Doc2Bot: Accessing Heterogeneous Documents via Conversational Bots

Haomin Fu'?} Yeqin Zhang'?; Haiyang Yu?, Jian Sun?, Fei Huang?, Luo Si?
Yongbin Li?" and Cam-Tu Nguyen'?
!State Key Laboratory for Novel Software Technology, Nanjing University, China
2Alibaba Group
{haominfu, zhangyeqin} @smail.nju.edu.cn
{yifei.yhy, jian.sun, f.huang, luo.si} @alibaba-inc.com
shuide.lyb@alibaba-inc.com, ncamtu@nju.edu.cn

Abstract

This paper introduces Doc2Bot, a novel dataset
for building machines that help users seek in-
formation via conversations. This is of partic-
ular interest for companies and organizations
that own a large number of manuals or instruc-
tion books. Despite its potential, the nature
of our task poses several challenges: (1) doc-
uments contain various structures that hinder
the ability of machines to comprehend, and (2)
user information needs are often underspeci-
fied. Compared to prior datasets that either
focus on a single structural type or overlook
the role of questioning to uncover user needs,
the Doc2Bot dataset is developed to target such
challenges systematically. Our dataset contains
over 100,000 turns based on Chinese docu-
ments from five domains, larger than any prior
document-grounded dialog dataset for infor-
mation seeking. We propose three tasks in
Doc2Bot: (1) dialog state tracking to track user
intentions, (2) dialog policy learning to plan
system actions and contents, and (3) response
generation which generates responses based on
the outputs of the dialog policy. Baseline meth-
ods based on the latest deep learning models are
presented, indicating that our proposed tasks
are challenging and worthy of further research.

1 Introduction

The last decade has witnessed a dramatic change in
how humans interact with information retrieval sys-
tems. Although traditional search engines still play
an important role in our daily life, the wide adop-
tion of smart devices with small screens requires
systems to answer user requests more concisely.
Early attempts focus on answering independent
questions (Rajpurkar et al., 2016), whereas recent
studies pay attention to handling interconnected
questions via conversations around a single pas-
sage (Pasupat and Liang, 2015; Chen et al., 2020)

“Equal contribution.
Corresponding authors.

or documents (Feng et al., 2020, 2021). Yet, the
nature of heterogeneous documents and our conver-
sational setting pose challenges that require further
attention. We, therefore, develop Doc2Bot! with
these considerations in mind.

The first concerns the nature of heterogeneous
documents, which often contain different types of
structures such as tables and sequences. To answer
questions regarding such structural types, systems
need to acquire various skills. Figure 1 shows a
conversation between a user and an agent, where
the agent has access to a collection of documents.
In this conversation, every utterance except the
first one depends on the conversation history and
the grounded documents. The document contains
diverse structures including conditions (N2), se-
quences (N3), and tables (N4). Each type of struc-
ture poses different challenges for the agent. For
example, the agent needs to understand the rule
text in N2 to ask questions such as A3 and A5. The
agent also needs to be able to summarize the pro-
cedure in N3 to produce the answer (A13) or jump
to a specific step of the procedure if being asked
(A15). In addition, the agent needs to be capable of
summarizing the tables (A19) or answering ques-
tions with row and column constraints (A21). Note
that there have been previous attempts (Pasupat and
Liang, 2015; Saeidi et al., 2018; Chen et al., 2020;
Zhang et al., 2022b) to address different structures
in isolation. Howeyver, little research has been done
on handling multiple types of structures in the same
document context.

The second concerns the nature of our conversa-
tional setting, which is to help users seek informa-
tion from documents. Since user information needs
are often under-specified, it is desirable for systems
to ask clarifying questions. This resembles the
task of relevance feedback and query refinement
in traditional information retrieval. However, in
Doc2Bot, system feedback is in the form of natural

"https://github.com/Doc2Bot/Doc2Bot

1820

Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1820-1836
December 7-11, 2022 ©2022 Association for Computational Linguistics


https://github.com/Doc2Bot/Doc2Bot

HZ city > Social security and medical insurance

uo Hello, I'd like to know about the social security and medical insurance of HZ
> Unemployment Insurance City.
Al Which one do you want to know? Industrial injury insurance, unemployment
Application conditions: insurance or medical insurance?
1. From January to December 2021, the insurance . . .
. . u2 Tell me more unemployment insurance, | like to know if | can apply for
payment is more thah 1 year, and the labor contract is unemployment benefit?
terminated due to his own reasons; X i
. L ) A3 From January to December 2021, did you terminate the labor contract due to
2. The insured institution is in HZ City . . .
your own reasons while you have paid for the insurance over a year?
Handling Process: U4 Yes
Step 1 (Application): the applicant submits the A5 Is your last insured institution in HZ City before you lost your job?
materials, or applies at the government service ué Yes, | am insured in HZ City
department and selects the delivery method A7 Ok, then you meet the current conditions for HZ City to apply for
Step 2 (Receiving): Conduct preliminary review on unemployment benefits
application materials.
Step 3 (Recheck): check If the materials are
incomplete or do not conform to the legal form - U12  Can you tell me the procedure for the continuation of unemployment
Step 4 (Review): the application can be processed insurance?
within 1-3 working days upon receiving. A13  Handling process: 1) Application; 2) Receiving; 3) Recheck; 4) Review; 5)
Step 5 (Return): Send results back to the applicant Completion and 6) Delivery. Would you like to know more about the application
using the chosen delivery method- step?

Ul4  Not now, I'd like to know the processing time of the forth step?
Al15  1-3 working days

Application Yes 2 A4

form u18

ID card Yes 1 Not A19
specified

Residence No 1 Not u20

card specified A21 A4

What materials do | need to submit to apply for unemployment benefits?
It is required to submit the application form, social security card and the
certificate of termination of labor issued by the employer.

What is the required paper size of the application form?

