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Abstract

This paper examines the encoding of analogy
in large-scale pretrained language models, such
as BERT and GPT-2. Existing analogy datasets
typically focus on a limited set of analogical
relations, with a high similarity of the two do-
mains between which the analogy holds. As a
more realistic setup, we introduce the Scientific
and Creative Analogy dataset (SCAN), a novel
analogy dataset containing systematic map-
pings of multiple attributes and relational struc-
tures across dissimilar domains. Using this
dataset, we test the analogical reasoning capa-
bilities of several widely-used pretrained lan-
guage models (LMs). We find that state-of-
the-art LMs achieve low performance on these
complex analogy tasks, highlighting the chal-
lenges still posed by analogy understanding.

1 Introduction

Analogy-making is a cornerstone of human intel-
ligence (Gentner et al., 2001), allowing us to ac-
quire new knowledge and creatively explore new
concepts. According to Gentner (1983)’s Structure-
Mapping Theory, analogical reasoning is different
from surface similarity. Instead, the attributes of a
familiar concept (the source domain) are mapped to
something less familiar (the target domain) if their
relational structures are similar enough. For exam-
ple, while not directly similar in their attributes, the
underlying relational structure of the solar system
matches that of an atom. The relationship between
two source domain attributes (e.g. sun and planet)
helps us to understand that between their target
domain counterparts (nucleus and electron).

Within natural language processing (NLP), the
word analogy task (Mikolov et al., 2013), has been
widely used to demonstrate analogical reasoning
capabilities of pretrained word embedding models.
The task involves solving analogies of the form
A:B :: C:D (i.e., A is to B as C is to D) by exploit-
ing (local) linear properties of word vectors (vector

offsets). Subsequently, word analogy became one
of the standardized tasks for intrinsic evaluation of
word embedding quality. However, Gladkova et al.
(2016) showed that the vector offset method was
not sufficient for most types of analogical relations,
and Rogers et al. (2017) pointed out shortcuts that
the models were taking. Existing word analogy
datasets focus on a limited set of analogical rela-
tions, include words that are semantically similar
and do not require the model to relate distinct con-
cepts via systematic comparison of their relational
structures, all of which is necessary for human-
like analogy making. In parallel, the field has seen
the development of large-scale pretrained sentence
encoders, whose analogical reasoning capabilities
have not yet been fully tested.

To address these issues, we devise and release a
new dataset – the Scientific and Creative Analogy
dataset (SCAN) – comprising holistic analogies be-
tween concepts from semantically distant domains.
It draws on metaphorical and scientific analogies.
Resolving these analogies requires the models to
identify systematic ontological correspondences
between two distinct semantic domains, such as in
the solar system – atom example. Our contribu-
tions are threefold: 1) We present the SCAN anal-
ogy evaluation task and dataset, which we make
publicly available to the research community; 2)
We systematically evaluate current state-of-the-art
LMs on the established BATS dataset (Gladkova
et al., 2016), which consists of a large number of
traditional word analogies, as well as the novel
SCAN dataset. We show that in the latter case the
models exhibit severe limitations in understanding
analogies; 3) We show that a high performance
on BATS is not indicative of how well the models
solve the complex SCAN analogies, supporting our
hypothesis that BATS does not require full analogi-
cal reasoning.
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2 Related Work

Turney (2008) presented an algorithm for anal-
ogy solving and tested it on 20 scientific and
metaphorical examples, where a source domain
is mapped to a different target domain, along with
a number of its attributes (e.g. waves to sound).
While few, these examples were true to human
analogy-making, representing a wide range of se-
mantic relationships. Using a linear offset method
(3CosAdd), Mikolov et al. (2013) demonstrated
that their word embeddings automatically capture
analogical information about word relationships, so
that emb(king)− emb(man) + emb(woman) ≈
emb(queen), where emb is the embedding func-
tion represented by the neural network. Gladkova
et al. (2016), however, showed that the pretrained
word embeddings at the time could only reliably
complete word analogies for inflectional morphol-
ogy categories while struggling on many semantic
categories. They released a balanced, larger and
more diverse dataset than Mikolov et al. (2013)’s
(40 vs 15 relation types), the Bigger Analogy Test
Set (BATS), demonstrating that Word2Vec was not
able to solve most types of word analogies. In
particular, a larger semantic distance between the
source and target domains resulted in low perfor-
mance (Rogers et al., 2017).

