EdiT5: Semi-Autoregressive Text Editing with TS Warm-Start

Jonathan Mallinson Jakub Adamek

Eric Malmi Aliaksei Severyn

Google Research
{jonmall,enkait,emalmi, severyn}@google.com

Abstract

We present EDITS' — a novel semi-
autoregressive text-editing model designed to
combine the strengths of non-autoregressive
text-editing and autoregressive decoding.
EDITS is faster during inference than con-
ventional sequence-to-sequence (seq2seq)
models, while being capable of modeling
flexible input-output transformations.

This is achieved by decomposing the genera-
tion process into three sub-tasks: (1) tagging
to decide on the subset of input tokens to be
preserved in the output, (2) re-ordering to de-
fine their order in the output text, and (3) in-
sertion to infill the missing tokens that are
not present in the input. The fagging and re-
ordering steps, which are responsible for gen-
erating the largest portion of the output, are
non-autoregressive, while the insertion step
uses an autoregressive decoder.

Depending on the task, EDITS on average re-
quires significantly fewer autoregressive steps,
demonstrating speedups of up to 25x when
compared to seq2seq models. Quality-wise,
EDITS is initialized with a pre-trained T5
checkpoint yielding comparable performance
to T5 in high-resource settings when evaluated
on three NLG tasks: Sentence Fusion, Gram-
matical Error Correction, and Decontextualiza-
tion while clearly outperforming TS5 in low-
resource settings.

1 Introduction

Pre-trained seq2seq models such as T5 (Raffel
et al., 2020), BART (Lewis et al., 2020a), and
MASS (Song et al., 2019) have established strong
baselines for the majority of text-to-text trans-
duction tasks. A recent trend to massively scale
up model sizes, e.g., all the way up to 540B
params (Chowdhery et al., 2022), as well as the
sizes of pretraining corpora, has further pushed the

Code and pre-trained models https://edit5.page.
link/code
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Figure 1: EdiT5 transforms the input text A long user
query into the output The user query is very long by
first generating a sequence of edit tags D K K K (where
K stands for keeping and D for deleting the input to-
ken), re-ordering the input tokens with the pointer net-
work, and infilling missing tokens into the source se-
quence with an autoregressive decoder which jointly
predicts the text spans (The and is very) and the
position where to insert them (pos0 and pos2). The
blue arrow shows how the token pos?2 is predicted con-
ditioned on the prefix <s> pos0 The generated thus
far. The dotted arrow lines depict the encoder-decoder
cross attention over the re-ordered input tokens and edit
tags.

state-of-the-art without signs of reaching a plateau.
From a practical point of view, running inference
with such models is prohibitively expensive for
most applications, which motivates the work on
finding efficient recipes for model distillation, e.g.,
(Kim and Rush, 2016) and choosing a model ar-
chitecture that can provide a better trade-off be-
tween performance on a given task and inference
speed. A typical choice is to distill a large language
model into a smaller seq2seq model, e.g., Trans-
former (Vaswani et al., 2017). In this paper we
propose a novel model architecture EDITSwhich
blends ideas from a seq2seq TS (Raffel et al., 2020)
and text-editing to provide faster inference without
sacrificing on task performance.

Seq2seq-based models output text token-by-
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token from scratch, allowing them to model any
kind of input-output relationship. However, for
many real-world tasks this degree of generality
is unnecessary, especially for monolingual tasks
where the input and output texts have relatively
high degrees of overlap. In such cases a natural
approach is to cast conditional text generation as
a text-editing task, where the model learns to con-
struct target texts by applying a set of edit oper-
ations to the inputs (Malmi et al., 2022). Typi-
cally the set of edit operations is defined ahead of
time (Omelianchuk et al., 2020; Malmi et al., 2019;
Awasthi et al., 2019), which on the one hand limits
the flexibility of the model to reconstruct arbitrary
output texts from the inputs, but on the other, leads
to latency improvements as the limited set of al-
lowed operations significantly reduces the output
vocabulary of the decoder. In this paper, we pro-
pose an approach which is both fast at inference
time and flexible, able to model arbitrary rewrites.

Faster inference. A common method for achiev-
ing low latency in serving models is to reduce their
size, thus reducing their computational cost. Doing
so naively, however, often leads to inferior model
quality, and much work has gone into finding better
methods for model size reduction, such as distilla-
tion (Kim and Rush, 2016).

Regardless of model size, one of the major con-
tributors to the total inference time for seq2seq
models is the decoder, which generates the output
sequence step-by-step. EDITS also relies on an au-
toregressive decoder, but generates the majority of
the output sequence with its tagging and pointing
networks, and as such the decoder makes far fewer
steps.

