Training Inference

NARM 9.62 6.42 G_NARM 48.29 6.68
STAMP 9.31 5.74 G_STAMP 45.56 5.96
SSRM 12.93 6.76 G_SSRM 46.98 6.95

SR-GNN 69.22 68.32 G_SR-GNN 93.24 69.58
DSAN 48.23 27.48 G_DSAN 90.30 31.98
SERec 99.44 78.26 SSAN 98.96 35.13

Table 3: Running time in seconds (s) per 1000 batches.

capture the sequence information and fully inte-
grate the user preference information during de-
coding. In a word, our efforts in more effectively
using the knowledge of social networks and fil-
tering out irrelevant items make us achieve better
performance.

5.3 Efficiency of SSAN (RQ4)
To investigate the efficiency of SSAN, we com-
pared some models’ running time during both train-
ing and inference on the Delicious dataset. The
experimental results are shown in Table 3. We can
observe that those variants (e.g., G_NARM) of non-
social-aware methods run slightly slower than orig-
inal models (e.g., NARM) during training and run
as fast as their original models during inference. In
the real world, as long as the model can have better
performance, a lightly large time cost of training
is acceptable, since the model only needs to be
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Dataset Delicious
Model H10 M10 N10 H20 M20 N20

SSAN-noHGE 42.07 22.77 27.34 51.32 23.41 29.68
SSAN-noSEN 41.47 22.62 27.08 51.34 23.29 29.54
SSAN-noST 40.07 21.54 25.92 49.62 22.20 28.33
SSAN-noU 42.16 23.21 27.79 51.65 23.75 30.08

SSAN 42.66 23.52 28.07 52.27 24.15 30.39

Table 4: Performance of the variants of SSAN.

trained once in a period. Although the HGE mod-
ule which captures social knowledge requires more
training time, it does not need additional time in the
inference process, which demonstrates that using
social knowledge is feasible. SSAN achieves signif-
icant performance improvement without requiring
more training time than SERec, which shows the
efficiency and superiority of SSAN.

5.4 Ablation Study (RQ5)

To investigate different modules and explore the ef-
fectiveness of some layers in SSAN, we compared
four variants of SSAN with the original SSAN. Ac-
cording to the experimental results shown in Table
4, we can draw the following conclusions:

(1) SSAN-noHGE denotes SSAN without the
HGE module. SSAN-noSEN represents SSAN
without the SEN module, and we make prediction
using the mean of all item embedding in the session.
These two variants have a pretty poor performance,
which indicates HGE and SEN modules are bene-
ficial to the final performance, and also shows the
effectiveness of the two modules.

(2) SSAN-noST means SSAN without Short-
term Intent Modeling layer. We can observe that
its performance degrades significantly, which indi-
cates the step of modeling the short-term intent is
essential for SSAN.

(3) SSAN-noU denotes SSAN without User In-
formation Fusing layer. We can observe that its
performance has also declined, which indicates that
it is important to use user preference information
to predict the next item of the current session.

6 Conclusion

In this paper, we summarize two issues of previous
SSR methods. To tackle these issues, we propose
a novel Social-aware Sparse Attention Network,
abbreviated as SSAN. In this model, we construct
the HGE module based on the improved hetero-
geneous graph neural network. It can inject the
high-confidence social knowledge and historical in-
teraction information into the modeling process of

users and items. Meanwhile, we construct the SEN
module based on the sparse attention mechanism
to integrate user preference information when mod-
eling the current session. Extensive experimental
results on two datasets demonstrate the superiority
of SSAN over the state-of-the-art models. In future
work, we plan to explore more efficient methods
to capture the social knowledge and enhance the
ability in screening irrelevant items.

7 Limitations

In this section, we discuss the limitations of our
work in detail and propose corresponding solutions
that we believe are feasible. SSAN aims to lever-
age users’ social networks and historical sessions
to provide more personalized recommendations
for the current session. We argue that its limita-
tions mainly lie in the rough confidence judgment
method, and the slightly higher time cost.

(1) Our screening method for useless social rela-
tionships and invalid historical interactions is sim-
ple. We believe that we can introduce the idea of
contrastive learning to construct a more reliable
confidence judgment method.

(2) We have a slightly higher training cost. We
believe we can eliminate the layers with a lower
cost–performance ratio by conducting more abla-
tion experiments to achieve the trade-off between
time cost and performance.
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