Transformer language models such as BERT
(Devlin et al., 2019) have pushed the state-of-the-
art on a number of NLP tasks. But since 3CosAdd
cannot easily be applied to them, due to their word
embeddings not being fixed but dynamically cal-
culated, their analogical capabilities have not been
investigated much. While some headway has been
made in that regard (Li and Zhao (2020), Zhu and
de Melo (2020), Ushio et al. (2021)), the focus has
been on transferring the traditional word analogy
datasets to the sentence level. This does, however,
also transfer their limitations. In general, the low
performance of models in Gladkova et al. (2016)
and Zhu and de Melo (2020) suggest that com-
pleting word analogies is challenging for state-of-
the-art LMs, even when structure mapping across
distinct domains is not explicitly tested.

3 SCAN Dataset

Our dataset contains 449 analogy instances, clus-
tered into 65 full concept mappings. A source con-
cept is mapped to a target concept along with a
number of related attributes. Table 1 provides two
examples. When mapping from the source concept

War to the target concept Argument, a number of
relevant attributes’ correspondences are given. The
number of attributes per cross-domain mapping is
not fixed. The dataset includes the 20 mappings
from Turney (2008) (10 scientific and 10 metaphor-
ical) and extends them by another 43 metaphorical
mappings and 2 scientific ones. The new metaphor-
ical mappings include conceptual metaphors from
the Master Metaphor List (Lakoff et al., 1991) and
other conceptual metaphors widely-discussed in
linguistic literature (Lakoff and Johnson, 1980;
Musolff, 2000; Lakoff and Wehling, 2012). Each
conceptual metaphor was then annotated for at-
tribute correspondences by three metaphor experts.
First, the semantic frames of the source and target
domains were identified and then the correspon-
dences between individual frame elements were
established (see Tab. 1). We build a word analogy
task from this data by defining the cross-domain
mappings (e.g., Argument and War) as the first
word pair, and the attribute mappings (in this case
Debater and Combatant) as the to-be-completed
second word pair. Since each concept includes mul-
tiple attributes, a total of 449 word analogies are
constructed.

SCAN offers richer and more holistic analogies
than traditional word analogy datasets. Taking a
statistical view, the chances of the words in the
source and target domains co-occurring are much
lower than in BATS. For example, countries and
their capitals, animals and the sounds they make,
and most grammatical analogy types in BATS are
quite likely to occur in the training corpus together.
However, the same cannot be said for most SCAN
analogies, meaning that true analogical transfer
needs to occur.

Additionally, the in-domain words in SCAN are
semantically more dissimilar. For example, in the
argument domain, debater and topic are fundamen-
tally different concepts. In BATS, on the other
hand, every domain member is another instance
of the same concept, e.g. France and Germany
instances of a country.

Lastly, the analogical relationships between do-
mains in SCAN are more abstract than those in
BATS. To successfully extract the same relation-
ship from solar system – atom and planet – electron,
more abstraction and inference over the relational
structure of the domains is needed than in BATS.
In BATS, the relationships between, e.g. France –
Paris and Germany – Berlin, are straightforward
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Target Source Attribute mapping
Argu- War Debater Combatant
ment Topic Battleground

Claim Position
Criticize Attack
Rhetoric Maneuver

Code Virus Malware Virus
Replication Reproduction
Installation Infection
Removal Eradication
Antivirus Vaccine

Table 1: Example mappings in SCAN. For one source
concept multiple relevant attributes are mapped to the
corresponding target concept’s attributes.

and do not require much abstraction.
Overall, SCAN offers more human-like analo-

gies by employing more diverse in-domain words,
more abstract mapping relations and by avoiding
obvious co-occurrences. Due to its full-concept
mappings, SCAN is not confined to the word anal-
ogy task. By holistically mapping entire source
domains to a new target domain we want to encour-
age a broader range of analogy representations.

4 Models

We probe the analogical capabilities of several
widely used language models: GPT-2, BERT and
Multilingual BERT (M-BERT). We use GloVe as
a baseline, given it has been shown to outperform
language models on some relation types in previous
analogy tasks (Zhu and de Melo, 2020).

GPT-2 (Radford et al., 2019) can be viewed as
a “true” LM since it is trained to predict the next
word in a sequence, and can be used for language
generation. It is a transformer-based model with
48 layers and 1542M parameters, trained on a cus-
tom dataset, WebText, created only from outbound
links from Reddit to improve text quality. Due to
its predictive nature, GPT-2 is one-directional, i.e.
only the context on the left-hand side influences
the prediction of the next word.

BERT (Devlin et al., 2019) is a bidirectional
language representation model. It is trained with
two objectives: masked-token prediction and next-
sentence prediction. We use BERT-base with
12 layers in our experiments (110M parameters).
Since BERT is bidirectional, it can incorporate in-
formation from both sides of the masked token.

