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Abstract
Context-dependent text-to-SQL is the task of
translating multi-turn questions into database-
related SQL queries. Existing methods typ-
ically focus on making full use of history
context or previously predicted SQL for cur-
rently SQL parsing, while neglecting to ex-
plicitly comprehend the schema and conver-
sational dependency, such as co-reference, el-
lipsis and user focus change. In this paper,
we propose CQR-SQL, which uses auxiliary
Conversational Question Reformulation (CQR)
learning to explicitly exploit schema and de-
couple contextual dependency for multi-turn
SQL parsing. Specifically, we first present a
schema enhanced recursive CQR method to
produce domain-relevant self-contained ques-
tions. Secondly, we train CQR-SQL models
to map the semantics of multi-turn questions
and auxiliary self-contained questions into the
same latent space through schema grounding
consistency task and tree-structured SQL pars-
ing consistency task, which enhances the abili-
ties of SQL parsing by adequately contextual
understanding. At the time of writing, our
CQR-SQL achieves new state-of-the-art results
on two context-dependent text-to-SQL bench-
marks SPARC and COSQL.

1 Introduction
The text-to-SQL task is one of the widely followed
branches of semantic parsing, which aims to parse
natural language questions with a given database
into SQL queries. Previous works (Zhong et al.,
2017; Yu et al., 2018; Wang et al., 2020) focus on
context-independent text-to-SQL task. However, in
reality, as users tend to prefer multiple turns inter-
active queries (Iyyer et al., 2017), the text-to-SQL
task based on conversational context is attracting
more and more scholarly attention. The general-
ization challenge of the context-dependent text-to-
SQL task lies in jointly representing the multi-turn
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Figure 1: An example of context-dependent Text-to-SQL
task demonstrates the phenomenon of co-reference, ellip-
sis, and user focus changes. The CQR module converts
contextual questions to self-contained questions, which
can be understood without the context.

questions and database schema while considering
the contextual dependency and schema structure.
As shown in Figure 1, to resolve the contextual
dependency, the model should not only understand
the co-reference and ellipsis, but also prevent from
irrelevant information integration when user focus
changes. Recent studies on two large-scale context-
dependent datasets, SPARC (Yu et al., 2019b) and
COSQL (Yu et al., 2019a), also show the difficulty
of this problem. To our knowledge, there is a lack
of explicit guidance for mainstream text-to-SQL
researches dealing with contextual dependency.

For context-dependent text-to-SQL, it is com-
mon to train a model in an end-to-end manner that
simply encoding the concatenation of the multi-
turn questions and schema, as shown in Figure
2(a). To exploit context-dependence information,
Hui et al. (2021) propose a dynamic relation de-
cay mechanism to model the dynamic relationships
between schema and question as conversation pro-
ceeds. Zhang et al. (2019) and Zheng et al. (2022)
leverage previously predicted SQL queries to en-
hance currently SQL parsing. However, we ar-
gue that these end-to-end approaches are inade-
quate guidance for the contextual dependency phe-
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Figure 2: Schematic of (a) End-to-end and (b) Two-stage pipeline context-dependent text-to-SQL parsing. “Stage
1” in (c) shows the schema enhanced recursive CQR method. (c) A baseline improved on (b) by additionally using
question context in “Stage 2”, avoiding model from relying only on potentially incorrect r̃τ . (d) Our CQR-SQL.

nomenon, though they are competitive in their eval-
uation of existing context modeling methods.

To help the models achieve adequate understand-
ing of the current user question qτ , conversational
question reformulation (CQR) is crucial for multi-
turn dialogue systems (Pan et al., 2019; Kim et al.,
2021). As far as we know, only few works in con-
textual-dependent text-to-SQL, such as (Chen et al.,
2021), focus on the value of CQR for modeling
question context. Chen et al. (2021) propose a two-
stage pipeline method in which an CQR model first
generates a self-contained question r̃τ , and then
a context-independent text-to-SQL parser follows,
as shown in Figure 2(b). But in practice, the lim-
itations of the two-stage pipeline method are in
two aspects: 1) the error propagation from the po-
tentially wrong r̃τ to the single-turn text-to-SQL
parser; 2) the neglect of the relevance between the
two stages. Besides, CQR for text-to-SQL is more
challenging than the general CQR tasks (Pan et al.,
2019; Elgohary et al., 2019), since multi-turn ques-
tions in text-to-SQL datasets are strictly centered
around the underlying database and there are no
CQR annotations on existing text-to-SQL datasets.

Motivated by these observations, we propose
CQR-SQL, which uses auxiliary CQR to achieve ad-
equately contextual understanding, without suffer-
ing from the limitations of two-stage methods. Ac-
cordingly, we first introduce an schema enhanced
recursive CQR method to product self-contained
question data, as in “Stage 1” of Figure 2(c). The
design not only integrates the underlying database
schema D, but also inherits previous self-contained
question r̃τ−1 to improve the long-range depen-
dency. Secondly, we propose to train model map-
ping the self-contained questions and the multi-
turn question context into the same latent space
through schema grounding consistency task and
tree-structured SQL parsing consistency task,
as in Figure 2(d1). In this way, to make similar
prediction as self-contained question input, models

need to pay more attention to the co-reference and
ellipsis when encoding the question context. As
shown in Figure 2(d2), during inference, CQR-SQL
no longer relies on the self-contained questions
from CQR models, thus circumventing the error
propagation issue of two-stage pipeline methods.

We evaluated CQR-SQL on SPARC and COSQL
datasets, and our main contributions of this work
are summarized as follows:
• We present a schema enhanced recursive CQR

mechanism that steadily generates self-contained
questions for context-dependent text-to-SQL.

• We propose two novel consistency training tasks
to achieve adequate contextual understanding for
context-dependent SQL parsing by leveraging
auxiliary CQR, which circumvents the limita-
tions of two-stage pipeline approaches.

• Experimental results show that CQR-SQL achi-
eves state-of-the-art results on context-dependent
text-to-SQL benchmarks, SPARC and COSQL,
with abilities of adequate context understanding.

2 Proposed Method
In this section, we first formally define the context-
dependent text-to-SQL task and introduce the back-
bone network of CQR-SQL. Afterwards, the techni-
cal details of CQR-SQL are elaborated in two subsec-
tions: Schema enhanced recursive CQR and Latent
CQR learning for text-to-SQL in context.

