
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 2055–2068
December 7-11, 2022 ©2022 Association for Computational Linguistics

CQR-SQL: Conversational Question Reformulation Enhanced
Context-Dependent Text-to-SQL Parsers

Dongling Xiao1∗, Linzheng Chai2∗†, Qian-Wen Zhang1, Zhao Yan1,
Zhoujun Li2 and Yunbo Cao1

1Tencent Cloud Xiaowei
2State Key Lab of Software Development Environment,

Beihang University, Beijing, China
1{dlxiao,cowenzhang,zhaoyan,yunbocao}@tencent.com

2{challenging,lizj}@buaa.edu.cn

Abstract
Context-dependent text-to-SQL is the task of
translating multi-turn questions into database-
related SQL queries. Existing methods typ-
ically focus on making full use of history
context or previously predicted SQL for cur-
rently SQL parsing, while neglecting to ex-
plicitly comprehend the schema and conver-
sational dependency, such as co-reference, el-
lipsis and user focus change. In this paper,
we propose CQR-SQL, which uses auxiliary
Conversational Question Reformulation (CQR)
learning to explicitly exploit schema and de-
couple contextual dependency for multi-turn
SQL parsing. Specifically, we first present a
schema enhanced recursive CQR method to
produce domain-relevant self-contained ques-
tions. Secondly, we train CQR-SQL models
to map the semantics of multi-turn questions
and auxiliary self-contained questions into the
same latent space through schema grounding
consistency task and tree-structured SQL pars-
ing consistency task, which enhances the abili-
ties of SQL parsing by adequately contextual
understanding. At the time of writing, our
CQR-SQL achieves new state-of-the-art results
on two context-dependent text-to-SQL bench-
marks SPARC and COSQL.

1 Introduction
The text-to-SQL task is one of the widely followed
branches of semantic parsing, which aims to parse
natural language questions with a given database
into SQL queries. Previous works (Zhong et al.,
2017; Yu et al., 2018; Wang et al., 2020) focus on
context-independent text-to-SQL task. However, in
reality, as users tend to prefer multiple turns inter-
active queries (Iyyer et al., 2017), the text-to-SQL
task based on conversational context is attracting
more and more scholarly attention. The general-
ization challenge of the context-dependent text-to-
SQL task lies in jointly representing the multi-turn

∗ Indicates equal contribution.
† The work was done when Linzheng Chai was doing

internship at Tencent Cloud Xiaowei.

🤖

🤔 How many papers did not receive a review?

Self-contained Questions

Database SchemaContext-dependent Text-to-SQL

List out the titles of papers that
did not receive a review?

List out the titles of papers that
received a review?

Turn 2

Turn 1

Turn 3

🤔 Can you list out their titles?

🤔 How about the papers that did ?

SELECT count() FROM Paper WHERE Id NOT
IN (SELECT Paper_Id FROM Review)

*

🤖
SELECT Title FROM Paper WHERE Id NOT
IN (SELECT Paper_Id FROM Review)

🤖
SELECT Title FROM Paper WHERE Id IN
(SELECT Paper_id FROM Review)

Co-reference

Ellipsis

Turn 4

🤔

🤖 User focus changeSELECT count() FROM PC_Acct*

MakeIdPC_Acct

Name
Field

PC_ID
Review
PC_Id

Paper

Title
Id

Comment
Paper_Id

Area

🔑🔑

CQR

CQR

How many PC members do we
have? (No changes)

CQR

did

their

How many PC members do we have?

Figure 1: An example of context-dependent Text-to-SQL
task demonstrates the phenomenon of co-reference, ellip-
sis, and user focus changes. The CQR module converts
contextual questions to self-contained questions, which
can be understood without the context.

questions and database schema while considering
the contextual dependency and schema structure.
As shown in Figure 1, to resolve the contextual
dependency, the model should not only understand
the co-reference and ellipsis, but also prevent from
irrelevant information integration when user focus
changes. Recent studies on two large-scale context-
dependent datasets, SPARC (Yu et al., 2019b) and
COSQL (Yu et al., 2019a), also show the difficulty
of this problem. To our knowledge, there is a lack
of explicit guidance for mainstream text-to-SQL
researches dealing with contextual dependency.

For context-dependent text-to-SQL, it is com-
mon to train a model in an end-to-end manner that
simply encoding the concatenation of the multi-
turn questions and schema, as shown in Figure
2(a). To exploit context-dependence information,
Hui et al. (2021) propose a dynamic relation de-
cay mechanism to model the dynamic relationships
between schema and question as conversation pro-
ceeds. Zhang et al. (2019) and Zheng et al. (2022)
leverage previously predicted SQL queries to en-
hance currently SQL parsing. However, we ar-
gue that these end-to-end approaches are inade-
quate guidance for the contextual dependency phe-

2055

(a) End-to-End (b) (c)

Text2SQL Model θ
Current SQL Query

Self-contained
Question

Stage 1 Stage 1

Stage 2Stage 2

D

Text2SQL Model

D

s�

r�
θ

CQR Model θ

s�

Text2SQL Model θ

s�

Our CQR Model θ cqrcqr

Dr� 1
~

~

Schema Schema Question Context SchemaPreviously generated
Self-contained Question

r�
~

(d1) CQR-SQL Consistency Training (①②) (d2) CQR-SQL Inference

Text2SQL Model θText2SQL Model θ

Question ContextSchema

q1 q2 D...

Question Context Schema

D
Schema

r�
~

Self-contained
Question

Latent
Variable

Latent
Variable

[Z]

Latent
Variable

[Z] q1 q2 q D...[Z]

SQL Parsing
Schema Grounding
Grounded Schema

Prediction
Distribution

Current SQL Query

Text2SQL Model

s�

θ

② Schema Grounding Consistency Task

① SQL Parsing Consistency Task

s�s�

D�

D�

q�q1 q2 ...q� �q1 q2 ...

Question Context

q� q1 q2 ...

Question Context

q�

ˆ D�̂

ˆ

shared

Figure 2: Schematic of (a) End-to-end and (b) Two-stage pipeline context-dependent text-to-SQL parsing. “Stage
1” in (c) shows the schema enhanced recursive CQR method. (c) A baseline improved on (b) by additionally using
question context in “Stage 2”, avoiding model from relying only on potentially incorrect r̃τ . (d) Our CQR-SQL.

nomenon, though they are competitive in their eval-
uation of existing context modeling methods.

To help the models achieve adequate understand-
ing of the current user question qτ , conversational
question reformulation (CQR) is crucial for multi-
turn dialogue systems (Pan et al., 2019; Kim et al.,
2021). As far as we know, only few works in con-
textual-dependent text-to-SQL, such as (Chen et al.,
2021), focus on the value of CQR for modeling
question context. Chen et al. (2021) propose a two-
stage pipeline method in which an CQR model first
generates a self-contained question r̃τ , and then
a context-independent text-to-SQL parser follows,
as shown in Figure 2(b). But in practice, the lim-
itations of the two-stage pipeline method are in
two aspects: 1) the error propagation from the po-
tentially wrong r̃τ to the single-turn text-to-SQL
parser; 2) the neglect of the relevance between the
two stages. Besides, CQR for text-to-SQL is more
challenging than the general CQR tasks (Pan et al.,
2019; Elgohary et al., 2019), since multi-turn ques-
tions in text-to-SQL datasets are strictly centered
around the underlying database and there are no
CQR annotations on existing text-to-SQL datasets.

Motivated by these observations, we propose
CQR-SQL, which uses auxiliary CQR to achieve ad-
equately contextual understanding, without suffer-
ing from the limitations of two-stage methods. Ac-
cordingly, we first introduce an schema enhanced
recursive CQR method to product self-contained
question data, as in “Stage 1” of Figure 2(c). The
design not only integrates the underlying database
schema D, but also inherits previous self-contained
question r̃τ−1 to improve the long-range depen-
dency. Secondly, we propose to train model map-
ping the self-contained questions and the multi-
turn question context into the same latent space
through schema grounding consistency task and
tree-structured SQL parsing consistency task,
as in Figure 2(d1). In this way, to make similar
prediction as self-contained question input, models

need to pay more attention to the co-reference and
ellipsis when encoding the question context. As
shown in Figure 2(d2), during inference, CQR-SQL
no longer relies on the self-contained questions
from CQR models, thus circumventing the error
propagation issue of two-stage pipeline methods.