Figure 1: An example dialog (right) grounded on a document (left) with heterogeneous structures. From the top, the
dialog contains 4 segments S1-4 grounded on 4 corresponding document segments N1-4. Here U and A stand for

user and agent, respectively.

questions, and thus more user-friendly. For exam-
ple, in Figure 1, A1 is a kind of multiple-choice
question that the agent asks to narrow down the
search for the answer. In contrast, A3 and A5 are
to verify user situations to answer questions regard-
ing condition/solution structure. Although learning
to construct questions from a single passage has
been studied in Machine Reading Comprehension
(Saeidi et al., 2018; Guo et al., 2021), such finer-
grained questions are required only when the pas-
sage containing the answer has been found. For
document-grounded dialog systems (DGDS), the
agent needs to have the skills to narrow down the
search (A1) as well as to ask finer questions such
as A3 and A5.

Towards such goals, there are several challenges
that we need to address. First, documents come
in different formats, and thus the process of con-
structing our dataset is more difficult than those
from single passages with homogeneous structures.
The difference in formats also hinders the ability
of machines to learn common patterns. Second,
like human-human conversations, it is desirable
to have samples of human-system conversations
that are natural, and coherent while being diverse

for the machine learning purpose. We target such
challenges systematically and make the following
contributions:

* We present a unified representation for hetero-
geneous structures, which not only facilitates
our data collection process but also helps sys-
tems to learn patterns across documents.

* We propose an agenda-based dialog collec-
tion protocol that controls the diversity and
coherence of dialogues by design. The pro-
tocol also encourages crowd-collaborators to
introduce ambiguities to conversations.

* We introduce a new dataset Doc2Bot which is
larger in scale compared to recent datasets for
DGDS (Feng et al., 2020, 2021) while intro-
ducing new challenges such as a new language
(Chinese), richer relations (e.g, sections, con-
ditions, tables, sequences) and new tasks (e.g.
dialog policy learning).

* We evaluate our proposed tasks with the latest
machine learning methods. The experiments
show that our tasks are still challenging, which
suggests room for further research.

1821



2 Related Works

Our work is most closely related to the document-
grounded dialog systems (DGDS) in the litera-
ture. Based on the conversation objective, we can
roughly categorize the related tasks into chitchat,
comprehension, or information seeking.

Document-grounded chitchat datasets such as
WoW (Dinan et al., 2019), Holl-E (Moghe et al.,
2018), CMU-DoG (Zhou et al., 2018) aim to en-
hance early chitchat systems by using information
from grounded textual passages for answer genera-
tion. The goal is similar to an open chitchat system
as the dialog agent tries to keep users engaged in
long, informative, and interactive conversations.
This is different from our setting because users
of our system often have clear goals (information
needs), and the dialog agent needs to provide users
with accurate information as soon as possible.

For document-grounded “comprehension” such
as CoQA (Reddy et al., 2019), Abg-CoQA (Guo
etal., 2021) and ShARC (Saeidi et al., 2018), the
agent is given a textual paragraph and needs to an-
swer users’ questions about the paragraph. This set-
ting is similar to Machine Reading Comprehension
(MRC). However, the difference is that questions
in MRC may not form a coherent dialog. Notice-
ably, several question strategies have been targeted
in Abg-CoQA and ShARC. For example, in Abg-
CoQA, systems can ask clarifying questions to re-
solve different types of ambiguities. In ShARC,
the authors created conversations where the system
can learn to ask “yes/no” questions to understand
users’ information and provide appropriate answers.
The questioning strategy in ShARC is designed
based on text rules that define the relationship be-
tween “conditions” and “solutions” exhibited in
the given paragraph. Although we also address
question strategies, our tasks are more challenging
because we focus on multiple documents.

The third type of DGDS (Penha et al., 2019;
Feng et al., 2020, 2021) is closest to our setting
where the agent needs to provide answers to infor-
mation seekers in the shortest possible time. Mantis
(Penha et al., 2019) was collected from online fo-
rums, and the grounded documents are not given in
advance. As a result, Mantis does not come with a
detailed annotation which is needed to study the ca-
pability of the agents to understand documents. In
contrast, given a set of documents, Doc2dial (Feng
et al., 2020) and Multidoc2dial (Feng et al., 2021)
were collected in 2 stages: 1) dialog flows are first

generated by labeling and linking paragraphs, 2)
crowdsourcers then write conversations based on
the suggested flows. Note that Multidoc2dial was
built by rearranging dialogues from doc2dial so
that one conversation can contain information from
multiple documents. Although we follow simi-
lar steps for constructing the dataset, our dialog
flow generation is essentially different, which ad-
dresses the coherence of the generated dialogues,
and the multi-document grounding issue by design.
In addition, our dataset exceeds Doc2dial and Mul-
tidoc2dial in scale, while also highlighting new
challenges such as under-specified user requests.

3 Dataset Collection

This section details the process of collecting
Doc2Bot, including 4 stages: 1) document col-
lection which selects targeted domains and docu-
ments; 2) document graph construction which
unifies heterogeneous structures from multiple do-
mains to build document graphs; 3) dialog flow
generation that simulates the agenda of a user
seeking information from a document graph; and 4)
dialog collection where crowd-collaborators write
dialogs based on the generated dialog flows.

3.1 Document Collection

For document collection, we examine several po-
tential domains and select 5 representative ones
including public services, technology, insurance,
health care services, and wikiHow. For each do-
main, documents are selected based on two criteria:
1) the documents should be rich in structural types;
2) each document should have links to other doc-
uments so that we can test the ability of machines
to reason over multiple documents. We design a
simple ranking score based on these criteria and
select the top-ranked documents for each domain.

3.2 Document Graph Construction

Documents from different domains or sources have
vastly different formats (HTML, PDF, etc). To-
wards building scalable dialog systems across do-
mains, it is important to have a unified format for
encoding heterogeneous semantic structures in doc-
uments. Bear in mind that our target is to preserve
those structures in the document context. This is un-
like knowledge graphs and event graphs (Fu et al.,
2020; Ma et al., 2021; Hogan et al., 2021) in which
only entities or events are extracted while other
context information is discarded.