2.1 Preliminary
Task Formulation. In context-dependent text-
to-SQL tasks, we are given multi-turn user ques-
tions q = {q1, q2, ..., qn} and the schema D =
⟨T,C⟩ of target database which contains a set of
tables T = {t1, t2, ...t|T |} and columns Ci =
{ci1, ci2, ...ci|Ci|},∀i= 1, 2, ..., |T | for the i-th ta-
ble ti. Our goal is to generate the target SQL query
sτ with the question context q⩽τ and schema infor-
mation D at each question turn τ .
Backbone Network. CQR-SQL takes multi-turn
questions q as input along with the underlying
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database schema D in the Encoder-Decoder frame-
work. For encoder, CQR-SQL employs the widely
used relation-aware Transformer (RAT) encoder
(Wang et al., 2020) to jointly represent question
and structured schema. For decoder, CQR-SQL fol-
lows the tree-structured LSTM of Yin and Neubig
(2017) to predict the grammar rule of SQL abstract
syntax tree (AST), column id and table id at each
decoding step, indicated as APPLYRULE, SELECT-
COLUMN and SELECTTABLE (See Appendix A
for detailed descriptions).

2.2 Schema Enhanced Recursive CQR
Due to the scarcity of in-domain CQR annota-
tions for context-dependent text-to-SQL, we adopt
self-training with schema enhanced recursive CQR
method to collect reliable self-contained questions.
Schema Integration for CQR. Multi-turn ques-
tions in text-to-SQL are centered around the un-
derlying database. To generate more domain rele-
vant self-contained question rτ at each turn τ , we
concatenate the question context q⩽τwith schema
D as input xτ = {q1,[SEP], ..., qτ ,[SEP], t1, c11,
c12, ...,[SEP], t2, c21, c22, ...} for CQR learning.
Recursive Generation for CQR. Inspired by
Zhang et al. (2019) and Wang et al. (2021), who
verify that integration of previously predicted SQL
facilitates modeling long interactions turns, we pro-
pose a recursive generation mechanism to recur-
sively inherit context information from previously
generated self-contained questions r̃τ−1 for long-
range dependence, as shown in the stage 1 of Figure
2(c). Our CQR at each turn τ is optimized as:

Lcqrτ =−logP(rτ |{r̃τ−1,[SEP],xτ}). (1)

During training, other than using the labeled
self-contained questions rτ−1 as r̃τ−1, we sampled

Algorithm 1 Self-training for CQR
Input: Human-labeled in-domain CQR data Dcqr

0 .
Output: Full self-contained question data Dcqr for D.
l← 0 ▷ Initialize the index of self-training loop.

while l = 0 or |Dcqr
l−1| ≠ |D

cqr
l | do

θcqrl+1 ← TRAINCQR(Dcqr
l )

Dgen
l+1 ← INFERENCECQR(D, θcqrl+1)

Dcqr
l+1 ← UNION(Dcqr

l , CHECK(θSQL,Dgen
l+1))

▷ CHECK: Select questions which are self-contained enough
for correctly SQL parsing by θSQL (a pre-trained single-turn
text-to-SQL model) in beam search candidates.

l← l + 1

Dcqr ← MERGE(Dcqr
l ,Dgen

l ) ▷ MERGE: Replace the self-

contained questions in Dgen
l with those in Dcqr

l .

return Dcqr ▷ Self-contained questions for all interaction turns.

r̃τ−1 from a pre-trained CQR model to reduce dis-
crepancies between training and inference.
Self-training for CQR. Chen et al. (2021) indi-
cate that models trained with general CQR datasets
work poor on the in-domain data from COSQL
and SPARC. Besides the annotated in-domain self-
contained question data is scarce for all context-
dependent text-to-SQL tasks.

We conduct a self-training approach with a pre-
trained single-turn text-to-SQL model θSQL to col-
lect full self-contained question data Dcqr for text-
to-SQL datasets D, as show in Algorithm 1.

2.3 CQR-SQL : Latent CQR Learning for
Text-to-SQL Parsing in Context

With the self-contained questions Dcqr in §2.2,
during training, we introduce CQR-SQL, which
uses a latent variable[Z]to map the semantics of
question context and self-contained question into
the same latent space with two consistency tasks
(schema grounding and SQL parsing), helping mod-
els achieve adequately contextual understanding for
enhanced SQL parsing during inference.

As shown in Figure 3(a), during training, we
input Seq(q) = {[Z], q,[SEP], D} to CQR-SQL,
where q can be the question context q⩽τ or self-
contained questions rτ .

Schema Grounding Consistency Task. Ground-
ing tables and columns into question context re-
quires adequately understanding the co-reference
and ellipsis in multi-turn questions. Thus we pro-
pose using the hidden state z of latent variable to
predict the tables and columns appear in current
target SQL query sτ with bag-of-word (BoW) loss
(Zhao et al., 2017), and then enforcing models to
make consistent predictions with question context
input and self-contained question input, as shown
in Figure 3(a). The BoW loss of Schema Ground-
ing task LSGBoW at each turn τ are formulated as:

LSGBoW
τ = BoW(q⩽τ ) + BoW(rτ ). (2)

BoW(q)=−logP(D̂τ |Seq(q))

=−
∑

d̂∈D̂τ

log
efd̂(RAT(Seq(q))0)

∑
d∈D efd(RAT(Seq(q))0)

.
(3)

where D̂τ refers to the schema appeared in cur-
rent SQL query sτ , D indicates the full schema
of target database. P(D̂τ |·) represents the schema
prediction probability distributions at turn τ . The
function fd(z) = hdWSGz

⊤, hd denotes the fi-
nal hidden states of schema d for RAT encoder.
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Figure 3: Illustration of the training stage for CQR-SQL. (a) Schema grounding task with bag-of-word (BoW) loss
and consistency loss. (b) Tree-structured SQL parsing consistency loss at each decoding step. [Z]denotes the
special symbol of latent variable. RAT Encoder is the relation-aware transformer encoder (Wang et al., 2020) to
jointly represent natural language and structured schema. Tree-structured Decoder is the tree-structured LSTM of
Yin and Neubig (2017) to predict SQL AST rules, Table id and Column id at each decoding step.

zo=RAT(Seq(q⩽τ ))0 and zr = RAT(Seq(rτ ))0
indicate the final hidden state of the latent vari-
ables associated with question context q⩽τ and self-
contained question rτ respectively. The Schema
Grounding consistency loss LSGKL is defined as:

LSGKL
τ =KL

(
P(D̂τ |Seq(q⩽τ ))∥P(D̂τ |Seq(rτ ))

)

+KL
(
P(D̂τ |Seq(rτ ))∥P(D̂τ |Seq(q⩽τ ))

)
.
(4)

where KL(·) refers to the Kullback–Leibler diver-
gence between two distributions.
SQL Parsing Consistency Task. Furthermore,
to encourage model pay more attention to the SQL
logic involving co-reference and ellipsis, we intro-
duce to enforce the model to obtain the consistency
prediction of SQL parsing with question contexts
and self-contained questions as inputs, at each de-
coding step. The SQL parsing loss LSP and the
SQL Parsing consistency loss LSPKL , at each turn
τ , can be represented as:

LSPτ =−logP(sτ |Seq(q⩽τ ))−logP(sτ |Seq(rτ )).(5)

LSPKL
τ =KL(P(sτ |Seq(q⩽τ ))∥P(sτ |Seq(rτ )))

+ KL(P(sτ |Seq(rτ ))∥P(sτ |Seq(q⩽τ ))).
(6)

In this work, we follow the tree-structured de-
coder of Yin and Neubig (2017), which gen-
erates SQL queries as an abstract syntax tree
(AST), and conduct three main predictions at each
decoding step, including APPLYRULE, SELECT-
COLUMN and SELECTTABLE. We calculate the
SQL parsing consistency loss by accumulating
all KL divergences of above three predictions as
KL(·) = KLAPPLYRULE(·)+KLSELECTCOLUMN(·)+

KLSELECTTABLE(·) at all decoding steps, as shown in
Figure 3(b) and further described in Appendix A.3.

Finally we calculate the total training loss Lτ
at each question turn τ for our context-dependent
text-to-SQL model CQR-SQL as:

Lτ = LSPτ +λ1LSGBoW
τ +λ2

(
LSPKL
τ +LSGKL

τ

)
︸ ︷︷ ︸

Consistency Loss

. (7)

where λ1 and λ2 are weights for the schema ground-
ing BoW loss and the consistency loss respectively.

CQR-SQL Inference. Since CQR-SQL has learned to
adequately understand the context dependency in
question context q⩽τ by distilling representations
from self-contained question in two consistency
tasks, CQR-SQL no longer relies on self-contained
questions and only considers Seq(q⩽τ ) as inputs,
as shown in Figure 2(d2), thus circumventing the
error propagation in two-stage pipeline methods.

3 Experiments
In this section, we conduct several experiments to
assess the performance of proposed methods in §2.
3.1 Experimental Setup
CQR Learning. We adopt the Transformer-based
encoder-decoder architecture based on the pre-
trained ProphetNet (Qi et al., 2020) as the initial
CQR model. Since there is no question reformu-
lation annotations in SPARC and COSQL, we an-
notate 3034 and 1527 user questions as the initial
in-domain supervised CQR data Dcqr

0 for SPARC
and COSQL respectively. Before self-training,
we pre-train a single-turn text-to-SQL model θSQL

based on RAT-SQL (Wang et al., 2020) architec-
ture and ELECTRA (Clark et al., 2020) language
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Models (↓) / Datasets (→)
SPARCDev SPARCTest COSQLDev COSQLTest

QM(%) IM(%) QM(%) IM(%) QM(%) IM(%) QM(%) IM(%)

GAZP + BERT (Zhong et al., 2020) 48.9 29.7 45.9 23.5 42.0 12.3 39.7 12.8
IGSQL + BERT (Cai and Wan, 2020) 50.7 32.5 51.2 29.5 44.1 15.8 42.5 15.0
R2SQL + BERT (Hui et al., 2021) 54.1 35.2 55.8 30.8 45.7 19.5 46.8 17.0
RAT-SQL + BERT (Yu et al., 2021b) 56.8 33.4 - - 48.4 19.1 - -
DELTA + BERT♡ (Chen et al., 2021) 58.6 35.6 59.9 31.8 51.7 21.5 50.8 19.7
CQR-SQL + BERT (Ours) 62.5 42.4 - - 53.5 24.6 - -

RAT-SQL + SCORE♢ (Yu et al., 2021b) 62.2 42.5 62.4 38.1 52.1 22.0 51.6 21.2
RAT-SQL + TC + GAP♢ (Li et al., 2021) 64.1 44.1 65.7 43.2 - - - -
PICARD + T5-3B (Scholak et al., 2021) - - - - 56.9 24.2 54.6 23.7
HIE-SQL + GRAPPA♢ (Zheng et al., 2022) 64.7 45.0 64.6 42.9 56.4 28.7 53.9 24.6
UNIFIEDSKG + T5-3B (Xie et al., 2022) 61.5 41.9 - - 54.1 22.8 - -
RASAT + T5-3B (Qi et al., 2022) 66.7 47.2 - - 58.8 26.3 - -

CQR-SQL + ELECTRA (Ours) 67.8 48.1 67.3 43.9 58.4 29.4 - -
CQR-SQL + COCO-LM (Ours) 68.0 48.8 68.2 44.4 58.5 31.1 58.3 27.4

Table 1: Performances on the development and test set of SPARC and COSQL. “QM” and “IM” indicate the exact
match accuracy over all questions and all interaction respectively. The models with♢mark employ task adaptive
pre-trained language models. Models with♡mark use the general two-stage pipeline approach in Figure 2(b). The
“-” results of CQR-SQL are awaiting evaluation due to the submission interval of the leaderboard.

Dataset # Num of
#Train/#Dev/#Test

#Average System
Interactions Turn Response

SPARC 4,298 3,034 / 422 / 842 3.0 %

COSQL 3,007 2,164 / 293 / 551 5.2 !

Table 2: Detailed statistics for SPARC and COSQL.

model for checking whether a generated question
is self-contained enough for correctly SQL parsing.
During self-training in §2.2, we conduct 3 training
loops {θcqr1 , θcqr2 , θcqr3 } and obtain 4441 and 1973
supervised CQR data for SPARC and COSQL re-
spectively. Finally, we use the CQR model θcqr3 in
the last training loop to produce the self-contained
questions for all interaction turns.
CQR-SQL Training. We conduct experiments
on two context-dependent text-to-SQL datasets
SPARC and COSQL, the statistic information of
them are depicted in Table 2. Following (Cao et al.,
2021), we employ RAT-SQL (Wang et al., 2020)
architecture and pre-trained ELECTRA (Clark et al.,
2020) for all text-to-SQL experiments in this paper.
In the training of CQR-SQL, we set hyperparameters
λ1 = 0.1 and λ2 = 3.0 for SPARC, λ2 = 1.0 for
COSQL (See Appendix B.2 for details), learning
rate as 5e-5, batch size of 32. During inference, we
set the beam size to 5 for SQL parsing.