We evaluated CQR-SQL on SPARC and COSQL
datasets, and our main contributions of this work
are summarized as follows:
• We present a schema enhanced recursive CQR

mechanism that steadily generates self-contained
questions for context-dependent text-to-SQL.

• We propose two novel consistency training tasks
to achieve adequate contextual understanding for
context-dependent SQL parsing by leveraging
auxiliary CQR, which circumvents the limita-
tions of two-stage pipeline approaches.

• Experimental results show that CQR-SQL achi-
eves state-of-the-art results on context-dependent
text-to-SQL benchmarks, SPARC and COSQL,
with abilities of adequate context understanding.

2 Proposed Method
In this section, we first formally define the context-
dependent text-to-SQL task and introduce the back-
bone network of CQR-SQL. Afterwards, the techni-
cal details of CQR-SQL are elaborated in two subsec-
tions: Schema enhanced recursive CQR and Latent
CQR learning for text-to-SQL in context.

2.1 Preliminary
Task Formulation. In context-dependent text-
to-SQL tasks, we are given multi-turn user ques-
tions q = {q1, q2, ..., qn} and the schema D =
⟨T,C⟩ of target database which contains a set of
tables T = {t1, t2, ...t|T |} and columns Ci =
{ci1, ci2, ...ci|Ci|},∀i= 1, 2, ..., |T | for the i-th ta-
ble ti. Our goal is to generate the target SQL query
sτ with the question context q⩽τ and schema infor-
mation D at each question turn τ .
Backbone Network. CQR-SQL takes multi-turn
questions q as input along with the underlying

2056

database schema D in the Encoder-Decoder frame-
work. For encoder, CQR-SQL employs the widely
used relation-aware Transformer (RAT) encoder
(Wang et al., 2020) to jointly represent question
and structured schema. For decoder, CQR-SQL fol-
lows the tree-structured LSTM of Yin and Neubig
(2017) to predict the grammar rule of SQL abstract
syntax tree (AST), column id and table id at each
decoding step, indicated as APPLYRULE, SELECT-
COLUMN and SELECTTABLE (See Appendix A
for detailed descriptions).

2.2 Schema Enhanced Recursive CQR
Due to the scarcity of in-domain CQR annota-
tions for context-dependent text-to-SQL, we adopt
self-training with schema enhanced recursive CQR
method to collect reliable self-contained questions.
Schema Integration for CQR. Multi-turn ques-
tions in text-to-SQL are centered around the un-
derlying database. To generate more domain rele-
vant self-contained question rτ at each turn τ , we
concatenate the question context q⩽τwith schema
D as input xτ = {q1,[SEP], ..., qτ ,[SEP], t1, c11,
c12, ...,[SEP], t2, c21, c22, ...} for CQR learning.
Recursive Generation for CQR. Inspired by
Zhang et al. (2019) and Wang et al. (2021), who
verify that integration of previously predicted SQL
facilitates modeling long interactions turns, we pro-
pose a recursive generation mechanism to recur-
sively inherit context information from previously
generated self-contained questions r̃τ−1 for long-
range dependence, as shown in the stage 1 of Figure
2(c). Our CQR at each turn τ is optimized as:

Lcqrτ =−logP(rτ |{r̃τ−1,[SEP],xτ}). (1)

During training, other than using the labeled
self-contained questions rτ−1 as r̃τ−1, we sampled

Algorithm 1 Self-training for CQR
Input: Human-labeled in-domain CQR data Dcqr

0 .
Output: Full self-contained question data Dcqr for D.
l← 0 ▷ Initialize the index of self-training loop.

while l = 0 or |Dcqr
l−1| ≠ |D

cqr
l | do

θcqrl+1 ← TRAINCQR(Dcqr
l)

Dgen
l+1 ← INFERENCECQR(D, θcqrl+1)

Dcqr
l+1 ← UNION(Dcqr

l , CHECK(θSQL,Dgen
l+1))

▷ CHECK: Select questions which are self-contained enough
for correctly SQL parsing by θSQL (a pre-trained single-turn
text-to-SQL model) in beam search candidates.

l← l + 1

Dcqr ← MERGE(Dcqr
l ,Dgen

l) ▷ MERGE: Replace the self-

contained questions in Dgen
l with those in Dcqr

l .

return Dcqr ▷ Self-contained questions for all interaction turns.

r̃τ−1 from a pre-trained CQR model to reduce dis-
crepancies between training and inference.
Self-training for CQR. Chen et al. (2021) indi-
cate that models trained with general CQR datasets
work poor on the in-domain data from COSQL
and SPARC. Besides the annotated in-domain self-
contained question data is scarce for all context-
dependent text-to-SQL tasks.

We conduct a self-training approach with a pre-
trained single-turn text-to-SQL model θSQL to col-
lect full self-contained question data Dcqr for text-
to-SQL datasets D, as show in Algorithm 1.

2.3 CQR-SQL : Latent CQR Learning for
Text-to-SQL Parsing in Context

With the self-contained questions Dcqr in §2.2,
during training, we introduce CQR-SQL, which
uses a latent variable[Z]to map the semantics of
question context and self-contained question into
the same latent space with two consistency tasks
(schema grounding and SQL parsing), helping mod-
els achieve adequately contextual understanding for
enhanced SQL parsing during inference.

As shown in Figure 3(a), during training, we
input Seq(q) = {[Z], q,[SEP], D} to CQR-SQL,
where q can be the question context q⩽τ or self-
contained questions rτ .

Schema Grounding Consistency Task. Ground-
ing tables and columns into question context re-
quires adequately understanding the co-reference
and ellipsis in multi-turn questions. Thus we pro-
pose using the hidden state z of latent variable to
predict the tables and columns appear in current
target SQL query sτ with bag-of-word (BoW) loss
(Zhao et al., 2017), and then enforcing models to
make consistent predictions with question context
input and self-contained question input, as shown
in Figure 3(a). The BoW loss of Schema Ground-
ing task LSGBoW at each turn τ are formulated as:

LSGBoW
τ = BoW(q⩽τ) + BoW(rτ). (2)

BoW(q)=−logP(D̂τ |Seq(q))

=−
∑

d̂∈D̂τ

log
efd̂(RAT(Seq(q))0)

∑
d∈D efd(RAT(Seq(q))0)

.
(3)

where D̂τ refers to the schema appeared in cur-
rent SQL query sτ , D indicates the full schema
of target database. P(D̂τ |·) represents the schema
prediction probability distributions at turn τ . The
function fd(z) = hdWSGz

⊤, hd denotes the fi-
nal hidden states of schema d for RAT encoder.

2057

How about with the max MPG?What is id of the car with the max horsepower?

Hidden State of D Hidden State
of

ApplyRule SelectCol SelectColSelectTab

SelectTab[

Attn Tree-structured
Decoder

r Question
Context 3q

(a) Encoder (b) Decoder

RAT Encoder

Attn Tree-structured
Decoder

Tree-structured
Decoder

Primary
Key

Schema Grounding Consistency Loss SQL Parsing Consistency Loss :

BoW()

What is the make of the car with the max MPG?