Flexible text-editing. Recent text-editing ap-
proaches, e.g., (Awasthi et al., 2019; Malmi et al.,
2019), are not as powerful as general purpose
seq2seq approaches when it comes to modeling
arbitrary input-output text transductions. EDITS
supports open-vocabulary generation by relying on
an autoregressive decoder. In the extreme case,
where there is no overlap between the source and
the target texts, it reduces to a vanilla seq2seq
model generating the entire output from scratch.
However, when the input and output overlap, it can
benefit from the tagging and pointer networks to
reconstruct the bulk of the output text that is further
infilled (refined) by the autoregressive decoder.

Warm start. Training a high-precision text
generation model typically requires large amounts
of high-quality supervised data. Self-supervised
techniques based on text in-filling (Rothe et al.,
2020a; Lewis et al., 2020b; Raffel et al., 2020) have
been shown to provide a crucial advantage over
non-pre-trained models especially in low-resource
settings. Hence, we design EDITS to be able to
benefit from already existing pre-trained language
models (specifically T5), where the final model is
directly fine-tuned on the downstream task.

EDITS decomposes the generation task into
three steps: tagging, pointing and insertion (see
Fig. 1). The tagger and pointer networks decide
which source tokens to preserve and in which or-
der they should appear in the output, thus allowing
for arbitrary word dropping and reordering. The
tagger is implemented using a non-autoregressive
feedforward network, and pointing is implemented
using a novel non-autoregressive pointing mecha-
nism (Vinyals et al., 2015) combined with sinkhorn
layers (Mena et al., 2018). The insertion network
inserts/infills words which are present in the tar-
get sequence but do not appear in the source se-
quence. The network is implemented using an au-
toregressive transformer decoder, which attends
to the tagged, reordered source sequence. The de-
coder predicts both the locations of where the token
spans should be infilled, as well as the spans them-
selves.

We evaluate EDITS on three distinct text gener-
ation tasks: Sentence Fusion, Grammatical Error
Correction (GEC), and Decontextualization, com-
paring to recent text-editing approaches and T5.
Each task is unique in the editing operations re-
quired and the amount of training data available,
which helps to better quantify the value of model-
ing decisions we have integrated into EDITS.

Additionally, we explore the impact of training
data size and model size on EDITS. Finally we
quantify the latency of EDITS, providing a detailed
analysis and comparison to T5.

2 Model description

The model architecture of EDITS resembles a
vanilla Transformer (Vaswani et al., 2017) com-
posed of an encoder and a decoder. EDITS de-
composes the generation of a text y from an input
x into three parts: predicting a sequence of edit
tags y' (indicating whether a token from the input
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should be copied to the output), a permutation of
the input tokens 7 (indicating the order that copied
tokens should appear in in the output), and a se-
quence of tokens y? (indicating additional tokens
that should be in the output, and where in the per-
muted input they should be inserted). y* and 7 are
modeled by the encoder, and y by the decoder.

There are multiple ways to choose the triple (y*,
7, y%) for a given (x, y) pair. During dataset cre-
ation we choose a single such triple for each train-
ing pair (see section 2.1 for details), in which case
the probability of y can be expressed as:

ly?|

H P(yf\yii, yta T, X)

(]

P(ylx) ==

x P(nly', x) * P(y'[x) D

During inference, we first greedily set y* to max-
imize the third term, then 7 to maximize the second
term, and finally y¢ to maximize the first term. The
output text y is realized by applying the tags y*
and permutation 7 to the input sequence x and then
inserting the tokens y?.

2.1 Text-editing encoder

The EDITS encoder consists of three steps: encod-
ing, tagging, and pointing.

Encoder. The source sentence x is first encoded
using IV transformer layers into the hidden repre-
sentations h.

Tagging. The tag sequence y' is constructed as
follows: source tokens that must be copied are
assigned the KEEP tag, tokens not present in the
output are marked by the DELETE tag. Tags are
predicted by applying a single transformer layer fol-
lowed by a classification layer to the output of the
encoder h, which is trained using cross-entropy:

x|

£tagging = - Z log P(yj |ft(h)3) 2)
J

where y' are the gold tags, j is the index of the
source token, and f; is a transformer layer followed
by a classification layer. During inference we use
argmax to determine the tags, whereas during train-
ing we use the gold tags. The encoder hidden state
is then updated to take these tags into account:

h! = fic([hy;; TE(y}))) 3)

Where T'E is a tag embedding layer, whose output
is concatenated to the original hidden representa-
tion of the source sequence, before a feed-forward
layer fie is applied.