3.2 Experimental Results
As shown in Table 1, CQR-SQL achieves state-of-
the-art results cross all settings at the time of writ-
ing. With general PLM BERT, CQR-SQL surpasses
all previous methods, including the two-stage

method DELTA (Chen et al., 2021) which also uses
additional text-to-SQL data from Spider. Beside,
most of recent advanced methods tend to incorpo-
rates more task-adaptive data (text-table pairs
and synthesized text-sql pairs), tailored pre-
training tasks (column prediction and turn switch
prediction) and super-large PLM T5-3B (Raffel
et al., 2020) into training. For this setting, we
use general PLM ELECTRA for all text-to-SQL
experiments following Cao et al. (2021), and fur-
ther employ a more compatible1 PLM COCO-
LM (Meng et al., 2021) for comparison. CQR-
SQL significantly outperforms SCORE (Yu et al.,
2021b), RAT-SQL+TC (Li et al., 2021) and re-
cent HIE-SQL (Zheng et al., 2022) which use task-
adaptive pre-trained models. Note that HIE-SQL
employs two task-adaptive PLMs for encoding
text-schema pairs and previous SQL queries
respectively. Compared with methods based on
super-large T5-3B model (especially RASAT (Qi
et al., 2022) which integrates co-reference relations
and constrained decoding into T5-3B), CQR-SQL
can also achieve significant improvements.

To verify the advantages of CQR-SQL on ade-
quately contextual understanding, we further com-
pare the performances on different interaction turns
of SPARC, as shown in Figure 4(a). We observe

1COCO-LM is pre-trained on sequence contrastive learn-
ing with a dual-encoder architecture (Reimers and Gurevych,
2019), which is compatible for our CQR consistency tasks
with dual-encoder for multi-turn q⩽τ and self-contained rτ .
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Figure 4: Detailed question match (QM) accuracy re-
sults in different interaction turns and goal difficulties
on the dev set of SPARC dataset. # Number denotes
the number of questions. Detailed results of a (Li et al.,
2021),b (Hui et al., 2021),c (Cai and Wan, 2020) and
d (Zhang et al., 2019) are from the original paper.

that it is more difficult for SQL parsing in longer
interaction turns due to the long-range dependency
problem, while CQR-SQL achieves more signifi-
cant improvement as the interaction turn increases.
Moreover, in Figure 4(b), we further compare the
performances on varying difficulty levels of target
SQL queries, CQR-SQL consistently outperforms
previous works on all difficulty levels, especially
on the “Extra Hard” level whose target SQL
queries are most complex and usually contain nest-
ing SQL structures (Yu et al., 2018).

3.3 Ablation Study
Regarding the CQR task, as shown in Table 3, recur-
sive generation (RG) achieves 0.46% BLEU score
gains on the CQR task for COSQL dataset which
has much longer interaction turns than SPARC
as shown in Table 2, while RG fails to signifi-
cantly improve the performance for SPARCCQR.
This indicates RG can improve CQR performance
for longer contextual dependency. While further

Models / Task SPARCCQR COSQLCQR COSQL
# Train / # Dev 3,034 / 422 1,527 / 154 QM / IM

Our CQR 55.75 / 73.80 59.87 / 78.82 57.8 / 27.7
− RG 55.83 / 73.72 59.41 / 78.24 57.3 / 27.3
− RG− SE 54.78 / 72.87 58.93 / 77.64 56.4 / 26.6

CANARDT5 3B 25.57 / 49.52 39.04 / 57.08 53.6 / 23.9

Table 3: Comparisons on the BLEU / Rouge-L scores
between schema enhanced (SE) approach and recursive
generation (RG) for CQR. Models are trained and eval-
uated on the initially annotated data Dcqr

0 . We observe
that the BLEU / Rouge-L scores of COSQLCQR are
much higher than those of SPARC, because COSQL has
much more user focus change questions that without
co-references and ellipsis (Yu et al., 2019a).

[#]
Datasets (→) SPARCDev COSQLDev

Models (↓) QM(%) IM(%) QM(%) IM(%)

[1] CQR-SQL 67.8 48.1 58.4 29.4
[2] −SG 66.3 47.4 57.0 27.0
[3] −SPKL 65.6 46.9 57.3 25.6
[4] −SPKL −SG 64.9 46.5 56.6 23.9
[5] −SPKL −SGKL 64.7 45.7 56.1 23.6
Exploratory Study on the Integration of CQR

[6] CQRAugment 64.5 45.7 54.7 24.2
[7] CQRTwo Stage⋆ 65.8 46.7 56.8 24.6
[8] CQRTwo Stage 62.5 43.1 54.8 23.6
[9] CQRMulti Task 64.9 45.0 56.2 25.3

Table 4: Ablation studies for CQR-SQL and its vari-
ants. SG denotes the Schema Grounding task (includ-
ing BoW loss and consistency loss SGKL), and SPKL

denotes the SQL Parsing consistency task.

removing the schema enhanced SE method, per-
formances decrease by roughly 1% and 0.5% on
SPARCCQR and COSQLCQR respectively, which
verifies the effectiveness of schema integration in
CQR for text-to-SQL datasets. We additionally
evaluate the performances without any in-domain
CQR annotations (fine-tune T5-3B on general CQR
dataset CANARD (Elgohary et al., 2019)), and ob-
serve that performances on CQR tasks are more
significantly reduced than on COSQL, verifying
the effect of in-domain data and the robustness of
CQR-SQL against noised CQR information.

In Table 4, we investigate the contribution of
each designed choice of proposed CQR-SQL.

[2] : −SG. If removing schema grounding task
(including BoW loss and consistency loss), all met-
rics on SPARC and COSQL drops by 0.7%-2.4%.

[3] :−SPKL. After removing SQL parsing con-
sistency loss, all metrics drops by 1.1%-3.8%.