Show its make!q1 q2

s3

q3

r3

Schema D Hidden State of D

ApplyRule[]

Latent
Variable

[Z] q1

qh 1

q2 3q 1t

z

11c 3r
Latent

Variable
Self-contained

Question r 3

ApplyRule SelectCol SelectTab ApplyRule SelectCol SelectTab

Hidden State
of [Z]

Hidden State
of [Z]

[Z]

Sharing
Parameters

Sharing
Parameters

id
m

ak
e

ho
rs

ep
ow

er
M

PG
cy

lin
de

rs

ca
r_

da
ta

ca
r_

na
m

e

m
ak

e
M

PG
ca

r_
da

ta
ca

r_
na

m
e

id
m

ak
e

ho
rs

ep
ow

er
M

PG
cy

lin
de

rs

ca
r_

da
ta

ca
r_

na
m

e

o zr

KL()
Schema Grounding BoW Loss

FROM ApplyRule[]FROMSelectTab[]car_data

KL ()APPLYRULEKL()= KL ()SELECTCOLUMN KL ()SELECTTABLE

KL ()APPLYRULE

KL ()SELECTCOLUMN

KL ()SELECTTABLE

car_data
id

1t :
11c :
12c : horsepower
13c : MPG
14c :

car_data1t :

make23c :
MPG13c :

car_names
make_id

2t :
car_names2t : 21c :

model22c :
make23c :

🔑

SELECT T1.make FROM car_names AS T1 JOIN
car_data AS T2 ORDER BY T2.MPG DESC LIMIT 1

DD
3

 Hidden State
of

3

BoW()
Schema D in
Current SQLm

ak
e

M
PG

ca
r_

da
ta

ca
r_

na
m

e 3
Schema D in
Current SQL

3

21c2t
Schema D

1t 11c 21c2t

Attention Attention

Prediction
Distributions

Prediction
DistributionsPrediction

Distributions
Prediction
Distributions

3q

RAT Encoder

Seq(q)3 Seq(r)3

ˆ
ˆ

ˆ

qh 2 qh 3 th 1 ch 11 ch 21th 2 th 1 ch 11 ch 21th 2rh 3

qh 1
zo qh 2 qh 3 th 1 ch 11 ch 21th 2 zr th 1 ch 11 ch 21th 2rh 3

WSG WSGWSG
WSG

WSG
WSG

WSG

WSG

cylinders

Figure 3: Illustration of the training stage for CQR-SQL. (a) Schema grounding task with bag-of-word (BoW) loss
and consistency loss. (b) Tree-structured SQL parsing consistency loss at each decoding step. [Z]denotes the
special symbol of latent variable. RAT Encoder is the relation-aware transformer encoder (Wang et al., 2020) to
jointly represent natural language and structured schema. Tree-structured Decoder is the tree-structured LSTM of
Yin and Neubig (2017) to predict SQL AST rules, Table id and Column id at each decoding step.

zo=RAT(Seq(q⩽τ))0 and zr = RAT(Seq(rτ))0
indicate the final hidden state of the latent vari-
ables associated with question context q⩽τ and self-
contained question rτ respectively. The Schema
Grounding consistency loss LSGKL is defined as:

LSGKL
τ =KL

(
P(D̂τ |Seq(q⩽τ))∥P(D̂τ |Seq(rτ))

)

+KL
(
P(D̂τ |Seq(rτ))∥P(D̂τ |Seq(q⩽τ))

)
.
(4)

where KL(·) refers to the Kullback–Leibler diver-
gence between two distributions.
SQL Parsing Consistency Task. Furthermore,
to encourage model pay more attention to the SQL
logic involving co-reference and ellipsis, we intro-
duce to enforce the model to obtain the consistency
prediction of SQL parsing with question contexts
and self-contained questions as inputs, at each de-
coding step. The SQL parsing loss LSP and the
SQL Parsing consistency loss LSPKL , at each turn
τ , can be represented as:

LSPτ =−logP(sτ |Seq(q⩽τ))−logP(sτ |Seq(rτ)).(5)

LSPKL
τ =KL(P(sτ |Seq(q⩽τ))∥P(sτ |Seq(rτ)))

+ KL(P(sτ |Seq(rτ))∥P(sτ |Seq(q⩽τ))).
(6)

In this work, we follow the tree-structured de-
coder of Yin and Neubig (2017), which gen-
erates SQL queries as an abstract syntax tree
(AST), and conduct three main predictions at each
decoding step, including APPLYRULE, SELECT-
COLUMN and SELECTTABLE. We calculate the
SQL parsing consistency loss by accumulating
all KL divergences of above three predictions as
KL(·) = KLAPPLYRULE(·)+KLSELECTCOLUMN(·)+

KLSELECTTABLE(·) at all decoding steps, as shown in
Figure 3(b) and further described in Appendix A.3.

Finally we calculate the total training loss Lτ
at each question turn τ for our context-dependent
text-to-SQL model CQR-SQL as:

Lτ = LSPτ +λ1LSGBoW
τ +λ2

(
LSPKL
τ +LSGKL

τ

)
︸ ︷︷ ︸

Consistency Loss

. (7)

where λ1 and λ2 are weights for the schema ground-
ing BoW loss and the consistency loss respectively.

CQR-SQL Inference. Since CQR-SQL has learned to
adequately understand the context dependency in
question context q⩽τ by distilling representations
from self-contained question in two consistency
tasks, CQR-SQL no longer relies on self-contained
questions and only considers Seq(q⩽τ) as inputs,
as shown in Figure 2(d2), thus circumventing the
error propagation in two-stage pipeline methods.

3 Experiments
In this section, we conduct several experiments to
assess the performance of proposed methods in §2.
3.1 Experimental Setup
CQR Learning. We adopt the Transformer-based
encoder-decoder architecture based on the pre-
trained ProphetNet (Qi et al., 2020) as the initial
CQR model. Since there is no question reformu-
lation annotations in SPARC and COSQL, we an-
notate 3034 and 1527 user questions as the initial
in-domain supervised CQR data Dcqr

0 for SPARC
and COSQL respectively. Before self-training,
we pre-train a single-turn text-to-SQL model θSQL

based on RAT-SQL (Wang et al., 2020) architec-
ture and ELECTRA (Clark et al., 2020) language

2058

Models (↓) / Datasets (→)
SPARCDev SPARCTest COSQLDev COSQLTest

QM(%) IM(%) QM(%) IM(%) QM(%) IM(%) QM(%) IM(%)

GAZP + BERT (Zhong et al., 2020) 48.9 29.7 45.9 23.5 42.0 12.3 39.7 12.8
IGSQL + BERT (Cai and Wan, 2020) 50.7 32.5 51.2 29.5 44.1 15.8 42.5 15.0
R2SQL + BERT (Hui et al., 2021) 54.1 35.2 55.8 30.8 45.7 19.5 46.8 17.0
RAT-SQL + BERT (Yu et al., 2021b) 56.8 33.4 - - 48.4 19.1 - -
DELTA + BERT♡ (Chen et al., 2021) 58.6 35.6 59.9 31.8 51.7 21.5 50.8 19.7
CQR-SQL + BERT (Ours) 62.5 42.4 - - 53.5 24.6 - -

RAT-SQL + SCORE♢ (Yu et al., 2021b) 62.2 42.5 62.4 38.1 52.1 22.0 51.6 21.2
RAT-SQL + TC + GAP♢ (Li et al., 2021) 64.1 44.1 65.7 43.2 - - - -
PICARD + T5-3B (Scholak et al., 2021) - - - - 56.9 24.2 54.6 23.7
HIE-SQL + GRAPPA♢ (Zheng et al., 2022) 64.7 45.0 64.6 42.9 56.4 28.7 53.9 24.6
UNIFIEDSKG + T5-3B (Xie et al., 2022) 61.5 41.9 - - 54.1 22.8 - -
RASAT + T5-3B (Qi et al., 2022) 66.7 47.2 - - 58.8 26.3 - -

CQR-SQL + ELECTRA (Ours) 67.8 48.1 67.3 43.9 58.4 29.4 - -
CQR-SQL + COCO-LM (Ours) 68.0 48.8 68.2 44.4 58.5 31.1 58.3 27.4

Table 1: Performances on the development and test set of SPARC and COSQL. “QM” and “IM” indicate the exact
match accuracy over all questions and all interaction respectively. The models with♢mark employ task adaptive
pre-trained language models. Models with♡mark use the general two-stage pipeline approach in Figure 2(b). The
“-” results of CQR-SQL are awaiting evaluation due to the submission interval of the leaderboard.

Dataset # Num of
#Train/#Dev/#Test

#Average System
Interactions Turn Response

SPARC 4,298 3,034 / 422 / 842 3.0 %

COSQL 3,007 2,164 / 293 / 551 5.2 !