1822



Exemption

Y
S If the insured dies
due to one of the
 SLUSULL L Ay following
: type=section \ circumstances

from liability
i
) SR |

type=disjunction

The company shall
not be liable

(2) The insured
intentionally commits
a crime

d 1) The applicant
intentionally causes the
insured to have an

. acute disease )i ‘}7(1 \

S T E—— = 1

I type=cond . L type=con )

1

Figure 2: The structure of a disjunction of conditions
and the associated solution in the insurance domain.

[ Numberof | [ 1co ‘
| copies L By )

N

5 Application form type=attr type=value
Application for tractor
K Materials driver' s license s ) ) ( )
—tab) \ J Mate.n.al . H A4 ‘
type=table type=object L Specification ) { — J
type=attr type=value
) Number of H 2 copies J
Photos \_coples A 5
\ J type=attr type=value
type=object
( Material ) ( . )
Specification | aloch ‘
type=attr type=value

Figure 3: The structure of a table and its objects in the
domain of public services.

Document Graph is defined as a directed graph
where a node corresponds to a span of text in the
document. Inspired by property graphs (Hogan
et al., 2021), we associate each node with a node
type and a set of additional property-value pairs.
Each domain has a root node that connects to do-
main documents via title hierarchy.

A number of node types are defined to cover
common discourse relations exhibited in multi-
ple domains (Das et al., 2018; Stede et al., 2019).
These include section type to denote section titles
in documents. The types of disjunction, conjunc-
tion, condition, solution, negation are used to
describe the condition-solution relation as depicted
in Figure 2. The types of table, object, attribute,
value are to encode the relations in tables as shown
in Figure 3. The types of sequence, sequence-step
are introduced to indicate the relations of texts in
describing procedures such as N3 in Figure 1. Last
but not least, the see-more type is used to encode
hyperlinks, and the ordinary type is assigned to
the nodes belonging to none of the above.

The property-value pairs associated with nodes
are used for additional information. For exam-
ple, each node can be identified with docid and
nodeid. Likewise, see-more nodes have prop-

erties such as linked nodeid. Additionally, we in-
troduce is-super-leaf to indicate whether a node
should be targeted in the dialog flow generation.

3.3 Dialog Flow Generation

Studies of human behaviors in goal-oriented di-
alog systems have long recognized the fact that
users have hidden agendas (Schatzmann and Young,
2009) which direct the interactions between users
and chatbots. This is also the idea behind the con-
struction of well-known datasets such as MultiWoz
(Budzianowski et al., 2018). Although the connec-
tion between DGDS in information-seeking sce-
narios and goal-oriented dialog systems has been
suggested (Feng et al., 2020, 2021), DGDS have no
explicit schemes, thus hindering the agenda-based
approach to dialog collection. As an alternative, we
exploit the graph structure of the document graph
to build up agendas for simulating dialog flows be-
tween a user and an agent. Here, a dialog flow is
defined as a sequence of goals, each goal corre-
sponds to a node in our document graph. We mark
nodes, that can be used as goals, with is_super_leaf
being true using a semi-automatic method.

Our agenda-based procedure for generating a di-
alog flow is demonstrated in Algorithm 1. Here, the
procedure takes as inputs the document graph G,
the transition probabilities &, the maximum number
of goals nGoal, and the initial selected document
d. The objective is to generate diverse dialog flows
based on which crowd contributors can write con-
versations. For each goal, a prompt can be gener-
ated to suggest questions that can be asked about
the subtree rooted at the goal node (line 6). For
example, given a table in Figure 3 as a goal, we
can generate the corresponding prompt by: (1) ran-
domly selecting some “objects” and “attributes” as
constraints, e.g. paper size and application form;
(2) using templates to convert the constraints to
a guideline such as “write a number of question-
answer turns so that the system final answer is A4 -
the paper size of the application form” .

We use an agenda stack to contain a list of po-
tential goals that a user might switch to (from the
last goal). The candidates nearer to the top of the
agenda stack are closer to the last goal in the doc-
ument graph. The action of a user switching from
one goal to another is simulated by three factors,
the follow-up rate & f;, the in-jump rate ;;,; and the
out-jump rate &,,¢j. When the action is follow-up,
users tend to ask about the related information of

1823



Algorithm 1 Agenda-based dialog flow generation

Require: G; & = [£51, ing, Eoutj), nGoals, d
Ensure: a dialog flow flow, that is a list of goal,
each corresponds to a node in G

1: goal < sample_leaves(G,d.root)
2: path < get_path(G, d.root, goal)
3: Push nodes in path to the agenda stack A
4: while len(flow) < nGoals do
5: goal < pop a leaf from A > last goal
6: prompt < gen_prompt(G, goal)
7: flow < append ([goal, prompt])
8: Sample act based on &
0: if act is follow_up then
10: st < pop the top from A
11: if act is in_jump then
12: st < sample a random node in A
13: pop A till seeing st
14: if act is out_jump then
15: d < sample_connected_doc(G, d)
16: st < d.root
17: goal < sample_leaves(G, st.root)
18: path < get_path(G, st.root, goal)
19: Push nodes in path to the agenda stack A

the recent goal (line 10). If the action is in-jump,
users ask about some goals further away from the
last goal but still close to some goals in the past.
The out-jump action, on the other hand, allows us
to simulate the situation where users may ask about
related documents. The out-jump rate might be
increased if the current goal is linked to an outside
document via a see-more node. Note that the pro-
cedure that samples leaf nodes (line 1, 17) should
exclude the visited nodes.

Our agenda-based flow generation is adaptable
to include new types of structures. This is because
whenever we need to target a new structural type,
we just need to adjust the document graph defini-
tion, and design a new prompt generation while
keeping Algorithm 1 unchanged.