[4] :−SPKL −SG. If removing both schema
grounding task (BoW loss and consistency loss)
and SQL parsing consistency loss, CQR-SQL de-
generates to a variant trained in the general “End-
to-End” manner as shown in Figure 2(a), and its
performances decrease by 1.7%-5.5%.

[5]: −SPKL −SGKL. To study the impact of
schema grounding BoW loss, we train End-to-End
variants [4] with BoW loss and find that merely
integrating BoW loss slightly degrades the perfor-
mances, because grounding schema in context is
much more difficult than in single questions. While
combining BoW with consistency loss to distill
contextual knowledge from self-contained ques-
tions can improve the performances ([4]→[3]).
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  List the name and date of the battle that has lost the ship named ' HMS Atlanta' and  'Lettice'.

  What about those who do not have any dogs temporarily
  How many of them come from the state of 'Arizona'

  What is its horsepower 

q1
q2
q3

  Show all the car information for any car of the model volvo
  What is the car with the least accelerate

:
:
:

          SELECT Student.Fname FROM Student JOIN Has_Pet JOIN 
Pets WHERE Pets.PetType = "value" AND Pets.PetType = "value" 

          SELECT Student.Fname FROM Has_Pet JOIN Student JOIN 
Pets WHERE Pets.PetType = "value" OR Pets.PetType = "value"

          SELECT battle.name, battle.date FROM battle JOIN ship WHERE ship.name = "value"

          SELECT battle.name, battle.date FROM battle JOIN ship WHERE ship.name = "value"
INTERSECT SELECT battle.name, battle.date FROM battle JOIN ship WHERE ship.name = "value"

           SELECT COUNT(*) FROM Owners WHERE Owners.owner_id NOT IN (SELECT
Dogs.owner_id FROM Dogs WHERE Owners.state = "value")

           SELECT COUNT(*) FROM Owners WHERE Owners.owner_id NOT IN (SELECT
Dogs.owner_id FROM Dogs)

  Can you  intersect  those ?

           SELECT cars_data.Horsepower FROM car_names JOIN cars_data WHERE
car_names.Model = "value" ORDER BY cars_data.Accelerate ASC LIMIT 1

           SELECT cars_data.Horsepower FROM car_names JOIN cars_data WHERE
car_names.Model = "value"
End-to-end

CQR-SQL

Case #1 of  CQR-SQL against End-to-end approach Case #2 of  CQR-SQL against End-to-end approach

:

:

End-to-end

CQR-SQL

:

:

q3 q2 q1

0.0036 0.00470.0145 0.0041 0.0030 0.0058

q3 q2 q1

q1
q2
q3

r3

  List the name and date of the battle that has lost the ship named 'Lettice'
  Same for 'HMS Atlanta'.

Two-Stage :

CQR-SQL :

  List the name and date of the battle that has lost the ship named ' HMS Atlanta' .~

r3

Case #2 of  Error PropagationCase #1 of  Error Propagation  (   is the wrongly generated self-contained question.)

Two-Stage :

CQR-SQL :

:
:
:
:
:  what is the first name of the student who has a cat or a dog?

r3  what is the first name of the student who has both a cat and a dog?~

r3

:
:

r~3

 Also, combine those names with those who have a dog.

q1
q2
q3

 What is the first name of every student?
 Of those names, which ones correspond to somebody who has a cat?

:
:
:

q1
q2
q3

  Show all the owner information:
:
:

Figure 5: Case studies on SPARC dataset. Upper block shows the cases of error propagation with incorrectly
generated self-contained questions r̃τ for Two-Stage pipeline methods (as in Figure 2(c) or [7] in Table 3).
Cases in the lower block show that End-to-End method (as in Figure 2(a) or[4] in Table 4) fails to resolve the
conversational dependency. Besides, the heat maps represent the visualization of attention scores of the latent
variable [Z] on the question context part. Number on each dotted box is the average attention scores of that box.

[6]: CQRAugment. We directly augment the full
self-contained question data Dcqr to [4] as single-
turn text-to-SQL data augmentation. We find
CQRAugment degrades the performances because
models are trained more on single-turn text-to-SQL,
while weaken the abilities of contextual understand-
ing for multi-turn text-to-SQL.
[7]: CQRTwo Stage⋆ . A variant trained in the im-
proved “Two-Stage” manner as in Figure 2(c). It
slightly outperforms the End-to-End variant[4].
[8]: CQRTwo Stage. A “Two-Stage” variant with-
out additionally integrating question context into
“Stage 2” as variant[7]. The performances signifi-
cantly decline for the error propagation issue.
[9]: CQRMulti Task. A variant jointly trained on
CQR task and text-to-SQL task with a shared RAT
encoder and two task-specified decoders, as shown
in Figure 6. We observe that CQRMulti Task slightly
decreases the performances compared with End-to-
End variant[4]for the optimization gap between
the text-to-text optimization and structured
text-to-SQL optimization.

D

RAT
Encoder
(shared)

Transformer
Decoder

Tree-structured
Decoder

Tree-structured
Decoder s�

Schema

Trained
Simultaneously

At Inference Time

SQL Query

Self-contained
Question

q2...

Question
Context

q�

r�
~

q1

Figure 6: Schematic of CQRMulti Task variant.

Above results and analyses demonstrate the ad-
vantages of CQR-SQL on leveraging self-contained

questions to enhance the abilities of adequately
context understanding for contextual text-to-SQL
parsing, meanwhile circumventing the error propa-
gation of Two-Stage pipeline methods.

3.4 Case Study
As shown in the upper block of Figure 5, we com-
pare the SQL queries by CQR-SQL with those by
the Two-Stage baseline model in Figure 2(c) or
[7] in Table 3, to show the error propagation
phenomenon between CQR stage and text-to-SQL
stage. The generated self-contained questions r̃τ
are incorrect, leading to wrong predictions of SQL
queries. Specifically, In the first case, CQR model
fails to understand “intersect” in current question
q3, thus missing “Lettice” in the generated self-
contained question r̃3 and leading to uncompleted
SQL queries in the text-to-SQL stage. In the sec-
ond case, CQR model misunderstood “combine”
in the the current question q3, leading to incorrect
key word “AND” in the predicted SQL query.