M-BERT is a BERT model, trained on a
Wikipedia dump of 100 languages. The model
performs best on high-resource languages such as
English, French and Chinese, since lower-resource
languages are underrepresented in the training
data. We test whether M-BERT’s pre-training on
a wide range of languages, and thus a wide range
of culture-specific analogies, might enhance the
model’s general analogy understanding.

5 Experiments

Setup We use pretrained model instances of GPT-
2, BERT Base and Multilingual BERT 1. As BERT
and GPT-2 are trained on full sentences, we insert
the word analogy quadruple into a placeholder sen-
tence. We use “If A is like B, then C is like D.”,
which was selected from a set of candidates as it
performed best on the development set. Similarly
to Ettinger (2020), who probed BERT with a num-
ber of cloze and negation tasks, the models need to
predict the last token of the sentence. We force the
models to predict word D by either masking it for
the two BERT models, or by cutting the sentence
off before it for GPT-2. We report the mean recip-
rocal rank (MRR) of the first token of the target
word (or that of one of the alternative answers) in
only the top 10 predicted tokens to reduce compute.
If the label is not in the top 10 tokens, its RR is
0. Model performance in terms of accuracy, re-
call@10 and recall@5 is reported in the Appendix.
We use an Nvidia 16GB GPU.

SCAN vs. BATS To evaluate how well the mod-
els can solve different types of analogy, we test
them on BATS in addition to SCAN. We do not
fine-tune the models. BATS consists of 98000 ex-
amples of balanced relations. There are four main
relations – inflectional and derivational morphol-
ogy, and lexicographic and encyclopedic semantics
– each of which consists of ten subcategories. For
some examples, multiple correct answers are listed.

Zero-shot vs. One-shot Previous work on ana-
logical reasoning in GPT-3 (Mitchell, 2020; the
Latitude Team, 2020) has shown that when the
model is given a full example of a word analogy
in addition to the incomplete one, the performance
on the incomplete analogy substantially increases.
We see this as a form of one-shot vs. zero-shot
testing and also test the models this way, inves-
tigating whether this has an impact on the LMs’

1https://huggingface.co/
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BATS SCAN Science Meta.
GloVe .099 .022 .099 .006
GPT-2 .098 .057 .073 .054
BERT .207 .044 .092 .034
M-BERT .205 .041 .088 .031

Table 2: Model MRR on BATS and SCAN. Statisti-
cally significant differences compared to the GloVe base-
line are in bold (two-sided permutation test; p < 0.05;
#resamples=10e5).

performance on SCAN. We insert a complete ver-
sion of our template sentence before the incomplete
one, ensuring that none of the analogy words from
the full example appear in the incomplete analogy.
Note that GloVe does not benefit from this setup as
the vectors used for 3CosAdd remain the same.

Training Set Effects Lastly, we further inves-
tigate the difference between the types of word
analogies in BATS and those in SCAN. We split
the BATS dataset into a train, validation and test set
(70/15/15 ratio), ensuring that each word pair ap-
pears in only one of them. We fine-tune the LMs on
the training set and take each model’s version with
the best score on the BATS validation set. We train
(∼ 4h) all models with the AdamW (Loshchilov
and Hutter, 2019) optimizer, a learning rate of 5e−5

and a batch size of 16 for 4 epochs (based on man-
ual tuning). If the model has learned about general
analogy-making it must understand new analogical
relations “on-the-fly” and improve not only on the
BATS test set but also on SCAN. We expect there to
be strong improvements on BATS compared to its
untrained counterpart, but little to none on SCAN,
showing them to be inherently different. This is not
performed on GloVe, since 3CosAdd outputting an
embedding is not part of its original training setup.

6 Results & Discussion

Table 2 shows the accuracy of each of the models
on the BATS and SCAN datasets, as well as on the
scientific and creative analogies separately. BERT
achieves the highest MRR on the BATS dataset,
with a strong lead compared to the other mod-
els. Similarly to Zhu and de Melo (2020), we find
that GloVe can keep up with the other models on
BATS, performing similarly to GPT-2. However,
this trend is not observed on the SCAN dataset,
where GloVe is relegated to last place, indicating
that context is important for understanding SCAN
analogies. All models perform better on the scien-
tific analogies than on metaphors. This could be

BATS SCAN Science Meta.
GPT-2 .121 .048 .056 .046
BERT .095 .035 .077 .027
M-BERT .180 .036 .112 .020

Table 3: MRR when an example sentence is given. Sta-
tistically significant differences (two-sided permutation
test; p < 0.05; #resamples=10e5) compared to each
model’s baseline in bold.