3.4 Dialog Collection

We ask crowd contributors to write conversations
based on our generated dialog flows. We follow the
protocol that one writer plays both agent and user
roles and completes the whole dialog like (Feng
et al., 2020, 2021). To further improve the coher-
ence of the generated dialogs, we ask writers to
examine each dialog flow and skip some goals if
the goal is not consistent with the rest of the flow.

Once a dialog flow has been double-checked
by a writer, he/she is requested to write dialog ut-
terances based on the goals and their associated
prompts (see Section 3.3). Each goal, its prompt,
and its context are then presented one by one to a
crowd contributor. By context, we mean the path
from the graph root node to the goal node and its
neighbors. The writer then interchangeably takes
the role of a user or an agent with different inter-
faces (see Appendix A). When it is the user’s turn,
we encourage the writer to pose an under-specified
question, which might make the system confused
between the goal node and others in the context.
When it is the system’s turn, the writer is either
asked to provide an answer based on the goal node
or ask questions to clarify. Once the system has
fulfilled the goal task, the writer should terminate
the goal to move to the next one in the flow. Be-
sides utterances, for each turn, the writer needs to
provide annotations such as user/system acts, and
grounding texts/nodes.

To ensure the quality of the dataset, crowd col-
laborators were selected and trained for two weeks.
After the training period, we sampled several di-
alogs and provided feedback to writers in a weekly
manner. Our task was completed in 3 months and
we paid 0.836 RMB per dialog turn.

4 Data Analysis

Document Data Table 1 lists the number of doc-
uments, along with the number of structures by
types in Doc2Bot. As we can see, documents in
the domain of public services are very rich in struc-
tural types, whereas wikiHow contains a lot of se-
quences showing how-to procedures. Although the
size of the document collection is still moderate,
it is more than 3 times larger than the document
collection size in doc2dial and multidoc2dial (Feng
et al., 2020, 2021), the previous datasets for DGDS.

Dialog Data Doc2Bot contains 6,619 dialogues
with 101,994 turns (see Table 2). The mean length
of user and system utterances are 18.3 and 49.99
words, respectively. Each user utterance is anno-
tated with a dialog state, consisting of a user action
(Figure 4) and some grounding texts (1.39 texts
on average). Similarly, each system utterance is
annotated with a system action (Figure 5) and an
average number of 1.81 grounding nodes (in the
document graph). As we can see from Figure 5,
system questions correspond to about 20% of the
total number of system utterances. This implies

1824



Ans/No
0% B What

Ans/Open
/op When

What W Where
39% HWhy
EHow
W Verification
W Ans/Open
Ans/Yesno
Ans/Yes
Why Where ®Ans/No
3% 4%

Figure 4: The distribution of user dialog actions.

Domain#Docs | #Tab #Seq #Con #Sec
Public 390 | 2747 1909 644 3993
Health 403 0 2 22 2468
Insurance 100 0 0 2423 6107
Wikihow 385 0 658 0 1900
Tech. 301 47 771 250 1526
All 1579 | 2794 3340 3339 15994

Table 1: Statistics on the number of documents and the
structural types by domain. Here, “Public” is short for
“Public Services”. Tab, Seq, Cond, and Sec stand for
tables, sequences, conditions/solutions, and sections.

that our agenda-based protocol has successfully
encouraged crowd-collaborators to include a con-
siderable number of ambiguities.

Table 2 shows the number of goals for different
structural types. Since each goal corresponds to a
dialog segment, it can be inferred that although the
majority of requests are about plain texts (ordinary),
Doc2Bot does contain a large number of scenarios
grounded on other types of structures.

For evaluation, we define several tasks (see Sec-
tion 5) and split the dialog dataset into a training
set, consisting of 70% of dialogues, as well as a
validation set of 10% and a test set of 20%.

5 Tasks and Baselines

Inspired by goal-oriented dialog systems, this paper
considers three tasks: (1) dialog state tracking; (2)
dialog policy learning; (3) response generation.

5.1 Dialog State Tracking

Dialog State Tracking (DST) aims at tracking user
intentions and key information (Dai et al., 2021;
Sun et al., 2021; Zhang et al., 2022a). Specifi-
cally, given a dialog history H and the latest user

Ans/Yes
6%

Ans/YesNo

0% H Open Questions

Verification

N Multiple-choice
4%

W Verification
W Ans/Open
W Ans/YesNo
W Ans/Yes
mAns/No

Ans/Open
70%

Figure 5: The distribution of system dialog actions.

Conversation and Goal Statistics

#dialogs 6619 | #turns 101994
#dial (>1 doc) 2207 | #doc/dial 1.42
#gr/usr-turn 1.39 #gr/sys-turn  1.81
usr-turn len 18.3 sys-turn len  49.99
#ordinary 20747 | #tables 607
#sequences 5707 | #conditions 896

Table 2: Conversation statistics: the # of dialogues,
turns, the average # of grounding (#gr) texts per turn,
grounding documents per dialog. Goal statistics: the #
of dialog segments about tables, conditions, etc.

turn, we need to perform (1) user action prediction
where the actions are given in Figure 4, and (2)
grounding text matching where the candidate texts
are extracted from nodes of the document graph
without duplication.

Baseline Approach The problem of user act pre-
diction can be formalized as a multi-class classifi-
cation, where we use RoBERTa (Liu et al., 2019),
BERT (Devlin et al., 2019) and ELECTRA (Clark
et al., 2020) as our baselines. The problem of
grounding text matching can also be formalized
as a classification problem, where we classify a
text as relevant vs irrelevant given the dialog his-
tory. Since the number of texts is too large for
evaluation, we follow the retrieval then classifica-
tion approach, where a retrieval model is first used
to retrieve candidate texts, and the above models
are used to classify if a candidate is relevant or not.

All in all, BM25 (Robertson et al., 2009) and
Dense Passage Retrieval (Karpukhin et al., 2020)
are used to select a number of candidate texts. And
for each of the above classification baselines, we
use two independent models for the user action and
grounding text prediction.