In the lower block of Figure 5, we compare the
SQL queries by CQR-SQL with those by the End-to-
End baseline, and visualize the attention patterns of
latent variable [Z] on question context. The first
case shows the scenario which requires model to in-
herit history information to resolve the co-reference
and ellipsis. From the heat map, we observe that
latent variable [Z] pays more attention to the desir-
able history information “volvo” and “least accel-
erate”. While the second case shows the scenario
which requires model to discard confusion history
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information. In this case, latent variable [Z] pays
less attention to the confusion information block
“state of ‘Arizona’” compared with the desirable
ones, which is benefit for correctly SQL parsing.

3.5 Transferability on Contextual Text-to-SQL
To verify the transferability of CQR integration on
contextual text-to-SQL task, we conduct three out-
of-distribution experiments as shown in Table 5.
In experiment [1], our CQR-SQL has better trans-
ferability on contextualized questions (Turn⩾2)
in COSQLDev, which contains additional system
response and more question turns compared with
SPARC dataset as in Table 2. Beside, in experi-
ment [2-3], CQR-SQL achieves consistently bet-
ter performances on out-of-distribution contextual
questions (Turn⩾3). These results indicate the
advantage of CQR-SQL in robustness contextual un-
derstanding for out-of-distribution scenarios.

[#] Train Eval End-to-End Two-Stage CQR-SQL

[1] SAll
Train CTurn⩾2

Dev 36.3(+0.0) 37.3(+1.0) 40.9(+4.6)

[2] STurn⩽2
Train STurn⩾3

Dev 41.5(+0.0) 42.6(+1.1) 45.2(+3.7)

[3] CTurn⩽2
Train CTurn⩾3

Dev 42.4(+0.0) 43.2(+0.8) 46.7(+4.3)

Table 5: Question match (QM) accuracy results of
the out-of-distribution experiments. S and C denote
SPARC and COSQL datasets respectively. Exper-
iment [1]: training models on the training set of
SPARCTrain, while evaluating them on the questions
with context (Turn⩾2) in COSQLDev. Experiment
[2-3]: training models on the questions at Turn⩽2,
whereas evaluating them on the questions at Turn⩾3.

4 Related Work
Text-to-SQL. Spider (Yu et al., 2018) is a well-
known cross-domain context-independent text-to-
SQL task that has attracted considerable attention.
Diverse approaches, such as RAT-SQL (Wang et al.,
2020), BRIDGE (Lin et al., 2020) and LGESQL
(Cao et al., 2021), have been successful on this task.
Recently, with the widespread popularity of dia-
logue systems and the public availability of SPARC
(Yu et al., 2019b) and COSQL (Yu et al., 2019a)
datasets, context-dependent text-to-SQL has drawn
more attention. Zhang et al. (2019) and Wang
et al. (2021) use previously generated SQL queries
to improve the quality of SQL parsing. Cai and
Wan (2020) and Hui et al. (2021) employ graph
neural network to model contextual questions and
schema. Jain and Lapata (2021) use a memory ma-
trix to keep track of contextual information. Chen
et al. (2021) decouple context-dependent text-to-
SQL task to CQR and context-independent text-to-

SQL tasks. Besides, Yu et al. (2021a,b) propose
task-adaptive conversational pre-trained model for
SQL parsing, and Scholak et al. (2021) simply con-
strain auto-regressive decoders of super-large T5-
3B for SQL parsing. In this work, we leverage
reformulated self-contained questions in two con-
sistency tasks to enhance contextual dependency
understanding for multi-turn text-to-SQL parsing,
without suffering from the error propagation of
two-stage pipeline methods.

Conversational Question Reformulation (CQR)
aims to use question context to complete ellipsis
and co-references in the current questions. Most
works adopt the encoder-decoder architecture with
only contextual text as input (Elgohary et al., 2019;
Pan et al., 2019). Besides, CQR are applied to
several downstream tasks for enhanced context un-
derstanding, such as conversational question an-
swer (CQA) (Kim et al., 2021) and conversational
passage retrieval (CPR) (Dalton et al., 2020). Re-
grading CQR training for text-to-SQL, We present
a recursive CQR method to address long-range
dependency and incorporate schema to generate
more domain-relevant and semantic-reliable self-
contained questions.

Consistency Training. To improve model robust-
ness, consistency training (Zheng et al., 2016) has
been widely explored in natural language process-
ing by regularizing model predictions to be invari-
ant to small perturbations. The small perturbations
can be random or adversarial noise (Miyato et al.,
2018) and data augmentation (Zheng et al., 2021).
Inspired by consistency training, ExCorD (Kim
et al., 2021) trains a classification CQA model that
encourage the models to predict similar answers
span from the rewritten and original questions. Dif-
ferent from ExCorD, we combine latent variable
with schema grounding consistency task and tree-
structured SQL generation consistency task to force
model pay more attention to the co-references and
ellipsis in question context.

5 Conclusions

We propose CQR-SQL, a novel context-dependent
text-to-SQL approach that explicitly comprehends
the schema and conversational dependency through
latent CQR learning. The method introduces a
schema enhanced recursive generation mechanism
to generate domain-relative self-contained ques-
tions, then trains models to map the semantics of
self-contained questions and multi-turn question
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context into the same latent space with schema
grounding consistency task and SQL parsing con-
sistency task for adequately context understand-
ing. Experimental results show that CQR-SQL
achieves new state-of-the-art results on two classi-
cal context-dependent text-to-SQL datasets SPARC
and COSQL.

6 Limitations
Compared to End-to-End approaches as shown in
Figure 2(a), proposed CQR-SQL requires more com-
putational cost and GPU memory consumption at
each training step, with duel-encoder for question
context and self-contained question inputs. Specifi-
cally, with batchsize of 32 and 8 V100 GPU cards,
CQR-SQL takes 310.7 seconds to train an epoch on
SPARC dataset, while End-to-End approache just
costs 179.6 seconds. While compared with previ-
ous advanced methods using T5-3B PLM (Scholak
et al., 2021; Xie et al., 2022; Qi et al., 2022), and
multiple task-adaptive PLMs (Zheng et al., 2022),
CQR-SQL is much more computationally efficient.
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A Backbone Architecture

A.1 Encoder: Relation-aware Transformer

Relation-aware Transformer (RAT) (Wang et al.,
2020) is an extension to Transformer (Vaswani
et al., 2017) to consider preexisting pairwise re-
lational features between the inputs. For text-to-
SQL task, pairwise relational features include the
intra-relation of databse schema D and question-
schema alignment information. Formally, given
input sequence x = {x1, x2, ..., xn}, we obtain the
initial representations through pre-trained language
model H0 = PLM(x) = {x1,x2, ...,xn}. Then
L stacked RAT blocks compute the final hidden
states HL = RAT(x) via Hl = RATl(H

l−1), l ∈
[1, L] where RATl(·) is calculated as:

Q = Hl−1Wl
Q,K = Hl−1Wl

K ,V = Hl−1Wl
V

eij = Softmax
j

(
Qi(Kj + rKij )

⊤
√
dk

)

Ai=
n∑

j=1

eij
(
Vj + rVij

)

Ã = LayerNorm(Hl−1 +A)

Hl= LayerNorm
(
Ã+ FC(ReLU(FC(Ã)))

)
.