Table 2: Detailed statistics for SPARC and COSQL.

model for checking whether a generated question
is self-contained enough for correctly SQL parsing.
During self-training in §2.2, we conduct 3 training
loops {θcqr1 , θcqr2 , θcqr3 } and obtain 4441 and 1973
supervised CQR data for SPARC and COSQL re-
spectively. Finally, we use the CQR model θcqr3 in
the last training loop to produce the self-contained
questions for all interaction turns.
CQR-SQL Training. We conduct experiments
on two context-dependent text-to-SQL datasets
SPARC and COSQL, the statistic information of
them are depicted in Table 2. Following (Cao et al.,
2021), we employ RAT-SQL (Wang et al., 2020)
architecture and pre-trained ELECTRA (Clark et al.,
2020) for all text-to-SQL experiments in this paper.
In the training of CQR-SQL, we set hyperparameters
λ1 = 0.1 and λ2 = 3.0 for SPARC, λ2 = 1.0 for
COSQL (See Appendix B.2 for details), learning
rate as 5e-5, batch size of 32. During inference, we
set the beam size to 5 for SQL parsing.

3.2 Experimental Results
As shown in Table 1, CQR-SQL achieves state-of-
the-art results cross all settings at the time of writ-
ing. With general PLM BERT, CQR-SQL surpasses
all previous methods, including the two-stage

method DELTA (Chen et al., 2021) which also uses
additional text-to-SQL data from Spider. Beside,
most of recent advanced methods tend to incorpo-
rates more task-adaptive data (text-table pairs
and synthesized text-sql pairs), tailored pre-
training tasks (column prediction and turn switch
prediction) and super-large PLM T5-3B (Raffel
et al., 2020) into training. For this setting, we
use general PLM ELECTRA for all text-to-SQL
experiments following Cao et al. (2021), and fur-
ther employ a more compatible1 PLM COCO-
LM (Meng et al., 2021) for comparison. CQR-
SQL significantly outperforms SCORE (Yu et al.,
2021b), RAT-SQL+TC (Li et al., 2021) and re-
cent HIE-SQL (Zheng et al., 2022) which use task-
adaptive pre-trained models. Note that HIE-SQL
employs two task-adaptive PLMs for encoding
text-schema pairs and previous SQL queries
respectively. Compared with methods based on
super-large T5-3B model (especially RASAT (Qi
et al., 2022) which integrates co-reference relations
and constrained decoding into T5-3B), CQR-SQL
can also achieve significant improvements.

To verify the advantages of CQR-SQL on ade-
quately contextual understanding, we further com-
pare the performances on different interaction turns
of SPARC, as shown in Figure 4(a). We observe

1COCO-LM is pre-trained on sequence contrastive learn-
ing with a dual-encoder architecture (Reimers and Gurevych,
2019), which is compatible for our CQR consistency tasks
with dual-encoder for multi-turn q⩽τ and self-contained rτ .

2059

Turn>4
 #89

40.9

33.0

26.1

19.3

Turn 1
#422

Turn 2
#422

Turn 3
#270

60

50

40

30

20

70

80
80

70

60

50

40

30

20

CQR-SQL
RAT-SQL+TCa

R SQL2 b

IG-SQLc

EditSQLd

Q
M

 A
cc

ur
ac

y
(%

)
(a) Different Interaction Turns (b) Different SQL Difficulties

Extra
 #134

Easy
#483

Medium
#441

Hard
#145

46.2

68.3

80.7

43.3

21.8
18.8
12.8

63.2
62.2

67.7
75.5
70.9
68.8

51.5

45.4
40.6

35.2
29.0
26.9

CQR-SQL
R SQL2 b

IG-SQLc

EditSQLd

58.9(4.5)

54.4

45.7

39.0
36.1

75.4
75.6(0.2)

53.9(13.0)

68.7(4.7)

50.8

64.0

55.3

40.1

Figure 4: Detailed question match (QM) accuracy re-
sults in different interaction turns and goal difficulties
on the dev set of SPARC dataset. # Number denotes
the number of questions. Detailed results of a (Li et al.,
2021),b (Hui et al., 2021),c (Cai and Wan, 2020) and
d (Zhang et al., 2019) are from the original paper.

that it is more difficult for SQL parsing in longer
interaction turns due to the long-range dependency
problem, while CQR-SQL achieves more signifi-
cant improvement as the interaction turn increases.
Moreover, in Figure 4(b), we further compare the
performances on varying difficulty levels of target
SQL queries, CQR-SQL consistently outperforms
previous works on all difficulty levels, especially
on the “Extra Hard” level whose target SQL
queries are most complex and usually contain nest-
ing SQL structures (Yu et al., 2018).

3.3 Ablation Study
Regarding the CQR task, as shown in Table 3, recur-
sive generation (RG) achieves 0.46% BLEU score
gains on the CQR task for COSQL dataset which
has much longer interaction turns than SPARC
as shown in Table 2, while RG fails to signifi-
cantly improve the performance for SPARCCQR.
This indicates RG can improve CQR performance
for longer contextual dependency. While further

Models / Task SPARCCQR COSQLCQR COSQL
Train / # Dev 3,034 / 422 1,527 / 154 QM / IM

Our CQR 55.75 / 73.80 59.87 / 78.82 57.8 / 27.7
− RG 55.83 / 73.72 59.41 / 78.24 57.3 / 27.3
− RG− SE 54.78 / 72.87 58.93 / 77.64 56.4 / 26.6

CANARDT5 3B 25.57 / 49.52 39.04 / 57.08 53.6 / 23.9

Table 3: Comparisons on the BLEU / Rouge-L scores
between schema enhanced (SE) approach and recursive
generation (RG) for CQR. Models are trained and eval-
uated on the initially annotated data Dcqr

0 . We observe
that the BLEU / Rouge-L scores of COSQLCQR are
much higher than those of SPARC, because COSQL has
much more user focus change questions that without
co-references and ellipsis (Yu et al., 2019a).

[#]
Datasets (→) SPARCDev COSQLDev

Models (↓) QM(%) IM(%) QM(%) IM(%)

[1] CQR-SQL 67.8 48.1 58.4 29.4
[2] −SG 66.3 47.4 57.0 27.0
[3] −SPKL 65.6 46.9 57.3 25.6
[4] −SPKL −SG 64.9 46.5 56.6 23.9
[5] −SPKL −SGKL 64.7 45.7 56.1 23.6
Exploratory Study on the Integration of CQR

[6] CQRAugment 64.5 45.7 54.7 24.2
[7] CQRTwo Stage⋆ 65.8 46.7 56.8 24.6
[8] CQRTwo Stage 62.5 43.1 54.8 23.6
[9] CQRMulti Task 64.9 45.0 56.2 25.3

Table 4: Ablation studies for CQR-SQL and its vari-
ants. SG denotes the Schema Grounding task (includ-
ing BoW loss and consistency loss SGKL), and SPKL

denotes the SQL Parsing consistency task.

removing the schema enhanced SE method, per-
formances decrease by roughly 1% and 0.5% on
SPARCCQR and COSQLCQR respectively, which
verifies the effectiveness of schema integration in
CQR for text-to-SQL datasets. We additionally
evaluate the performances without any in-domain
CQR annotations (fine-tune T5-3B on general CQR
dataset CANARD (Elgohary et al., 2019)), and ob-
serve that performances on CQR tasks are more
significantly reduced than on COSQL, verifying
the effect of in-domain data and the robustness of
CQR-SQL against noised CQR information.

In Table 4, we investigate the contribution of
each designed choice of proposed CQR-SQL.

[2] : −SG. If removing schema grounding task
(including BoW loss and consistency loss), all met-
rics on SPARC and COSQL drops by 0.7%-2.4%.

[3] :−SPKL. After removing SQL parsing con-
sistency loss, all metrics drops by 1.1%-3.8%.

[4] :−SPKL −SG. If removing both schema
grounding task (BoW loss and consistency loss)
and SQL parsing consistency loss, CQR-SQL de-
generates to a variant trained in the general “End-
to-End” manner as shown in Figure 2(a), and its
performances decrease by 1.7%-5.5%.

[5]: −SPKL −SGKL. To study the impact of
schema grounding BoW loss, we train End-to-End
variants [4] with BoW loss and find that merely
integrating BoW loss slightly degrades the perfor-
mances, because grounding schema in context is
much more difficult than in single questions. While
combining BoW with consistency loss to distill
contextual knowledge from self-contained ques-
tions can improve the performances ([4]→[3]).

2060

 List the name and date of the battle that has lost the ship named ' HMS Atlanta' and 'Lettice'.