Pointing. In many tasks it is helpful for the
model to be able to rearrange the kept input to-
kens. For example, we can grammatically correct
the sentence Who you are? to Who are you? purely
by reordering tokens from the input. In EDITS
this is made possible thanks to its pointing mecha-
nism. In contrast, in text editing approaches such
as Malmi et al. (2019); Dong et al. (2019), correct-
ing this sentence involves first deleting the words
you are and then recreating them in the right order.
Given a sequence x and the predicted tags y?,
the re-ordering model generates a permutation .
Our implementation is based on a pointer network
(Vinyals et al., 2015), where an attention mecha-
nism points to the next token. We follow Mallinson
et al. (2020) which, unlike previous approaches
where a decoder state attends over an encoder se-
quence, applies intra-attention, where source to-
kens attend to all other source tokens. As such the
output of this model is a series of predicted point-
ers, where each source token predicts the token
that comes after it. 7 can easily be constructed by
daisy-chaining these predicted pointers together, as
seen in Fig. 2. We calculate attention using key-
query attention, where we include an additional
transformer layer prior to the key network:

g = f1(0)m - f5 (1), )

Where «,, ; is the unnormalized attention, f9 is
the query network, a single feed-forward layer, and
f* is the key network, a transformer layer followed
by a single feedfoward layer.

Unlike Mallinson et al. (2020), we ensure a valid
permutation is formed, i.e. no token is pointed
to twice, by using sinkhorn layers (Mena et al.,
2018), which normalizes over both the rows and the
columns of the intra-pointer attention «. Sinkhorn
layers are defined as:

SO = exp(a) &)
St = T(T-(S" ! (a)) (6)
where T9™ (X)) = Z)l(JXTm is the column normal-

o ; Xjm -
ization operator and 77" (X)) = s~ is the row
17,

normalization operator.
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Figure 2: Pointing mechanism to transform
user query" into “user query long".

‘a long

The loss for the pointing network is defined as:

£pointing - CE(W‘S(O&)) (7)

Where CE is the cross-entropy loss. During infer-
ence we use argmax to determine 7.

We use additional positional embeddings to up-
date the hidden states with their new position (off-
set from 0). For example if Who you are? was
reordered into Who are you?, the position infor-
mation would be updated as ¢Who ,you jare 3?.

h = (hj + PE(;)) ®)

where PFE are learnt absolute positional embed-
dings (Devlin et al., 2019). These additional posi-
tional embeddings are masked out for those source
words which do not appear in the target sequence.
Finally we apply a transformer encoder layer to
h? forming the final encoded representation of the
sequence h’/. hf captures the edits as well as the
original sequence x, and the decoder attends to this
representation.

Decoder. We use a standard transformer decoder,
which is tasked with inserting tokens which are in
the output sequence but don’t appear within the
input sequence. EDITS5 takes advantage of the pre-
training of a TS model, where TS was pre-trained
to infill missing spans. When pre-training T5 uses
special tokens (pos_i) to indicate where missing
spans should be inserted, as demonstrated in Fig-
ure 3. EDITS re-purposes these special tokens,
using them to indicate at which position new to-
kens should be infilled. Le. (pos_I), indicates that
the tokens should be inserted after the first token.
As such the decoder first decodes a special posi-
tion token and then decodes the inserted tokens
which should appear after this token. For example
to insert the cat after the first token, the decoder
generates: (pos_I) the cat. The decoder is trained

Source/Target: a long user query .

TS Input: a [X]user query [Y]
T5 decoder: [X] long [Y] .
EdiT5 Input: user a query the
EdiTS5 tagger: K K K D
EdiTS pointer: a user query
EdiT5 decoder: [0] 1ong [2] .
Figure 3: Example pre-training noise for T5 and

EDITS. K and D indicate keep and delete tags resspec-
tivly, and [0] indicates posO.

with a standard cross-entropy loss:

|y
Einsertion = - Z lOg P(Z/ldb’iw hf) (9)
i

Where i is the decoder index, and i/ is the encoder
output. The loss for the entire model is defined as
the sum of the three individual losses:

L= Alctagging + )\2£pointing + )\3£insertion
(10)
where A, A2 and A3 are hyper-parameters deter-
mining the relative importance of tagging, pointing
and insertion losses in the final loss.

Pre-training. While we initialize EDITS from
TS5 base, TS was pre-trained with 12 decoder lay-
ers, and for EDITS we use a single decoder layer.
To account for this change in the decoder layers,
we perform additional pre-training. We use a pre-
training objective which combines a TS5 style span
insertion task, with a generic text-editing denoising
task, as used in BART (Lewis et al., 2020b). A
source sentence is corrupted by dropping, swap-
ping and adding spans (an example can be seen in
Figure 3), and we task our model to reconstruct the
original sentence. By introducing noise we are able
to train the tagger to detect incorrect spans, and the
pointer to reorder the sentence. The decoder then
behaves like the TS pre-training objective inserting
the content of missing spans. Unlike BART’s pre-
training, our approach is computationally cheap, as
we do not decode the entire sequence when training,
instead just decoding the missing spans.