(8)

where parameters Wl
Q,W

l
K ,Wl

V ∈ Rdh×dk proj-
ect Hl to queries, keys and values. Embedding rij
represents the relationship between token xi and
xj . LayerNorm(·) is the layer normalization (Ba
et al., 2016), FC(·) is the full connected layer.

In CQR-SQL, the relation type between latent
variable [Z] and schema is NOMATCH (Wang
et al., 2020).

A.2 Decoder: Tree-structured LSTM

We employ a single layer tree-structured LSTM
decoder of Yin and Neubig (2017) to generate the
abstract syntax tree (AST) of SQL queries in depth-
first, left-to-right order. At each decoding step,
the prediction is either 1) APPLYRULE action that
expands the last non-terminal into a AST grammar
rule; or 2) SELECTCOLUMN or SELECTTABLE

action that chooses a column or table from schema
to complete last terminal node.

Formally, given the final encoder hidden states
of Question, Table and ColumnHL = {Hq,Ht,
Hc}. The tree-structured decoder is required to
generate a sequence of actions at to construct the
AST which can transfer to standard SQL query
s, represented as P(s|HL) =

∏
t P
(
at|a<t,H

L
)
.

We adopt a single layer LSTM to produce ac-
tion sequence, the LSTM states are updated as

ct,ht = LSTM([at−1;hpt ;apt ;nft ], ct−1,ht−1)
where [·] is the concatenate operation, ct is the
LSTM cell state, ht is the LSTM output hidden
state, at is the action embedding, pt is the decod-
ing step of the current parent AST node and nft is
the embedding of current node type. We initialize
the LSTM hidden state h0 via attention pooling
over the final encoder hidden state HL as:

ei= Softmax
i

(
h̃0Tanh

(
HL

i W1

)⊤)

A=
n∑

i=1

eiH
L
i

h0= Tanh (AW2) .

(9)

where h̃0 is initial attention vector, W1,W2 are
projection parameters. At each decoding step t,
we employ MultiHeadAttention (Vaswani et al.,
2017) on ht over HL to compute context represen-
tation hctx

t .
For the prediction of APPLYRULE actions, the

prediction distribution is computed as:

P(at=APPLYRULE[R]|a<t,H
L)

= Softmax
R

(
MLP2([ht;h

ctx
t ])WR

)
.

(10)

where MLP2 denotes 2-layer MLP with a Tanh
nonlinearity, WR is the classification matrice.

For the prediction of SELECTTABLE actions, the
prediction distribution is computed as:

P(at=SELECTTABLE[i]|a<t,H
L)

= Softmax
i

(
MLP2([ht;h

ctx
t ])WtH

⊤
ti

)
.

(11)

where Hti denotes the encoder hidden state of the
i-th Table. The prediction of SELECTCOLUMN

actions is similar to SELECTTABLE.

A.3 SQL Parsing Consistency Loss

Given the final encoder hidden states HL
q =

RAT(Seq (q⩽τ )) and HL
r = RAT(Seq(rτ )) for

question context and self-contained question in-
put respectively, the SQL parsing consistency loss
LSPKL(t) at each decoding step t is computed as:

LSPKL(t) = LSPKL(t)
APPLYRULE + L

SPKL(t)
SELECTTABLE

+ LSPKL(t)
SELECTCOLUMN.

LSPKL(t)
APPLYRULE = KL

(
P
(
at=APPLYRULE|a<t,H

L
q

)

∥ P
(
at=APPLYRULE|a<t,H

L
r

))
.

LSPKL(t)
SELECTTABLE = KL

(
P
(
at=SELECTTABLE|a<t,H

L
q

)

∥ P
(
at=SELECTTABLE|a<t,H

L
r

))
.

(12)

The total SQL parsing consistency loss is computed
as LSPKL = 1

T

∑T
t=1 LSPKL(t), where T denotes

the length of action sequence for target SQL AST.
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B Experiment Details

B.1 Detailed Hyperparameters

We implement CQR-SQL based on the PyTorch
framework2 and use 8 Nvidia Tesla V100 32GB
GPU cards for all the experiments. Firstly, we
trained CQR model with a learning rate of 3e-5
and batch size of 32. We use the maximum input
sequence length as 512 and the maximum epochs
as 25. We adopt label smooth method with ratio
0.15 for regularization. During inference for CQR,
we set the beam size as 5.

Regarding training CQR-SQL, the number of
heads is 8 and hidden size of RAT encoder is 1024,
the dropout rates of encoder and decoder are 0.1
and 0.2 respectively. For pre-trained ELECTRA, we
adopt layer-wise learning rate decay with coeffi-
cient 0.8 for robust optimization. We train CQR-
SQL on SPARC and COSQL with max training
epochs to be 300 and 350 respectively.

B.2 Impact of Weight λ2 for Consistency Loss

We vary the weight λ2 of consistency loss in {1.0,
2.0, 3.0, 4.0} and train CQR-SQL on SPARC and
COSQL datasets, as shown in Table 6. We observe
that COSQL task desires less CQR knowledge
(best choice of λ2 is 1.0) compare with SPARC
(best choice of λ2 is 3.0), because COSQL dataset
contains much more user focus change questions
than SPARC, which do not need to be reformu-
lated (Yu et al., 2019b).

Weight λ2
SPARCDev COSQLDev

QM IM QM IM

λ2 = 1.0 66.5 47.2 58.2 29.4
λ2 = 2.0 67.1 47.6 58.0 28.3
λ2 = 3.0 67.8 48.1 57.4 27.3
λ2 = 4.0 66.0 46.7 56.7 26.6

Table 6: Results of CQR-SQL on SPARC and COSQL
datasets with different weights λ2 of consistency loss.