1825



Act GN  Joint
ma-F1 F1 F1 Acc

DPR+RT 7745 89.38 57.26 34.55
BM25+RT - - 38.62 15.39
DPR+BT 7695 89.52 57.15 3222
BM25+BT - - 4232 19.90
DPR+ET 76.06 87.88 57.02 30.29
BM25+ET - - 39.24 16.73

Table 3: Results on user act prediction (Act) and ground-
ing text prediction (GN) using BM25 and DPR for re-
trieval. Here, RT is for RoBERTa, BT is for BERT, and
ET is for ELECTRA.

Evaluation Metrics For user action prediction,
we report micro-F1 (F1) and macro-F1 (ma-F1)
which are the mean F1 scores averaged over turns
and actions, respectively. For grounding text pre-
diction, micro-F1 is applied to measure the perfor-
mance of our baselines. In addition, joint accu-
racy is used to measure the percentage of turns, for
which the user action and all the grounding texts
are correctly identified.

Experimental Results Table 3 shows that while
we can achieve promising results with user action
prediction, the task of grounding text matching is
still very challenging. For the matching task, 200
candidates are retrieved by BM25 or DPR, and then
reranked by the classification models (RoBERTa,
BERT, or ELECTRA). It is observable that models
based on DPR (e.g., DPR+RT) outperform BM?25-
based models (e.g. BM25+RT), indicating DPR is
a better retrieval method compared to BM25. The
best F1 score and joint accuracy, however, are only
57.26% and 34.55%, respectively. The low value of
F1 on grounding text prediction suggests room for
improving both the retrieval and the classification
models. The lower value of joint accuracy shows
that it is even more challenging to correctly identify
all the grounding texts.

5.2 Dialog Policy Learning

This task aims at planning the system act and the
contents to generate the next response (He et al.,
2022). The input of this task includes (1) the dia-
log history H, (2) the document graph G, and (3)
the dialog state DS; whereas the expected output
consists of the system action (Figure 5) and the
grounding nodes set.

Unlike grounding text matching in DST where
we find texts related to user requests, grounding
node prediction requires the agent to locate nodes
that should be used for system response. For exam-
ple, when asking about the table in Figure 3, users
may provide the table name and the attribute names,
which are found in the DST task. The dialog pol-
icy then infers the “value” nodes that contain the
answer given the dialog states. By assuming that
the dialog states are available, we hypothesize that
the agent can fully understand user utterances, thus
having a perfect DST module. In practice, this is
still a difficult task as seen in the previous section.

To further simplify the task of grounding node
prediction, we formalize it as a classification prob-
lem where the agent just needs to predict whether
a candidate node should be used or not. Here, a
candidate set is selected for each turn by combin-
ing the gold system grounding nodes, and 30 dis-
tractors, which are chosen randomly from the set
constructed by: 1) selecting nodes with texts that
match the most recent dialog states; 2) selecting
the neighbors (parents, siblings) of the nodes found
in (1) as well as those of the gold grounding nodes.

Baseline Approach For the system act predic-
tion, we also use RoOBERTa, BERT and ELECTRA
as the classification models where the input is the
dialog history, and the output is one of the system
act (Figure 5). For grounding node prediction, we
first form the input by concatenating (1) history:
the two latest utterances in the dialog history; (2)
the dialog state; (3) the structure information ob-
tained by sequentializing the path leading to the
candidate node in the document graph (Wan et al.,
2021); and (4) the candidate node. Before each seg-
ment (1-4) of the input, we add a special prompt
to indicate its semantics. We then use these clas-
sification models to predict the relevance of the
candidate node.

For the ablation study, we consider two variants
for each of these baselines for the grounding node
prediction. The first one treats a document as a
sequence of texts and replaces the structure infor-
mation with the context window of the node in
the original document, we refer to this as (- struc-
ture). The second variant excludes the dialog state
information, which is referred to as (- dialog state).

Experimental Results The same metrics, which
are used to evaluate dialog state tracking, are used
here for evaluating dialog policy models. The ex-

1826



Model Act GN Joint
ma-F1 F1 F1 Acc
RoBERTa 46.66 82.87 81.67 43.13
-structure - - 77.18 35.51
-states - - 73.71 32.49
BERT 45.00 82.58 81.40 41.75
-structure - - 75.61 32.08
-states - - 73.14 31.21
ELECTRA 42.77 8191 81.31 40.31
-structure - - 75.66 32.18
-states - - 73.17 30.53

Table 4: Results on system action prediction (Act) and
grounding node prediction (GN).

perimental results are shown in Table 4, from which
several observations can be drawn. Firstly, the best
baseline can only achieve macro-F1 of 46.66% on
system action prediction, showing that this task is
more difficult than user action prediction. The main
reason for the difficulty of this task is the imbalance
in the action distribution (see Figure 5), an issue
that requires further attention. Secondly, both doc-
ument structures and dialog states are essential for
grounding node prediction, since the performance
drops significantly without either one of them. And
finally, despite having the full information of dia-
log states and a simplified formalization with only
30 most potential distractors, the best performance
we can obtain is only 43.13% joint accuracy.

5.3 Response Generation

This task aims at generating a natural language
response based on the given system act and ground-
ing nodes set. The response can be a clarifying
question or an answer. The input includes (1) dia-
log history H, (2) system act as, and (3) ground-
ing nodes set N,. The target output is a system
response 1 consistent with the chosen action, the
planned contents, and the history.

Baseline Approach We use three encoder-
decoder generative models, Pegasus (Zhang et al.,
2020), BART (Lewis et al., 2020) and TS5 (Raffel
et al., 2020), as baselines. Here, the encoder takes
the concatenated sequence of all information as
inputs, and the decoder generates the response.

To study the impact of the system action predic-
tion task, we consider the variants of three baselines
where the system actions are not included as input.

Model BLEU-1 BLEU-2 BLEU-4
Pegasus 59.85 53.48 44.56
Pegasus, . ...| 358.12 52.09 43.59
BART 60.35 54.00 45.03
BART, /o act 58.75 52.62 44.06
T5 60.97 54.41 45.20
TS5u/0 act 59.30 52.98 44.19

Table 5: Response generation results for Pegasus, BART
and T5. w/o act means the system actions are not
included as input.