Dataset construction. When constructing the
training dataset, there are many possible combi-
nations of y*, 7 and y? which could produce y.
For instance, all source tokens could be deleted and
the decoder could then produce all the target tokens.
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However to minimize latency, we wish to make the
number of inserted tokens (i.e. the number of de-
coder steps) as small as possible, and maximize the
number of kept tokens.

To produce alignments from a target sequence to
a source sequence, we iterate left-to-right through
characters in the target sequence, trying to find
spans of target characters which appear in the se-
quence of source tokens, as described in Algorithm
1 (see Appendix A). Each source token can only
be aligned to a single target span. Those target
spans that can’t be aligned are instead inserted af-
ter the closest previous aligned source token. In
cases where there are multiple possible alignments,
e.g. the same token appears multiple times in the
source, we align the target character span to pro-
duce the longest contiguous span of source tokens
aligned with the target, i.e. where source tokens
appear one-after-another in the target sequence. To
find the longest contiguous span we compare the
contiguous overlap between source and target for
each possible alignment.

3 Experiments

We evaluate EDITS on three distinct text-editing
tasks: Sentence Fusion, Grammatical Error Cor-
rection, and Decontextualization. In addition to
reporting previously published results for each task,
we also compare to FELIX (Mallinson et al., 2020),
a recent non-autoregressive text-editing model, and
a strong pre-trained TS5 baseline implemented in
the T5X framework (Roberts et al., 2022).

Modeling. For EDITS we initialize with a TS
base model with a 12-layer Transformer en-
coder, and single-layer Transformer decoder. Our
code is based on the Tensorflow Model Gar-
den’s (Hongkun Yu and Li, 2020) TF2 version of
T5. After initializing with the TS checkpoint, we
further pre-train on the denoising objective (see
Section 2.1) using the C4 corpus (Raffel et al.,
2020), training for 100k steps.

For all experiments EDITS is trained using
AdamW (Loshchilov and Hutter, 2019), addition-
ally the learning rate was decayed using the vali-
dation set, and exact match is used for checkpoint
selection. Tokenization is based on T5’s Senten-
cePiece vocabulary (Kudo and Richardson, 2018),
with a vocabulary size of 32k. We, however, mod-
ify the vocabulary, removing tokens which have
punctuation as a suffix, and replacing them with ad-
ditional span insertion special token, giving EDITS

512 span insertion special token. Unless otherwise
stated, we use an input sequence length of 128.
We performed minimal hyper-parameter selection,
which is discussed in the Appendix.

Task Analysis. The chosen tasks cover a diverse
set of edit operations and a wide range of dataset
sizes, varying from under 11 thousand data points
to over 4.5 million. Table 1 provides dataset statis-
tics including: the size, input sequence length, out-
put sequence length for seq2seq models, the output
sequence length for EDITS5, and the translation er-
ror rate (TER) (Snover et al., 2006) between the
source and target sentences. We use TER to high-
light unique properties of each task.

From Table 1 we see that for all tasks EDIT5
requires significantly fewer decoder steps than a
seq2seq model, which results in significant latency
savings. We also see that decontextualization has
the longest input and output sequences, where the
maximum input length of decontextualization is
512 tokens. Decontextualization has the highest
TER, with the major contribution being deletion,
which is due to the input sequence consisting of a
paragraph, whereas the output is a single sentence.
In contrast GEC, has the shortest input and output
sequence, with the majority of the dataset consist-
ing of a single input and a single output sentence.
GEC has the lowest TER, however it has the high-
est insertion TER. Sentence fusion consists of two
sentences being rewritten into a single sentence,
and has a middling TER and sequence lengths. It
also has the fewest substitutions.

3.1 Sentence Fusion

Sentence Fusion is the task of fusing independent
sentences into a coherent output sentence(s) (Geva
et al., 2019). It requires operations such as inferring
the appropriate discourse connective, pronominal-
ization, reordering the text to introduce relative
clauses, and changing the order of the input sen-
tences.

Data. We use the “balanced Wikipedia” portion
of the DiscoFuse dataset (Geva et al., 2019) and
also study the impact of training data size by cre-
ating four additional smaller subsets of DiscoFuse
consisting of: 450,000 (10%), 45,000 (1%), 4,500
(0.1%) and 450 (0.01%) data points.