 What about those who do not have any dogs temporarily
 How many of them come from the state of 'Arizona'

 What is its horsepower

q1
q2
q3

 Show all the car information for any car of the model volvo
 What is the car with the least accelerate

:
:
:

 SELECT Student.Fname FROM Student JOIN Has_Pet JOIN
Pets WHERE Pets.PetType = "value" AND Pets.PetType = "value"

 SELECT Student.Fname FROM Has_Pet JOIN Student JOIN
Pets WHERE Pets.PetType = "value" OR Pets.PetType = "value"

 SELECT battle.name, battle.date FROM battle JOIN ship WHERE ship.name = "value"

 SELECT battle.name, battle.date FROM battle JOIN ship WHERE ship.name = "value"
INTERSECT SELECT battle.name, battle.date FROM battle JOIN ship WHERE ship.name = "value"

 SELECT COUNT(*) FROM Owners WHERE Owners.owner_id NOT IN (SELECT
Dogs.owner_id FROM Dogs WHERE Owners.state = "value")

 SELECT COUNT(*) FROM Owners WHERE Owners.owner_id NOT IN (SELECT
Dogs.owner_id FROM Dogs)

 Can you intersect those ?

 SELECT cars_data.Horsepower FROM car_names JOIN cars_data WHERE
car_names.Model = "value" ORDER BY cars_data.Accelerate ASC LIMIT 1

 SELECT cars_data.Horsepower FROM car_names JOIN cars_data WHERE
car_names.Model = "value"
End-to-end

CQR-SQL

Case #1 of CQR-SQL against End-to-end approach Case #2 of CQR-SQL against End-to-end approach

:

:

End-to-end

CQR-SQL

:

:

q3 q2 q1

0.0036 0.00470.0145 0.0041 0.0030 0.0058

q3 q2 q1

q1
q2
q3

r3

 List the name and date of the battle that has lost the ship named 'Lettice'
 Same for 'HMS Atlanta'.

Two-Stage :

CQR-SQL :

 List the name and date of the battle that has lost the ship named ' HMS Atlanta' .~

r3

Case #2 of Error PropagationCase #1 of Error Propagation (is the wrongly generated self-contained question.)

Two-Stage :

CQR-SQL :

:
:
:
:
: what is the first name of the student who has a cat or a dog?

r3 what is the first name of the student who has both a cat and a dog?~

r3

:
:

r~3

 Also, combine those names with those who have a dog.

q1
q2
q3

 What is the first name of every student?
 Of those names, which ones correspond to somebody who has a cat?

:
:
:

q1
q2
q3

 Show all the owner information:
:
:

Figure 5: Case studies on SPARC dataset. Upper block shows the cases of error propagation with incorrectly
generated self-contained questions r̃τ for Two-Stage pipeline methods (as in Figure 2(c) or [7] in Table 3).
Cases in the lower block show that End-to-End method (as in Figure 2(a) or[4] in Table 4) fails to resolve the
conversational dependency. Besides, the heat maps represent the visualization of attention scores of the latent
variable [Z] on the question context part. Number on each dotted box is the average attention scores of that box.

[6]: CQRAugment. We directly augment the full
self-contained question data Dcqr to [4] as single-
turn text-to-SQL data augmentation. We find
CQRAugment degrades the performances because
models are trained more on single-turn text-to-SQL,
while weaken the abilities of contextual understand-
ing for multi-turn text-to-SQL.
[7]: CQRTwo Stage⋆ . A variant trained in the im-
proved “Two-Stage” manner as in Figure 2(c). It
slightly outperforms the End-to-End variant[4].
[8]: CQRTwo Stage. A “Two-Stage” variant with-
out additionally integrating question context into
“Stage 2” as variant[7]. The performances signifi-
cantly decline for the error propagation issue.
[9]: CQRMulti Task. A variant jointly trained on
CQR task and text-to-SQL task with a shared RAT
encoder and two task-specified decoders, as shown
in Figure 6. We observe that CQRMulti Task slightly
decreases the performances compared with End-to-
End variant[4]for the optimization gap between
the text-to-text optimization and structured
text-to-SQL optimization.

D

RAT
Encoder
(shared)

Transformer
Decoder

Tree-structured
Decoder

Tree-structured
Decoder s�

Schema

Trained
Simultaneously

At Inference Time

SQL Query

Self-contained
Question

q2...

Question
Context

q�

r�
~

q1

Figure 6: Schematic of CQRMulti Task variant.

Above results and analyses demonstrate the ad-
vantages of CQR-SQL on leveraging self-contained

questions to enhance the abilities of adequately
context understanding for contextual text-to-SQL
parsing, meanwhile circumventing the error propa-
gation of Two-Stage pipeline methods.

3.4 Case Study
As shown in the upper block of Figure 5, we com-
pare the SQL queries by CQR-SQL with those by
the Two-Stage baseline model in Figure 2(c) or
[7] in Table 3, to show the error propagation
phenomenon between CQR stage and text-to-SQL
stage. The generated self-contained questions r̃τ
are incorrect, leading to wrong predictions of SQL
queries. Specifically, In the first case, CQR model
fails to understand “intersect” in current question
q3, thus missing “Lettice” in the generated self-
contained question r̃3 and leading to uncompleted
SQL queries in the text-to-SQL stage. In the sec-
ond case, CQR model misunderstood “combine”
in the the current question q3, leading to incorrect
key word “AND” in the predicted SQL query.

In the lower block of Figure 5, we compare the
SQL queries by CQR-SQL with those by the End-to-
End baseline, and visualize the attention patterns of
latent variable [Z] on question context. The first
case shows the scenario which requires model to in-
herit history information to resolve the co-reference
and ellipsis. From the heat map, we observe that
latent variable [Z] pays more attention to the desir-
able history information “volvo” and “least accel-
erate”. While the second case shows the scenario
which requires model to discard confusion history

2061

information. In this case, latent variable [Z] pays
less attention to the confusion information block
“state of ‘Arizona’” compared with the desirable
ones, which is benefit for correctly SQL parsing.

3.5 Transferability on Contextual Text-to-SQL
To verify the transferability of CQR integration on
contextual text-to-SQL task, we conduct three out-
of-distribution experiments as shown in Table 5.
In experiment [1], our CQR-SQL has better trans-
ferability on contextualized questions (Turn⩾2)
in COSQLDev, which contains additional system
response and more question turns compared with
SPARC dataset as in Table 2. Beside, in experi-
ment [2-3], CQR-SQL achieves consistently bet-
ter performances on out-of-distribution contextual
questions (Turn⩾3). These results indicate the
advantage of CQR-SQL in robustness contextual un-
derstanding for out-of-distribution scenarios.

[#] Train Eval End-to-End Two-Stage CQR-SQL

[1] SAll
Train CTurn⩾2

Dev 36.3(+0.0) 37.3(+1.0) 40.9(+4.6)

[2] STurn⩽2
Train STurn⩾3

Dev 41.5(+0.0) 42.6(+1.1) 45.2(+3.7)

[3] CTurn⩽2
Train CTurn⩾3

Dev 42.4(+0.0) 43.2(+0.8) 46.7(+4.3)

Table 5: Question match (QM) accuracy results of
the out-of-distribution experiments. S and C denote
SPARC and COSQL datasets respectively. Exper-
iment [1]: training models on the training set of
SPARCTrain, while evaluating them on the questions
with context (Turn⩾2) in COSQLDev. Experiment
[2-3]: training models on the questions at Turn⩽2,
whereas evaluating them on the questions at Turn⩾3.