Experimental Results We use BLEU? (Papineni
et al., 2002), a commonly used metric to evaluate
the performance of the response generation. The
experimental results are given in Table 5, where
two main observations can be found. Firstly, TS
is slightly better than other baselines for response
generation. One possible explanation is that T5
has more parameters (see Table 6) than BART, and
the pre-training task of Pegasus is more suitable
for the summarization task. It is worth mention-
ing that the results here are obtained by using gold
values of system actions and grounding nodes. In
practice, we need to take into account the errors ac-
cumulated by the DST model and the dialog policy
model. Given that the best joint accuracy of DST
and dialog policy are only 34.55% and 43.13%,
one can see that the performance of response gen-
eration is still far from this upper bound. Secondly,
while the grounding nodes are undeniably impor-
tant for response generation, the introduction of
system actions has not always been helpful in the
previous dataset (Feng et al., 2020). However, in
Doc2Bot, we find that having information on sys-
tem actions can help improve the performance of
response generation for all baselines. This partially
validates our design choices of system actions in
Doc2Bot.

6 Conclusion

This paper presented Doc2Bot, a novel dataset
for DGDS for information seeking. Unlike prior
datasets, Doc2Bot contains examples that simulta-
neously test the ability of machines to comprehend
heterogeneous documents and clarify user informa-
tion needs. We proposed three main tasks associ-
ated with Doc2Bot: (1) dialog state tracking, which
tracks user intentions during the conversation, (2)

Zhttps://github.com/nltk/nltk

1827


https://github.com/nltk/nltk

dialog policy learning, which plans the next system
action and contents, and (3) response generation,
which is to generate system responses based on the
outputs of the dialog policy. We then presented
baselines for our tasks using several contemporary
models. Our experimental results showed that: 1)
Both dialog states information and document struc-
ture information are important for the task of dialog
policy learning; 2) Planning system actions helps
improve response generation; and 3) The tasks of
dialog state tracking and dialog policy learning,
which are essential for response generation, are
still very challenging with joint accuracy of only
34.55% and 43.13% respectively. We hope that our
dataset and such observations will be helpful for
future research in this direction.

Limitations

Towards a practical document-grounded dialog sys-
tem, some problems have not been addressed in
this work. (1) The task of automatic construction
of document graphs deserves further attention. Al-
though there exist automatic solutions for parsing
discourse relations, the results are still far from
desirable for Chinese. As a result, manual post-
processing was required for the construction of doc-
ument graphs, which can be daunting, particularly
for domains with many documents. (2) Doc2Bot
has yet to include unanswerable cases. Although
such samples can be created with a data recom-
position step, due to time limitations, we have to
leave this consideration for the future versions of
Doc2Bot.

Ethics Statement

Several ethical issues need our attention. Firstly,
more research should be done to make sure the ro-
bustness and effectiveness of document-grounded
dialog systems. Without careful consideration,
such systems will inconvenience both users and
the organizations that own the dialog systems. Sec-
ondly, although we can control the diversity of our
dataset by adjusting the sampling ratios, the conver-
sations might still contain some level of biases, for
which more careful examination should be done.
Third, our dataset should be used only for research
purposes. For Health domain, the responses must
not be taken for diagnosis. Finally, although our
collected dialogs contain no privacy sensitive data,
a part of the documents has usage constraints, and
thus we can only publish part of our dataset. The

full dataset can be shared upon usage agreements,
and for research purposes only.

Acknowledgements

We would like to thank the anonymous reviewers
for their insightful comments. We also like to thank
Dr. Song Feng and Dr. Bowen Yu for their helpful
suggestions. This work was supported by Alibaba
Innovative Research project “Document Grounded
Dialogue System”.

References

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Ifiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. Multiwoz-a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016-5026.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020. Hy-
bridQA: A dataset of multi-hop question answering
over tabular and textual data. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1026-1036.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations.

Yinpei Dai, Hangyu Li, Yongbin Li, Jian Sun, Fei
Huang, Luo Si, and Xiaodan Zhu. 2021. Preview, at-
tend and review: Schema-aware curriculum learning
for multi-domain dialogue state tracking. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 879-885.

Debopam Das, Tatjana Scheffler, Peter Bourgonje, and
Manfred Stede. 2018. Constructing a lexicon of en-
glish discourse connectives. In Proceedings of the
19th Annual SIGdial Meeting on Discourse and Dia-
logue, pages 360-365.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-

gies, pages 4171-4186.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2019. Wizard
of Wikipedia: Knowledge-powered conversational
agents. In Proceedings of the International Confer-
ence on Learning Representations.

1828



Song Feng, Siva Sankalp Patel, Hui Wan, and Sachindra
Joshi. 2021. MultiDoc2Dial: Modeling dialogues
grounded in multiple documents. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 6162—6176.

Song Feng, Hui Wan, Chulaka Gunasekara, Siva Patel,
Sachindra Joshi, and Luis Lastras. 2020. doc2dial: A
goal-oriented document-grounded dialogue dataset.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 8118—
8128.

Bin Fu, Yunqgi Qiu, Chengguang Tang, Yang Li,
Haiyang Yu, and Jian Sun. 2020. A survey on
complex question answering over knowledge base:
Recent advances and challenges. arXiv preprint
arXiv:2007.13069.

Meiqi Guo, Mingda Zhang, Siva Reddy, and Malihe
Alikhani. 2021. Abg-coqa: Clarifying ambiguity in
conversational question answering. In Proceedings
of the 3rd Conference on Automated Knowledge Base
Construction.