Setup. Following Geva et al. (2019), we report
Exact match, which is the percentage of exactly
correctly predicted fusions. In addition to the T5
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Dataset Size L Lig

E5-Ins

TER Ins Del Sub Shft

4.5M 425 411
2.3M 243 247
1939 49.1

Sentence fusion
GEC
Decontextualization 11K

5.8 1092 249 0491 3.75 0.62
46 0972 299 01.19 505 049
72 8480 0.28 90.64 643 2.65

Table 1: Statistics across tasks: size of the dataset (Size), source length in tokens (L), target length in tokens
(L), EdiT5 insertion tokens (E5-Ins), and TER scores, including number of insertions (Ins), deletions (Del),
substitutions (Sub), and shifts (Shft). Token counts are measured using a sentencepiece tokenizer and averaged

over the development set.

#Params 100% 10% 1% 0.1% 0.01% latency

110M  53.80 47.31 38.46 2574 1232 -
220M 6131 52.85 4545 36.87 16.96 1.8

LASERTAGGER
FELIX

Seq2Edits 279M  61.71 - - - - -
EDITS 14IM 6495 59.26 52.09 43.83 28.64 22

- pre-training  141IM  65.16 59.27 50.39 34.18 190 2.2
T5 base 220M 6552 59.75 50.75 33.84 10.75 52.7
ROBERTA 380M  66.6 - - - -
AugBERT 157M  65.0

Table 2: Sentence fusion results (Exact Match, lower-
cased) under various data conditions, latency (ms), and
number of parameters.

baseline and the text-editing baselines LASERTAG-
GER (Malmi et al., 2019), FELIX (Mallinson
et al., 2020), and Seq2Edits (Stahlberg and Ku-
mar, 2020), an autoregressive text-editing model,
we also report state-of-the-art seq2seq models
ROBERTASHARE (Rothe et al., 2020b), based
on ROBERTA large, and AugBERT (Ben-David
et al., 2020), based on BERT base. Additionally,
we measure the impact of our pre-training (Sec-
tion 2.1) initializing EDIT5 with a T5 checkpoint,
without additional pre-training.

Results. From the top section in Table 2 we first
observe that EDITS strongly outperforms other
text-editing methods. Next it performs comparably
to TS5 in high-resource settings (100% and 10%),
where it’s just 0.5 points lower in exact match than
T5, whilst achieving a latency that is 25 times faster,
and using fewer parameters. The current SOTA,
ROBERTASHARE, which outperforms EDITS by
1.5 points, is based on the ROBERTA large check-
point which overall has more parameters and a
larger encoder. In low-resource settings, EDITS
clearly outperforms T5 by up to 18 points (0.01%,
i.e. 450 training examples).

The results in Table 2 additionally demonstrate
that the significant improvements of EDITS over
Felix in high/medium-resource settings do not stem
from EDITS pre-training. With 450 datapoints, pre-
training is critical since there’s a larger mismatch
between EDITS and TS5 checkpoints than there is

between Felix and BERT checkpoints. We addi-
tionally ablated the impact of sinkhorn layers, and
found that under the 100% data condition there was
a modest decrease in performance (0.5 exact match
points).

3.2 Decontextualization

Sentence decontextualization task was introduced
by Choi et al. (2021). The goal is to rewrite an
input sentence to make it stand-alone without the
original context.

Data. We use the train, dev and test data from
Choi et al. (2021), where sentences were selected
from Wikipedia passages. Human annotators were
asked to rewrite them, if possible, to be inter-
pretable and grammatical without the context. We
compare against TS base, TS5 xxlI, FELIX, and a
copy baseline. All models use a sequence length of
512.

Metrics. Following Choi et al. (2021), we report
exact match, exact match when a sentence needs to
be rewritten and SARI F1 (deletion and addition)
on unigrams (Xu et al., 2016).

Analysis. Results in Table 3 show that EDITS
achieves a higher exact match scores, and SARI
delete score when compared to T5 base, with a sig-
nificant drop in latency and using fewer parameters.
TS5 base achieves significantly higher SARI add,
suggesting its better at inserting new tokens, which
is unsurprising as EDITS is primarily focused on
copying the source sequence. Both T5 and EDITS
achieve significantly higher numbers than FELIX.
EDITS5 and T5 base, however, still achieve a signif-
icantly lower score than the TS xxI, which can be
explained by the difference in model size.

3.3 Grammatical Error Correction

GEC requires systems to identify and fix grammat-
ical errors in a given input text.
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#Params EM EMc ADD DEL latency
Repeat - 36 0 0 0
T5 xx1 11B 52 32 43 47
FELIX 220M 32 10 28 32 4
EDITS 141M 48 23 31 41 3.8
T5 base* 220M 40 21 36 40 75

Table 3: Decontextualization results, including exact
match (EM, exact match on those sentences which
need rewriting EMc, SARI ADD, SARI DELete, la-
tency (ms), and number of parameters. * indicates
scores were calculated by running the models provided
by Choi et al. (2021) on the test set.