B.3 Detailed Results on COSQL Task

As shown in Table 7, we report the detailed re-
sults in different question turns and SQL difficulty
levels on the development set of COSQL dataset.
We observe that CQR-SQL achieves more signifi-
cant improvement as the interaction turn increases,
and consistently outperforms previous works on all
SQL difficulty levels.

2https://pytorch.org/

Models Turn 1 Turn 2 Turn 3 Turn 4 Turn>4
# 293 # 285 # 244 # 114 # 71

EditSQL a 50.0 36.7 34.8 43.0 23.9
IGSQL b 53.1 42.6 39.3 43.0 31.0
IST-SQL c 56.2 41.0 41.0 41.2 26.8
SCORE d 60.8 53.0 47.5 49.1 32.4

CQR-SQL 66.2 60.0 54.5 54.4 39.4

Models Easy Medium Hard Extra
# 483 # 441 # 145 # 134

EditSQL a 62.7 29.4 22.8 9.3
IGSQL b 66.3 35.6 26.4 10.3
IST-SQL c 66.0 36.2 27.8 10.3

CQR-SQL 76.7 55.9 39.9 22.4

Table 7: Detailed QM results in different interaction
turns and goal difficulties on the development set of
COSQL dataset. Detailed results of a (Zhang et al.,
2019),b (Cai and Wan, 2020),c (Wang et al., 2021) and
d (Yu et al., 2021b) are from the original paper.

B.4 Effects of CQR Integration with Different
PLMs

To further study the effects of CQR integration
for contextual text-to-SQL task, we train mod-
els in End-to-End, Two-Stage and CQR-SQL ap-
proaches based on different pre-trained language
models (PLMs), as shown in Table 8. We can see
that: 1) CQR-SQL method consistently preforms
better than Two-Stage and End-to-End methods,
further demonstrating the effectiveness of CQR-
SQL for adequate contextual understanding. 2)
COCO-LM (Meng et al., 2021) is superior to ELEC-
TRA (Clark et al., 2020) and BERT (Devlin et al.,
2019). We argue the reason is that COCO-LM is
pre-trained on sequence contrastive learning with a
dual-encoder architecture (Reimers and Gurevych,
2019), which is compatible for our CQR consis-
tency tasks with dual-encoder for question context
q⩽τ and self-contained question rτ as inputs.

PLMs Methods SPARCDev COSQLDev

QM IM QM IM

BERT
End-to-End 58.6 38.2 50.7 20.5
Two-Stage 60.1 39.3 51.1 22.2
CQR-SQL 62.5 42.4 53.5 24.6

ELECTRA

End-to-End 64.9 46.5 56.6 23.9
Two-Stage 65.8 46.7 56.8 24.6
CQR-SQL 67.8 48.1 58.2 29.4

COCO-LM
End-to-End 65.6 45.5 57.1 25.9
Two-Stage 66.0 46.5 57.8 26.3
CQR-SQL 68.0 48.8 58.5 31.1

Table 8: Results of End-to-End, Two-Stage and CQR-
SQL methods with different PLMs.
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B.5 More Cases
In this section, we show more cases of error propa-
gation with Two-Stage pipeline method, and CQR-
SQL against End-to-End baseline models.

What is the model of that with the lowest horsepower?

Now show just the ones with 4 cylinders.

How about the greatest horsepower?

           SELECT model_list.Model FROM car_names JOIN cars_data WHERE 
cars_data.Cylinders = "value" ORDER BY cars_data.Horsepower DESC LIMIT 1

           SELECT model_list.Model FROM model_list JOIN cars_data ORDER BY
cars_data.Horsepower DESC LIMIT 1

q1

q2

q3

Two-Stage

CQR-SQL

:

:

           SELECT Dogs.name FROM Owners JOIN Dogs WHERE Owners.state="value"

           SELECT Dogs.name, Owners.first_name FROM Dogs JOIN Owners WHERE
Owners.state="value"

Two-Stage
CQR-SQL

:
:

           SELECT Dogs.name FROM Dogs

           SELECT Professionals.first_name FROM Professionals INTERSECT SELECT 
Owners.last_name FROM Owners
Two-Stage

CQR-SQL

:

:

:

:

:

q4 :

Show all models and horsepowers of all cars!

  what is the model of the car with 4 cylinders and the greatest horsepower ?

r4   what is the model of the car with the greatest horsepower ?~

r4

:

:

What about the dog names?

q1

q2

:

:

List all the names of both Professionals and Owners.

  what are the names of dogs ?

r2   what are the names of both professionals and owners of dogs ?~

r2

:

:

Add the owner's first names also.

q1

q2

:

:

What about when the owner is from the state of 'Virginia'?q3 :

Show the name of dogs whose owners are from the city 'Lake Tia'.

  show the name of dogs whose owner is from the state of ' virginia '  and the owner's 
  first names.

r3   show the name of dogs whose owner is from the state of ' virginia ' .~

r3

:

:

�Cases of  Error Propagation  (   is the wrongly generated self-contained question.)r~

Which language is spoken by only one of those countries?

           SELECT countrylanguage.Language FROM country JOIN countrylanguage 
WHERE country.GovernmentForm = "value" GROUP BY countrylanguage.Language HAVING 
COUNT(*) = "value"

           SELECT countrylanguage.Language FROM countrylanguage JOIN country 
GROUP BY countrylanguage.Language HAVING COUNT(*) = "value"

q1

q2

End-to-end

CQR-SQL

:

:

:

:

Which countries have republics as their form of government?

Which cities did they come from?

           SELECT employee.City FROM employee WHERE employee.Age < "value" 
GROUP BY employee.City HAVING COUNT(*) > "value"

           SELECT employee.City FROM employee GROUP BY employee.City HAVING 
COUNT(*) > "value"

q1

q2

End-to-end

CQR-SQL

:

:

:

:

Show the cities from which more than one employee originated.q3 :

Find all employees who are under age 30.

Cases of  CQR-SQL against End-to-end approach

Figure 7: Cases on SPARC dataset. Upper block shows
the cases of error propagation with incorrectly gener-
ated self-contained questions r̃τ for Two-Stage pipeline
methods (as in Figure 2(c) or [7] in Table 3). Cases
in the lower block show that End-to-End method (as
in Figure 2(a) or [4] in Table 4) fails to resolve the
conversational dependency.
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