Wanwei He, Yinpei Dai, Yinhe Zheng, Yuchuan Wu,
Zheng Cao, Dermot Liu, Peng Jiang, Min Yang, Fei
Huang, Luo Si, et al. 2022. Galaxy: A generative
pre-trained model for task-oriented dialog with semi-
supervised learning and explicit policy injection. In
Proceedings of the AAAI Conference on Artificial
Intelligence, pages 10749-10757.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Clau-
dia d’Amato, Gerard de Melo, Claudio Gutierrez,
Sabrina Kirrane, José Emilio Labra Gayo, Roberto
Navigli, Sebastian Neumaier, et al. 2021. Knowledge
graphs. Synthesis Lectures on Data, Semantics, and
Knowledge, 12(2):1-257.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 6769-6781.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR.

Longxuan Ma, Mingda Li, Wei-Nan Zhang, Jiapeng
Li, and Ting Liu. 2021. Unstructured text enhanced
open-domain dialogue system: A systematic survey.

ACM Transactions on Information Systems, 40(1):1-
44.

Nikita Moghe, Siddhartha Arora, Suman Banerjee, and
Mitesh M. Khapra. 2018. Towards exploiting back-
ground knowledge for building conversation systems.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2322-2332.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing, pages 1470-1480.

Gustavo Penha, Alexandru Balan, and Claudia Hauff.
2019. Introducing mantis: a novel multi-domain in-
formation seeking dialogues dataset. arXiv preprint
arXiv:1912.04639.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21:140:1-140:67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing, pages 2383-2392.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249-266.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm?25 and be-

yond. Foundations and Trends® in Information Re-
trieval, 3(4):333-3809.

Marzieh Saeidi, Max Bartolo, Patrick S. H. Lewis,
Sameer Singh, Tim Rocktédschel, Mike Sheldon, Guil-
laume Bouchard, and Sebastian Riedel. 2018. Inter-
pretation of natural language rules in conversational
machine reading. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, pages 2087-2097.

Jost Schatzmann and Steve Young. 2009. The hidden
agenda user simulation model. IEEE Transactions on
Audio, Speech, and Language Processing, 17(4):733—
747.

1829



Manfred Stede, Tatjana Scheffler, and Amalia Mendes.
2019. Connective-lex: A web-based multilingual
lexical resource for connectives. Discours. Revue de
linguistique, psycholinguistique et informatique. A
Jjournal of linguistics, psycholinguistics and compu-
tational linguistics.

Yajing Sun, Yong Shan, Chengguang Tang, Yue Hu,
Yinpei Dai, Jing Yu, Jian Sun, Fei Huang, and Luo
Si. 2021. Unsupervised learning of deterministic
dialogue structure with edge-enhanced graph auto-
encoder. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 13869-13877.

Hui Wan, Song Feng, Chulaka Gunasekara,
Siva Sankalp Patel, Sachindra Joshi, and Luis
Lastras. 2021. Does structure matter? encoding
documents for machine reading comprehension.
In Proceedings of the 2021 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 4626-4634.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328-11339.

Sai Zhang, Yuwei Hu, Yuchuan Wu, Jiaman Wu, Yong-
bin Li, Jian Sun, Caixia Yuan, and Xiaojie Wang.
2022a. A slot is not built in one utterance: Spo-
ken language dialogs with sub-slots. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 309-321.

Zhenyu Zhang, Bowen Yu, Haiyang Yu, Tingwen Liu,
Cheng Fu, Jingyang Li, Chengguang Tang, Jian Sun,
and Yongbin Li. 2022b. Layout-aware information
extraction for document-grounded dialogue: Dataset,
method and demonstration. In Proceedings of the
30th ACM International Conference on Multimedia,
pages 7252-7260.

Kangyan Zhou, Shrimai Prabhumoye, and Alan W
Black. 2018. A dataset for document grounded con-
versations. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 708-713.

A Dialog Collection Process

Each dialog flow is presented to crowd-
collaborators with prompts that suggest questions

related to selected goals in the dialog flow. We
design different prompts associated with different
types of nodes:

* Asking about Tables :We assume that all ta-
bles contain a four-level structure table-object-
attribute-value. We consider each table as a
list of key objects and some attributes with
them. Inspired by (Pasupat and Liang, 2015;
Chen et al., 2020), we design three types of
prompt for tables: 1. asking for the general
information of a table, such as “what mate-
rial do I need to offer?” 2. asking for the
general information of an object in the table,
such as “can you tell me more about the first
material?” 3. asking for a value of the object
attribute, such as “How many copies of the
first material do I need to bring?”.

Asking about Sequence: Similar to tables, we
design three patterns for asking about the se-
quence: 1. asking for the general information
of a sequence, such as “what should I do for
the application?” 2. asking for the general
information of a step in the sequence, such
as “can you tell me more about step one?” 3.
asking for specific information for one step,
such as “how long does step one take?”

Asking about Condition/Solution: Depending
on the final system answer, we design three
QA patterns for asking about conditions. We
will randomly select a pattern from YES/NO/-
CONDITIONAL/SOLUTION as a prompt.
For the first two patterns, the user need to
ask a verifying question like “can I apply for
this fund?”, and the final answer for system
must be YES or NO after checking some con-
ditions. For CONDITIONAL, the user needs
to ask a question to know the conditions he
needs to meet, such as “I want to apply this
Jund, what do I need?”. For SOLUTION, the
user will explicitly say some conditions, and
the final system answer should be the solution
for that. For example, the user may ask “I am
a 35 year old worker, which insurance can 1

apply for?”.

Asking about Ordinary: Ordinary nodes cor-
respond to unstructured texts where we would
like to include samples similar to the task of
machine reading comprehension. As a result,

1830



we ask crowd collaborators to make up ques-
tions based on the node text, so that a span
in the node text can be used to answer the
question.