Data. We evaluate on the standard GEC test set
BEA (Bryant et al., 2019), and use BEA-DEV
for checkpoint selection. For pre-training we use
an artificial GEC dataset C4_200M of 200M sen-
tences (Stahlberg and Kumar, 2021). We then fine-
tune on cLang-8 (Rothe et al., 2021), a distilled
version of the Lang-8 learners corpus (Mizumoto
etal., 2011).

Setup. We report ERRANT F0.5 scores for BEA.
We report additional gT5/gFelix baseline numbers
from Rothe et al. (2020b), where T5/Felix models
were trained only on cLang-8. For pre-training we
sampled 0.2% examples from the training set to
use as a development set, and train till convergence
as measured on this development set.

We additionally measure the impact that model
size has on quality and latency, training T5 and
EDITS small, base, and large models. To make
the latency comparison fairer, we also train single-
decoder-layer variants of the T5 models we call T5
Slim. To further ensure a fair latency comparison
between EDITS and T5 we use the same framework
for both models. Additionally, we do not perform
EDITS specific pre-training.

Results. From Table 4, we see that all models out-
perform their equivalent gT5/gFelix models, which
is not surprising as the latter models were trained
on less data. A surprising result is that the T5 slim
variants achieve comparable scores to the full T5
models while having significantly lower latency.
Comparing EDITS against TS5 models, we see up to
~1 point differences in F0.5 scores between mod-
els of the same size (small/base/large), however
EDITS5 produces speed ups between 10x and 25x.
In Figure 4, we study the latency—quality trade-
offs of TS5, TS slim, and EDITS models. We omit
Felix from this analysis, because Felix achieves
a significantly lower score. We focus on the 95

Model #Params  FO0.5 Mean Median 95%  Speed Up
gT5 small 76M 65.01

gT5 base 248M 69.39

gT5 large 783M 72.06

gT5 xxl 11B 75.88

gFelix base 220M 59.05 -

TS5 small 76M 69.79 105 9.2 21.0  3.5x
TS5 base 248M 7239 355 31.2 74.1 1.0x
TS large 783M 7343 924 81.3 184.8  0.4x
T5 slim small ~ 55M 68.50 2.6 2.3 5.1 14.5x
TS slimbase  144M 71.78 4.7 43 8.7 8.5x
TS slim large  391M 73.18 11.1 10.1 20.0 3.7x
Felix base 220M 63.50 1.8 1.8 1.8 41.2x
EDITS small ~ 50M 68.40 0.9 0.8 1.3 57.0x
EDITS5 base 141M 7158 1.8 1.6 2.5 29.6x
EDITS large  391M 7293 4.1 39 6.6 11.2x

Table 4: GEC FO0.5 results for gT5, gFelix, TS, TS5 slim,
Felix, and EDITS; number of parameters; mean, mode
and 95 percentile latencies (in milliseconds); we also

present speed up, the ratio of 95 percentile latency to
TS5 base.

large

73 O .{
72 baEe base
*-
n
o /1
(e
70 small
® EdiT5
69 small T5 slim
small
.{ ® T5
o 1 2 3 4 5 6 7 8 9 10 11 12

Latency (ms)

Figure 4: Mean and 95% percentile latency for TS5, TS
slim and EDITS across model sizes on BEA.

percentile latency, as it is often the case that users
require that a model returns a result within a fixed
latency budget. We see that EDITS drops less than
0.25 FO.5 points comparing across model sizes,
whilst being significantly faster. Additionally for
a given latency budget of Sms, no full T5 model
would fit, and only the T5 slim small would fit,
whereas both EDIT5 small and base fit. Com-
paring EDITS base against T5 slim small, we see
that EDITS scores 3 F0.5 points higher, whilst be-
ing faster. For any latency budget under 20ms,
EDITS is quicker and offer better results than T5
and T5 slim. For latency budgets above 20ms, T5
slim large scores slightly (<0.25 F0.5) higher than
EDITS, and if latency is not a factor then gT5 xxI
should be used.

4 Latency analysis

The tasks on which EDITS outperforms seq2seq
models in latency are those that have overlap be-
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tween sources and targets, but it’s unclear how
much overlap is required for EDIT5 to produce
latency savings. To answer this question, we split
EDITS base, TS base and T5 slim base into compo-
nents whose latencies we measure separately and
compare. Details on how latencies are measured
can be found in the Appendix C.

A seq2seq model decomposes into two parts:
the encoder (we include the input embedding here,
so we refer to this as encoder* below), and the
decoder. EDITS has both of these parts, but also
includes a third part (which we call its overhead),
comprising of pointer realization and additional
transformer layers. To make our analysis simpler
and more task-agnostic, we make two simplifying
assumptions. First, we assume the worst-case that
no tokens are deleted by EDITS and there are no
padding tokens in the input?, in practice this is
not the case, and provides significant latency sav-
ings for EDITS. Second, we assume that decoder
latency is linear in the number of decoder steps?.
Both of these assumptions benefit the latency of
seq2seq models more than EDITS.