4 Related Work
Text-to-SQL. Spider (Yu et al., 2018) is a well-
known cross-domain context-independent text-to-
SQL task that has attracted considerable attention.
Diverse approaches, such as RAT-SQL (Wang et al.,
2020), BRIDGE (Lin et al., 2020) and LGESQL
(Cao et al., 2021), have been successful on this task.
Recently, with the widespread popularity of dia-
logue systems and the public availability of SPARC
(Yu et al., 2019b) and COSQL (Yu et al., 2019a)
datasets, context-dependent text-to-SQL has drawn
more attention. Zhang et al. (2019) and Wang
et al. (2021) use previously generated SQL queries
to improve the quality of SQL parsing. Cai and
Wan (2020) and Hui et al. (2021) employ graph
neural network to model contextual questions and
schema. Jain and Lapata (2021) use a memory ma-
trix to keep track of contextual information. Chen
et al. (2021) decouple context-dependent text-to-
SQL task to CQR and context-independent text-to-

SQL tasks. Besides, Yu et al. (2021a,b) propose
task-adaptive conversational pre-trained model for
SQL parsing, and Scholak et al. (2021) simply con-
strain auto-regressive decoders of super-large T5-
3B for SQL parsing. In this work, we leverage
reformulated self-contained questions in two con-
sistency tasks to enhance contextual dependency
understanding for multi-turn text-to-SQL parsing,
without suffering from the error propagation of
two-stage pipeline methods.

Conversational Question Reformulation (CQR)
aims to use question context to complete ellipsis
and co-references in the current questions. Most
works adopt the encoder-decoder architecture with
only contextual text as input (Elgohary et al., 2019;
Pan et al., 2019). Besides, CQR are applied to
several downstream tasks for enhanced context un-
derstanding, such as conversational question an-
swer (CQA) (Kim et al., 2021) and conversational
passage retrieval (CPR) (Dalton et al., 2020). Re-
grading CQR training for text-to-SQL, We present
a recursive CQR method to address long-range
dependency and incorporate schema to generate
more domain-relevant and semantic-reliable self-
contained questions.

Consistency Training. To improve model robust-
ness, consistency training (Zheng et al., 2016) has
been widely explored in natural language process-
ing by regularizing model predictions to be invari-
ant to small perturbations. The small perturbations
can be random or adversarial noise (Miyato et al.,
2018) and data augmentation (Zheng et al., 2021).
Inspired by consistency training, ExCorD (Kim
et al., 2021) trains a classification CQA model that
encourage the models to predict similar answers
span from the rewritten and original questions. Dif-
ferent from ExCorD, we combine latent variable
with schema grounding consistency task and tree-
structured SQL generation consistency task to force
model pay more attention to the co-references and
ellipsis in question context.

5 Conclusions

We propose CQR-SQL, a novel context-dependent
text-to-SQL approach that explicitly comprehends
the schema and conversational dependency through
latent CQR learning. The method introduces a
schema enhanced recursive generation mechanism
to generate domain-relative self-contained ques-
tions, then trains models to map the semantics of
self-contained questions and multi-turn question

2062

context into the same latent space with schema
grounding consistency task and SQL parsing con-
sistency task for adequately context understand-
ing. Experimental results show that CQR-SQL
achieves new state-of-the-art results on two classi-
cal context-dependent text-to-SQL datasets SPARC
and COSQL.

6 Limitations
Compared to End-to-End approaches as shown in
Figure 2(a), proposed CQR-SQL requires more com-
putational cost and GPU memory consumption at
each training step, with duel-encoder for question
context and self-contained question inputs. Specifi-
cally, with batchsize of 32 and 8 V100 GPU cards,
CQR-SQL takes 310.7 seconds to train an epoch on
SPARC dataset, while End-to-End approache just
costs 179.6 seconds. While compared with previ-
ous advanced methods using T5-3B PLM (Scholak
et al., 2021; Xie et al., 2022; Qi et al., 2022), and
multiple task-adaptive PLMs (Zheng et al., 2022),
CQR-SQL is much more computationally efficient.

Acknowledgments

We are indebted to the EMNLP2022 reviewers for
their detailed and insightful comments on our work.
This work was supported in part by the National
Natural Science Foundation of China (Grant No.
62276017), and the 2022 Tencent Big Travel Rhino-
Bird Special Research Program.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Yitao Cai and Xiaojun Wan. 2020. IGSQL: Database
schema interaction graph based neural model for
context-dependent text-to-SQL generation. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 6903–6912, Online. Association for Computa-
tional Linguistics.

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,
Su Zhu, and Kai Yu. 2021. LGESQL: Line graph
enhanced text-to-SQL model with mixed local and
non-local relations. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 2541–2555, Online. Association
for Computational Linguistics.

Zhi Chen, Lu Chen, Hanqi Li, Ruisheng Cao, Da Ma,
Mengyue Wu, and Kai Yu. 2021. Decoupled dia-

logue modeling and semantic parsing for multi-turn
text-to-SQL. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3063–3074, Online. Association for Computational
Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions.

Jeffrey Dalton, Chenyan Xiong, Vaibhav Kumar, and
Jamie Callan. 2020. Cast-19: A dataset for conver-
sational information seeking. In Proceedings of the
43rd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 1985–1988.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ahmed Elgohary, Denis Peskov, and Jordan Boyd-
Graber. 2019. Can you unpack that? learning to
rewrite questions-in-context. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5918–5924, Hong Kong,
China. Association for Computational Linguistics.

Binyuan Hui, Ruiying Geng, Qiyu Ren, Binhua Li,
Yongbin Li, Jian Sun, Fei Huang, Luo Si, Pengfei
Zhu, and Xiaodan Zhu. 2021. Dynamic hybrid rela-
tion exploration network for cross-domain context-
dependent semantic parsing. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 13116–13124.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1821–
1831, Vancouver, Canada. Association for Computa-
tional Linguistics.

Parag Jain and Mirella Lapata. 2021. Memory-based
semantic parsing. Transactions of the Association for
Computational Linguistics, 9:1197–1212.

Gangwoo Kim, Hyunjae Kim, Jungsoo Park, and Jae-
woo Kang. 2021. Learn to resolve conversational
dependency: A consistency training framework for
conversational question answering. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing

2063

https://arxiv.org/abs/1607.06450
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.findings-acl.270
https://doi.org/10.18653/v1/2021.findings-acl.270
https://doi.org/10.18653/v1/2021.findings-acl.270
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://www.cs.cmu.edu/~callan/Papers/sigir20-dalton.pdf
https://www.cs.cmu.edu/~callan/Papers/sigir20-dalton.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1605
https://doi.org/10.18653/v1/D19-1605
https://arxiv.org/abs/2101.01686
https://arxiv.org/abs/2101.01686
https://arxiv.org/abs/2101.01686
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.1162/tacl_a_00422
https://doi.org/10.1162/tacl_a_00422
https://doi.org/10.18653/v1/2021.acl-long.478
https://doi.org/10.18653/v1/2021.acl-long.478
https://doi.org/10.18653/v1/2021.acl-long.478

(Volume 1: Long Papers), pages 6130–6141, Online.
Association for Computational Linguistics.

Yuntao Li, Hanchu Zhang, Yutian Li, Sirui Wang, Wei
Wu, and Yan Zhang. 2021. Pay more attention to his-
tory: A context modeling strategy for conversational
text-to-sql. arXiv:2112.08735.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-SQL semantic parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4870–4888, Online. Association
for Computational Linguistics.

Yu Meng, Chenyan Xiong, Payal Bajaj, saurabh tiwary,
Paul Bennett, Jiawei Han, and XIA SONG. 2021.
Coco-lm: Correcting and contrasting text sequences
for language model pretraining. In Advances in
Neural Information Processing Systems, volume 34,
pages 23102–23114. Curran Associates, Inc.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. 2018. Virtual adversarial training:
a regularization method for supervised and semi-
supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 41(8):1979–1993.