BATS SCAN Science Meta.
GPT-2 .384 .022 .066 .012
BERT .592 .019 .061 .010
M-BERT .499 .020 .087 .006

Table 4: MRR on the BATS test set as well as on
SCAN after training. Statistical significance compared
to the baseline (two-sided permutation test; p < 0.05;
#resamples=10e5) in bold.

due to the fact that their attributes are less abstract
and have clearer correspondences in the target do-
main. The models’ MRRs are generally lower on
SCAN, which we attribute to the greater semantic
dissimilarity between source and target domains.
GPT-2 achieves the highest performance, followed
by BERT. This, combined with its lower accuracy
on the BATS baseline, indicates that GPT-2 is better
at modeling more extensive and narrative analogies
instead of the more artificial and strictly-defined
ones in BATS. Multilingual features only appear
to be marginally effective for the task, something
which can be explained by the fact that most analo-
gies are language-dependent, an observation also
made by Ulčar et al. (2020). Overall, these results
indicate that the SCAN analogy task is challenging
for state-of-the-art LMs and that their true analogy
solving capabilities still need to be improved.

Zero vs. One-Shot Table 3 shows model accu-
racy when the input contains a complete additional
example. Apart from GPT-2 on BATS, this does not
help the models better understand the task. This
contrasts the examples on GPT-3 from Mitchell
(2020), possibly due to the models not identifying
the analogical relationships in the example sen-
tence.

Training Set Effects After training on BATS,
one could expect that if the models learn about
analogical reasoning in general, they would also
naturally do better on the SCAN dataset with more
complex analogies. However, our results in Table 4
show that the opposite is the case. While training
on BATS drastically increases the models’ MRR
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on the held-out BATS test set, it has an adverse ef-
fect on SCAN. This suggests that the two datasets’
analogy types are innately different, validating our
hypothesis that standard word analogy datasets do
not adequately represent human analogy use.

Error Analysis While GloVe scores consistently
on all relation types in BATS, this is not the case for
the other models. On SCAN, none of the models
predict the mappings of all attributes of a concept
(or even most of them) correctly. While the models
are able to solve some individual mappings, the
fact that they cannot apply this to all aspects of the
concept indicates that none of them are really able
to grasp the workings of analogy. In cases where
analogies remain entirely unsolved, it is likely that
the required domain knowledge is lacking.

7 Conclusion

Analogical reasoning remains a challenging task
even when state-of-the-art Transformer LMs are
used. We have shown that, even with models such
as BERT and GPT-2, there is large room for im-
provement on automated reasoning and understand-
ing of realistic analogies. We have introduced a
new dataset, SCAN, that is different from existing
word analogy datasets in that it is composed of
whole concept mappings across semantically dis-
similar domains, demonstrating that popular LMs
are unable to fully understand these analogies. We
further tested whether a full example of the task
can help the models, finding that this is not helpful
in our setup. Lastly, our results indicate that the
SCAN analogies are substantially different from
those of traditional word analogy datasets. Im-
proving on them is a line of research we wish to
investigate further in the future. We make SCAN
and the related code publicly available.2

8 Limitations

Our experimental design focuses on evaluating the
models’ analogical capabilities in a generative set-
ting. We see value in this, as analogical reason-
ing is inherently a generative cognitive function.
The BERT models are, however, not trained to per-
form left-to-right generation and, furthermore, rely
on wordpiece vocabulary for tokenization. The
evaluation of its predictions in the analogy task
is, therefore, less straightforward and not exactly
comparable to other models. We adapt the task for

2https://github.com/taczin/SCAN_analogies

BERT models by letting them only predict the first
token of the missing answer. Comparing only the
first token leaves some variability, however, when
matching the prediction and the right answer. We
expect this effect to be limited in English due to its
sparse morphology.

Furthermore, the metaphorical analogies come
from English literature and cultural background. It
would be interesting to compare these with analo-
gies from other languages and cultures to investi-
gate whether the language models’ lack of under-
standing is due to encoding of language-specific
properties, missing domain knowledge or the gen-
eral analogical mapping abilities.

Lastly, some metaphors in SCAN exhibit anti-
quated gender roles, e.g. the metaphor “govern-
ment:household :: governor:father”. While these
relationships are culturally often still relevant for
metaphor understanding, the underlying implied
gender roles need to be treated carefully and issues
of their encoding by neural models investigated
further.
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