Results. In Table 5 we present latencies of en-
coder*, worst-case EDITS overhead and the per-
step latency of a decoder under various input-length
conditions. We see the overhead added by EDIT5
even in the worst-case is small.

From these results we can derive a simple rule
for when EDITS will provide a net latency benefit.
Compared to TS slim base*, EDITS base must save
on average 4 decoder steps with an input length of
128, and 7 steps with an input length of 512.

Finally, collating the results in Table 5 with the
number of decoder steps performed by EDITS and
TS5 in Table 1, we see that whereas in T5 the de-
coder latency dominates the latency of encoder*, in
EDITS this is no longer the case. For instance for
GEC, at 24.7 decoder steps on average required to
construct the output, TS5 slim spends 3.7x more time
in its decoder than in encoder*. EDITS however
spends less time in its decoder than in encoder*, as
such the encoder* is now the latency bottleneck.

5 Related work

T5 (Raffel et al., 2020) is a pre-trained,
Transformer-based (Vaswani et al., 2017) encoder-

2The pointer realization runs for exactly input-length steps.

3This ignores decoder self-attention, but is justified when
the number of decoder steps is small.

“The overhead is smaller than 1 step of T5 base.

Component Len. 128  Len. 512
Encoder* 0.98 2.65
Worst-case EDITS overhead 0.49 1.16
1 layer decoder per-step 0.15 0.17
12 layer decoder per-step 1.26 1.47

Table 5: Mean latencies (in milliseconds, 4= 0.01ms)
measured for the components of EDITS and T5 models
for various input lengths. EDITS overhead is normally
input dependent, but we estimate worst-case latency.

decoder model which has become a general-
purpose tool for a variety of sequence-transduction
tasks, establishing many new state-of-the-art results
(Raffel et al., 2020; Rothe et al., 2021). However,
two considerable challenges hindering the produc-
tionizing of T5-based models are the high latency
caused by autoregressive decoding and the need
for having a relatively large number of training
examples despite the fact that pre-training makes
T5 more sample efficient. Recently, it has been
found that the sample efficiency problem can be
mitigated by performing in-context few-shot learn-
ing, but this typically requires scaling up the model
size even further (Brown et al., 2020; Chowdhery
et al., 2022), increasing the latency.

To reduce latency, a number of non-
autoregressive (NAT) seq2seq methods have
been proposed for neural machine translation (Gu
et al., 2018, 2019; Du et al., 2021) but a quality
gap compared to autoregressive methods still
exists. To decrease the gap, it is common to run the
NAT methods iteratively, which, however, limits
the inference speed advantage over autoregressive
methods (Lee et al., 2018). In contrast, we show
that for tasks where inputs and outputs overlap,
we can maintain an order-of-magnitude speed-up
without compromising on the model quality by
treating the problem as a text-editing task and
producing the output in a single pass.

A number of text-editing models have been pro-
posed as a faster and more sample efficient alter-
native to seq2seq models like TS5 (Awasthi et al.,
2019; Malmi et al., 2019; Omelianchuk et al., 2020;
Mallinson et al., 2020). Another recently proposed
approach to speed up the inference time of Trans-
former models is called aggressive decoding (Sun
et al., 2021; Ge et al., 2022).

Closest to our work, Mallinson et al. (2020) show
that adding pointing mechanism for reordering and
a separate insertion model allow their text-editing
model, FELIX, to produce an arbitrary output in
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a flexible manner. FELIX is a non-autoregressive
model which first predicts the tokens to keep, their
order, and the locations at which to insert new to-
kens. Then it runs a separate model based on a
BERT masked language model for inserting new
tokens. In contrast, EDIT5 employs a single, end-
to-end model which has an autoregressive inser-
tion component. This enables more accurate in-
sertions, while keeping the latency low, given that
most of the tokens can be copied from the source
non-autoregressively. Other text-editing models
that employ autoregressive insertion include Ed-
itNTS (Dong et al., 2019), the text-normalization
model by Zhang et al. (2019), Seq2Edits (Stahlberg
and Kumar, 2020), ESC (Chen et al., 2020) and
LEWIS (Reid and Zhong, 2021). However, un-
like EDITS, these models perform also the edit op-
eration prediction autoregressively, making them
potentially slower at inference time.

6 Conclusions

In this paper we have proposed EDITS a low la-
tency solution to text generation, that achieves com-
parable or betters results, across three distinct tasks,
to a strong TS baseline whilst achieving inference
latencies that are up to 25x quicker than the base-
line model.