Zhufeng Pan, Kun Bai, Yan Wang, Lianqiang Zhou,
and Xiaojiang Liu. 2019. Improving open-domain
dialogue systems via multi-turn incomplete utterance
restoration. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1824–1833, Hong Kong, China. Association
for Computational Linguistics.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Chenghu Zhou, Xinbing Wang, Quanshi Zhang, and
Zhouhan Lin. 2022. Rasat: Integrating relational
structures into pretrained seq2seq model for text-to-
sql. In arXiv:2205.06983.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu,
Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming
Zhou. 2020. ProphetNet: Predicting future n-gram
for sequence-to-SequencePre-training. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 2401–2410, Online. Association
for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages

3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Run-Ze Wang, Zhen-Hua Ling, Jingbo Zhou, and Yu Hu.
2021. Tracking interaction states for multi-turn text-
to-sql semantic parsing. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I Wang,
et al. 2022. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text lan-
guage models. arXiv preprint arXiv:2201.05966.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2021a. GraPPa:
grammar-augmented pre-training for table semantic
parsing. In International Conference on Learning
Representations.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the

2064

https://arxiv.org/pdf/2112.08735.pdf
https://arxiv.org/pdf/2112.08735.pdf
https://arxiv.org/pdf/2112.08735.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://proceedings.neurips.cc/paper/2021/file/c2c2a04512b35d13102459f8784f1a2d-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c2c2a04512b35d13102459f8784f1a2d-Paper.pdf
https://doi.org/10.18653/v1/D19-1191
https://doi.org/10.18653/v1/D19-1191
https://doi.org/10.18653/v1/D19-1191
https://arxiv.org/abs/2205.06983
https://arxiv.org/abs/2205.06983
https://arxiv.org/abs/2205.06983
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://doi.org/10.18653/v1/2020.findings-emnlp.217
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://arxiv.org/abs/2012.04995
https://arxiv.org/abs/2012.04995
https://arxiv.org/pdf/2201.05966
https://arxiv.org/pdf/2201.05966
https://arxiv.org/pdf/2201.05966
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204

9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Alex Polozov, Christopher Meek,
and Ahmed Hassan Awadallah. 2021b. Score: Pre-
training for context representation in conversational
semantic parsing. In International Conference on
Learning Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4511–4523, Florence, Italy.
Association for Computational Linguistics.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric
Xue, Xi Victoria Lin, Tianze Shi, Caiming Xiong,
Richard Socher, and Dragomir Radev. 2019. Editing-
based SQL query generation for cross-domain
context-dependent questions. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5338–5349, Hong Kong,
China. Association for Computational Linguistics.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. 2017.
Learning discourse-level diversity for neural dialog
models using conditional variational autoencoders.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 654–664, Vancouver, Canada.
Association for Computational Linguistics.

Bo Zheng, Li Dong, Shaohan Huang, Wenhui Wang,
Zewen Chi, Saksham Singhal, Wanxiang Che, Ting
Liu, Xia Song, and Furu Wei. 2021. Consistency reg-
ularization for cross-lingual fine-tuning. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3403–3417, Online.
Association for Computational Linguistics.

Stephan Zheng, Yang Song, Thomas Leung, and Ian
Goodfellow. 2016. Improving the robustness of deep
neural networks via stability training. In Proceedings
of the ieee conference on computer vision and pattern
recognition, pages 4480–4488.

Yanzhao Zheng, Haibin Wang, Baohua Dong, Xingjun
Wang, and Changshan Li. 2022. HIE-SQL: History
information enhanced network for context-dependent
text-to-sql semantic parsing. In Findings of the Asso-
ciation for Computational Linguistics 2022, Online.
Association for Computational Linguistics.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6869–
6882, Online. Association for Computational Lin-
guistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

2065

https://openreview.net/forum?id=oyZxhRI2RiE
https://openreview.net/forum?id=oyZxhRI2RiE
https://openreview.net/forum?id=oyZxhRI2RiE
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/2021.acl-long.264
https://doi.org/10.18653/v1/2021.acl-long.264
https://arxiv.org/abs/1604.04326
https://arxiv.org/abs/1604.04326
https://arxiv.org/abs/2203.07376
https://arxiv.org/abs/2203.07376
https://arxiv.org/abs/2203.07376
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103

A Backbone Architecture

A.1 Encoder: Relation-aware Transformer

Relation-aware Transformer (RAT) (Wang et al.,
2020) is an extension to Transformer (Vaswani
et al., 2017) to consider preexisting pairwise re-
lational features between the inputs. For text-to-
SQL task, pairwise relational features include the
intra-relation of databse schema D and question-
schema alignment information. Formally, given
input sequence x = {x1, x2, ..., xn}, we obtain the
initial representations through pre-trained language
model H0 = PLM(x) = {x1,x2, ...,xn}. Then
L stacked RAT blocks compute the final hidden
states HL = RAT(x) via Hl = RATl(H

l−1), l ∈
[1, L] where RATl(·) is calculated as:

Q = Hl−1Wl
Q,K = Hl−1Wl

K ,V = Hl−1Wl
V

eij = Softmax
j

(
Qi(Kj + rKij)

⊤
√
dk

)

Ai=
n∑

j=1

eij
(
Vj + rVij

)

Ã = LayerNorm(Hl−1 +A)

Hl= LayerNorm
(
Ã+ FC(ReLU(FC(Ã)))

)
.

(8)

where parameters Wl
Q,W

l
K ,Wl

V ∈ Rdh×dk proj-
ect Hl to queries, keys and values. Embedding rij
represents the relationship between token xi and
xj . LayerNorm(·) is the layer normalization (Ba
et al., 2016), FC(·) is the full connected layer.

In CQR-SQL, the relation type between latent
variable [Z] and schema is NOMATCH (Wang
et al., 2020).

A.2 Decoder: Tree-structured LSTM

We employ a single layer tree-structured LSTM
decoder of Yin and Neubig (2017) to generate the
abstract syntax tree (AST) of SQL queries in depth-
first, left-to-right order. At each decoding step,
the prediction is either 1) APPLYRULE action that
expands the last non-terminal into a AST grammar
rule; or 2) SELECTCOLUMN or SELECTTABLE

action that chooses a column or table from schema
to complete last terminal node.

Formally, given the final encoder hidden states
of Question, Table and ColumnHL = {Hq,Ht,
Hc}. The tree-structured decoder is required to
generate a sequence of actions at to construct the
AST which can transfer to standard SQL query
s, represented as P(s|HL) =

∏
t P
(
at|a<t,H

L
)
.

We adopt a single layer LSTM to produce ac-
tion sequence, the LSTM states are updated as

ct,ht = LSTM([at−1;hpt ;apt ;nft], ct−1,ht−1)
where [·] is the concatenate operation, ct is the
LSTM cell state, ht is the LSTM output hidden
state, at is the action embedding, pt is the decod-
ing step of the current parent AST node and nft is
the embedding of current node type. We initialize
the LSTM hidden state h0 via attention pooling
over the final encoder hidden state HL as:

ei= Softmax
i

(
h̃0Tanh

(
HL

i W1

)⊤)

A=
n∑

i=1

eiH
L
i

h0= Tanh (AW2) .

(9)

where h̃0 is initial attention vector, W1,W2 are
projection parameters. At each decoding step t,
we employ MultiHeadAttention (Vaswani et al.,
2017) on ht over HL to compute context represen-
tation hctx

t .
For the prediction of APPLYRULE actions, the

prediction distribution is computed as:

P(at=APPLYRULE[R]|a<t,H
L)

= Softmax
R

(
MLP2([ht;h

ctx
t])WR

)
.

(10)

where MLP2 denotes 2-layer MLP with a Tanh
nonlinearity, WR is the classification matrice.

For the prediction of SELECTTABLE actions, the
prediction distribution is computed as:

P(at=SELECTTABLE[i]|a<t,H
L)

= Softmax
i

(
MLP2([ht;h

ctx
t])WtH

⊤
ti

)
.

(11)

where Hti denotes the encoder hidden state of the
i-th Table. The prediction of SELECTCOLUMN

actions is similar to SELECTTABLE.

A.3 SQL Parsing Consistency Loss

Given the final encoder hidden states HL
q =

RAT(Seq (q⩽τ)) and HL
r = RAT(Seq(rτ)) for

question context and self-contained question in-
put respectively, the SQL parsing consistency loss
LSPKL(t) at each decoding step t is computed as:

LSPKL(t) = LSPKL(t)
APPLYRULE + L

SPKL(t)
SELECTTABLE

+ LSPKL(t)
SELECTCOLUMN.

LSPKL(t)
APPLYRULE = KL

(
P
(
at=APPLYRULE|a<t,H

L
q

)

∥ P
(
at=APPLYRULE|a<t,H

L
r

))
.

LSPKL(t)
SELECTTABLE = KL

(
P
(
at=SELECTTABLE|a<t,H

L
q

)

∥ P
(
at=SELECTTABLE|a<t,H

L
r

))
.

(12)

The total SQL parsing consistency loss is computed
as LSPKL = 1

T

∑T
t=1 LSPKL(t), where T denotes

the length of action sequence for target SQL AST.