In the future we wish to explore the following
ideas: 1) The impact of distillation for EDITS. Dis-
tillation has previously been shown to be particu-
larly advantageous to non-autoregressive models.
2) Exploring the impact that quantization has on
both latency and quality. 3) Applying EDITS5 to
additional languages. EDITS makes no language
specific assumptions and we plan to apply it to
languages other than English.

Limitations

A limitation of EDITS, and text-editing models in
general, is the assumption of overlapping text be-
tween the input and output sequences. For instance,
in machine translation the overlap between source
and target is minimal to none. As such EDITS
would decode the entire target sequence, thus offer-
ing no latency saving.

An additional limitation is that all of our exper-
iments were done on English tasks. It is unclear
how EDITS5’s pointing mechanism would behave
with languages which have a less strict word-order,
such as Czech.

Finally, we have measured latency only on V4

TPUs, and thus it is unclear how the performance
would behave on different graphics cards or on
CPUs. As such to determine if EDITS offers a
good trade-off between quality and latency, one
must measure latency on the target device.
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A Alignment Algorithm
B Training Details

All models were trained on 4x4 or 8x8 TPUs,
all EDITS models completed training (including
EDITS pre-training) in under a day. T5 large pre-
training large took 2 days to complete and was done
using a 4x4 TPU.

B.1 Hyper-Parameters Selection

For T5 we compared the T5 1.0 and T5 1.1 version
using the base model on the validation sets and
found that T5 1.1 performed better, as such used T5
1.1. For EDITS we used the BEA dev set, finding
that TS 1.0 base performed better than T5 1.1 and
selected 1.0 for all experiments.

For T5 we used the recommend fine-tuning
settings, including using the adafactor optimizer

Algorithm 1: EDITS Alignment

Data: source ; // List of tokens
Data: target; // List of characters
Result: alignments
buffer <
alignments <+ []
10
while ¢ < len(target) do
max_length < 0
max_index < 0
j—i+1
while j < len(target) do
source_index, overlap_length «
contiguous_length(target[i:j],source)
if overlap_length > max_length then
max_length < overlap_length
max_index < source_index
L Jj<J+1
if max_overlap_length > O then
source[max_index] < 0
alignment < (i,j,max_index,buffer)
alignments.append(alignment)
buffer < ()
14 j+1

else
buffer <— buffer + target[i]
i—1+1

(Shazeer and Stern, 2018), with a learning rate of
0.001. For EDITS5 we used AdamW with default
settings and the default learning rate of 3e-4.

DiscoFuse. For both EDITS5 and TS5 we experi-
mented with 3 different batch sizes 128, 256, 1024.
For 100% and 10%, there was not a noticeable dif-
ference in the DEV set exact match performance,
so we chose 1024 as it converged the quickest. For
1% and lower, we found that a batch size of 128
performed the best on the dev set.

Decontextualization. For EDITS5 we experi-
mented with the batch size 128, 256, 1024 and
found that 256 offered the best exact match and
used this. We also slightly modified the pre-
processing code, bracketing the target sequence
with [CLS] and [SEP], which helped the alignment
code.

GEC. For both EDITS5 and T5 we used the T5
recommended number of tokens per batch of: batch
size = 512, maximum sequence length = 128. We
however note that TS used the inverse: batch size =
128, maximum sequence length = 512. For TS5 and
EDITS5 we disabled learning rate warmup when
fine-tuning on cLang-8. Two additional hyperpa-
rameters were set for EDITS, during pre-training
on C4_200M, we noted that EDITS train set per-
formance was lower than T5, as such we disabled

2137


https://aclanthology.org/2021.bea-1.4
https://aclanthology.org/2021.bea-1.4
https://aclanthology.org/2021.bea-1.4
https://doi.org/10.18653/v1/2021.acl-long.462
https://doi.org/10.18653/v1/2021.acl-long.462
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.1162/coli_a_00349
https://doi.org/10.1162/coli_a_00349

dropout on the additional EDITS specific trans-
former layers. We additionally used the dev set to
set the values of lambda for equation 10. We exper-
imented with tagging/pointing A being 1, 2, 10, or
equal to the number of tokens. Where \ equal to
the number of tokens produced the best results.

C Latency measurement

To report latency for a model, we run inference
on a Cloud TPU V4 chip with batch size 1 and
report the time spent in computations on the device.
This approach ignores some practical contributors
to latency, such as memory transfers between the
host and device, but we found it also reduced noise
significantly, while focusing on the main perfor-
mance differences between EDITS, TS5 and TS5 slim
(the amount of computation they each perform).
To further minimize spurious latency differences,
both EDITS5 and the baseline models are based on
the same T5 implementation, found in TensorFlow
Model Garden (Hongkun Yu and Li, 2020).
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