2066

B Experiment Details

B.1 Detailed Hyperparameters

We implement CQR-SQL based on the PyTorch
framework2 and use 8 Nvidia Tesla V100 32GB
GPU cards for all the experiments. Firstly, we
trained CQR model with a learning rate of 3e-5
and batch size of 32. We use the maximum input
sequence length as 512 and the maximum epochs
as 25. We adopt label smooth method with ratio
0.15 for regularization. During inference for CQR,
we set the beam size as 5.

Regarding training CQR-SQL, the number of
heads is 8 and hidden size of RAT encoder is 1024,
the dropout rates of encoder and decoder are 0.1
and 0.2 respectively. For pre-trained ELECTRA, we
adopt layer-wise learning rate decay with coeffi-
cient 0.8 for robust optimization. We train CQR-
SQL on SPARC and COSQL with max training
epochs to be 300 and 350 respectively.

B.2 Impact of Weight λ2 for Consistency Loss

We vary the weight λ2 of consistency loss in {1.0,
2.0, 3.0, 4.0} and train CQR-SQL on SPARC and
COSQL datasets, as shown in Table 6. We observe
that COSQL task desires less CQR knowledge
(best choice of λ2 is 1.0) compare with SPARC
(best choice of λ2 is 3.0), because COSQL dataset
contains much more user focus change questions
than SPARC, which do not need to be reformu-
lated (Yu et al., 2019b).

Weight λ2
SPARCDev COSQLDev

QM IM QM IM

λ2 = 1.0 66.5 47.2 58.2 29.4
λ2 = 2.0 67.1 47.6 58.0 28.3
λ2 = 3.0 67.8 48.1 57.4 27.3
λ2 = 4.0 66.0 46.7 56.7 26.6

Table 6: Results of CQR-SQL on SPARC and COSQL
datasets with different weights λ2 of consistency loss.

B.3 Detailed Results on COSQL Task

As shown in Table 7, we report the detailed re-
sults in different question turns and SQL difficulty
levels on the development set of COSQL dataset.
We observe that CQR-SQL achieves more signifi-
cant improvement as the interaction turn increases,
and consistently outperforms previous works on all
SQL difficulty levels.

2https://pytorch.org/

Models Turn 1 Turn 2 Turn 3 Turn 4 Turn>4
293 # 285 # 244 # 114 # 71

EditSQL a 50.0 36.7 34.8 43.0 23.9
IGSQL b 53.1 42.6 39.3 43.0 31.0
IST-SQL c 56.2 41.0 41.0 41.2 26.8
SCORE d 60.8 53.0 47.5 49.1 32.4

CQR-SQL 66.2 60.0 54.5 54.4 39.4

Models Easy Medium Hard Extra
483 # 441 # 145 # 134

EditSQL a 62.7 29.4 22.8 9.3
IGSQL b 66.3 35.6 26.4 10.3
IST-SQL c 66.0 36.2 27.8 10.3

CQR-SQL 76.7 55.9 39.9 22.4

Table 7: Detailed QM results in different interaction
turns and goal difficulties on the development set of
COSQL dataset. Detailed results of a (Zhang et al.,
2019),b (Cai and Wan, 2020),c (Wang et al., 2021) and
d (Yu et al., 2021b) are from the original paper.

B.4 Effects of CQR Integration with Different
PLMs

To further study the effects of CQR integration
for contextual text-to-SQL task, we train mod-
els in End-to-End, Two-Stage and CQR-SQL ap-
proaches based on different pre-trained language
models (PLMs), as shown in Table 8. We can see
that: 1) CQR-SQL method consistently preforms
better than Two-Stage and End-to-End methods,
further demonstrating the effectiveness of CQR-
SQL for adequate contextual understanding. 2)
COCO-LM (Meng et al., 2021) is superior to ELEC-
TRA (Clark et al., 2020) and BERT (Devlin et al.,
2019). We argue the reason is that COCO-LM is
pre-trained on sequence contrastive learning with a
dual-encoder architecture (Reimers and Gurevych,
2019), which is compatible for our CQR consis-
tency tasks with dual-encoder for question context
q⩽τ and self-contained question rτ as inputs.

PLMs Methods SPARCDev COSQLDev

QM IM QM IM

BERT
End-to-End 58.6 38.2 50.7 20.5
Two-Stage 60.1 39.3 51.1 22.2
CQR-SQL 62.5 42.4 53.5 24.6

ELECTRA

End-to-End 64.9 46.5 56.6 23.9
Two-Stage 65.8 46.7 56.8 24.6
CQR-SQL 67.8 48.1 58.2 29.4

COCO-LM
End-to-End 65.6 45.5 57.1 25.9
Two-Stage 66.0 46.5 57.8 26.3
CQR-SQL 68.0 48.8 58.5 31.1

Table 8: Results of End-to-End, Two-Stage and CQR-
SQL methods with different PLMs.

2067

https://pytorch.org/

B.5 More Cases
In this section, we show more cases of error propa-
gation with Two-Stage pipeline method, and CQR-
SQL against End-to-End baseline models.

What is the model of that with the lowest horsepower?

Now show just the ones with 4 cylinders.

How about the greatest horsepower?

 SELECT model_list.Model FROM car_names JOIN cars_data WHERE
cars_data.Cylinders = "value" ORDER BY cars_data.Horsepower DESC LIMIT 1

 SELECT model_list.Model FROM model_list JOIN cars_data ORDER BY
cars_data.Horsepower DESC LIMIT 1

q1

q2

q3

Two-Stage

CQR-SQL

:

:

 SELECT Dogs.name FROM Owners JOIN Dogs WHERE Owners.state="value"

 SELECT Dogs.name, Owners.first_name FROM Dogs JOIN Owners WHERE
Owners.state="value"

Two-Stage
CQR-SQL

:
:

 SELECT Dogs.name FROM Dogs

 SELECT Professionals.first_name FROM Professionals INTERSECT SELECT
Owners.last_name FROM Owners
Two-Stage

CQR-SQL

:

:

:

:

:

q4 :

Show all models and horsepowers of all cars!

 what is the model of the car with 4 cylinders and the greatest horsepower ?

r4 what is the model of the car with the greatest horsepower ?~

r4

:

:

What about the dog names?

q1

q2

:

:

List all the names of both Professionals and Owners.

 what are the names of dogs ?

r2 what are the names of both professionals and owners of dogs ?~

r2

:

:

Add the owner's first names also.

q1

q2

:

:

What about when the owner is from the state of 'Virginia'?q3 :

Show the name of dogs whose owners are from the city 'Lake Tia'.

 show the name of dogs whose owner is from the state of ' virginia ' and the owner's
 first names.

r3 show the name of dogs whose owner is from the state of ' virginia ' .~

r3

:

:

�Cases of Error Propagation (is the wrongly generated self-contained question.)r~

Which language is spoken by only one of those countries?

 SELECT countrylanguage.Language FROM country JOIN countrylanguage
WHERE country.GovernmentForm = "value" GROUP BY countrylanguage.Language HAVING
COUNT(*) = "value"

 SELECT countrylanguage.Language FROM countrylanguage JOIN country
GROUP BY countrylanguage.Language HAVING COUNT(*) = "value"

q1

q2

End-to-end

CQR-SQL

:

:

:

:

Which countries have republics as their form of government?

Which cities did they come from?

 SELECT employee.City FROM employee WHERE employee.Age < "value"
GROUP BY employee.City HAVING COUNT(*) > "value"

 SELECT employee.City FROM employee GROUP BY employee.City HAVING
COUNT(*) > "value"

q1

q2

End-to-end

CQR-SQL

:

:

:

:

Show the cities from which more than one employee originated.q3 :

Find all employees who are under age 30.

Cases of CQR-SQL against End-to-end approach

Figure 7: Cases on SPARC dataset. Upper block shows
the cases of error propagation with incorrectly gener-
ated self-contained questions r̃τ for Two-Stage pipeline
methods (as in Figure 2(c) or [7] in Table 3). Cases
in the lower block show that End-to-End method (as
in Figure 2(a) or [4] in Table 4) fails to resolve the
conversational dependency.

2068