The writer is asked to think about a consistent
information-seeking situation based on the flow
and has the option to skip some goals in the dia-
log flow. The writer then interchangeably takes
the role of a user or an agent with different inter-
faces. When it is the user’s turn (see Figure 6),
we encourage the writer to pose an under-specified
question, which might make the system confused
between the goal node and others in the context.
When it is the system turn (see Figure 7), the writer
is either asked to provide an answer based on the
goal node or ask questions to clarify. For exam-
ple, a writer can exploit the section nodes to write
questions so that the next user’s answer can help
the agent to better target the goal node in the docu-
ment graph. Likewise, a writer can select condition
nodes (see Figure 2) to write questions so that the
user answer can help to answer the user question
about the condition/solution structure. Once the
system has fulfilled the goal task, the writer should
terminate the goal to move to the next one in the
flow. Besides utterances, for each (user or system
turn) the writer needs to provide annotations such
as (user/system) acts, node texts that entail user
utterances, and grounding nodes for system ques-
tions/answers.

B Experiments

The implementation is in PyTorch and the pre-
trained models we used are from HuggingFace
Transformers>. The information of them is shown
in the Table 6. For dialog act prediction, we use an
MLP to map the pooling output of the pre-trained
models to the action space. For all experiments,
we evaluate the model at the end of each epoch
and select the best-performed checkpoint. But for
response generation baselines we only evaluate the
last 5 epochs, since the inference stage is time-
consuming. AdamW is used to optimize the pa-
rameters, with 1e-08 epsilon and 0.01 weight de-
cay. All experiments are performed on one Tesla
V100 with 32GB memory. The average runtime of
training and inference for each baseline and best
validation performance are shown in Table 7.

3https://huggingface.co

Hyperparameters for DST baselines For user
act prediction, we fine-tune the baselines for 5
epochs with a batch size of 8. We use a learn-
ing rate of Se-6, linear scheduling without warmup.
For the DPR, we implement it by ourselves, us-
ing a Chinese version of pre-trained RoBERTa as
the backbone network. We train the model for
50 epochs with a batch size of 12. The learning
rate is 3e-6, linear scheduling with warmup steps
of 500. We use one BM25 negative passage per
query in addition to in-batch negatives. And the
FAISS* is used to speed up the vector search. For
the grounding text prediction baselines, we follow
the SC° example from HuggingFace (Wolf et al.,
2020). We use the top-20 retrieved samples, except
for the gold ones, as negative samples for training.
We use a learning rate of 2e-5, linear scheduling
with warmup steps of 500, for 5 epochs.

B.1 Hyperparameters for DLP baselines

For system act prediction, we use the same hyper-
parameters as the user act prediction in Section B.
For baselines and variants in the candidate nodes
classification task, we train them for 5 epochs with
a batch size of 20. The learning rate is le-5 for
ELECTRA and 2e-5 for the others, with linear
scheduling of 500 warmup steps.

B.2 Hyperparameters for RG baselines

We finetune the pre-trained ELECTRA and BART
for 20 epochs with a batch size of 12. And the
learning rate is 2e-5, also linear scheduling of 500
warmup steps. For the T5 model, we train it for 20
epochs with a batch size of 10. The learning rate
is 3e-4 and we use the same linear scheduling as
the others. For inference, we set the beam search
size as 4, the max generate length as 512, and the
length penalty as 1.0. The variants of them use the
same hyperparameters since the only difference is
the input sequence.

C Challenges

There are different types of challenges exhibited
in Doc2Bot, which can be divided into three cate-
gories: 1) understating documents; 2) understand-
ing dialog context; and 3) abstract reponse genera-
tion.

*https://github.com/facebookresearch/faiss
>https://huggingface.co/docs/transformers/model_doc/
bert#transformers.BertForSequenceClassification

1831


https://huggingface.co
https://github.com/facebookresearch/faiss
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification

SR SHERE
HFUES, 11408 31 Bif. BAREMEER, FTENERTSEARX0EIT. HE F— ——
HESED 2 MRARA,

0 =8 e NRBERHAERELN?
BiF1
1 =5 4 REHEEEINEE, Ol
BiF 2 2 P e B ARBAIE?
: - - prETRRe e —
RIERESEPATTRINE, &5 RE ] EEAFPE-. ERIEAFR
HTRBIES, ERGEBE—EVFENAR NREREMVEETAR, RER
ia)E A, =S
EIHAE 1-5 I EE TR BT,
Bt

SYRISCRY: Q0GP NE S json

HOTRAEFHRT RS OB ERIBIL, XRITAR?

EENS RIZIT38] HEIE

I HAEEL] — .
pivelA k)

FIEFAI3] *iE R

TN E (4] o

BRIRRGIHRERIEL. [10)

o BMERZEFEBRAEASEHREREL. XLEFRARILTMRE LR R
ETR, EREl, EFaZE, BR—-TRE, BRLLEIEEEHEY

B 11

Figure 6: Annotation interface to write a user sentence. The dialog flow we generated is shown in the yellow box,
and the dialog history is shown in the green box. The crowdsourcers are asked to write a sentence, select dialog act
and grounding nodes in the blue box, to lead the dialog to the orange target text of the current goal.

ES AR SHER L
HFHIES, (148 3 1 BiR. WEREAAEN, HERINERSS EERXNER. 2 T e
WESED 2 NRARIE.
0 =5 AP NREERAAERELN?
B 1
1 an w4 NRFBEREREESINER, (REGE— B0
BiF 2 2 . AP B ARMAIE?
g7 3 = 3 =5 w4 SN EEBSZ—, NAFE, REFEHENK
RIBEESETNBRRANE, &8 HER (1] BRI TR 4 u% P AR MBI R AR S R EREI, R AR
®T RBIEE, ERARSE-ERHBTAR NREREAEHEEFAR, FAHR
WiEHIE.
SHAE 1-5 RIDERERLEIR.
FRSA: R4
CLUHRRARES, BFUNBTMERE, BEINRERKHIE, BEE—FER:

B S RET38) 1. BPHBRTSEN, RAREMEESAT (138]01(3114101] MIER
2. RAREEBRLRE, WS I
A pAE RN 3. RAEBEET BRHR #TEE
R3] 4. FHREUALSHIER, RABEWOFIRIETE, BRS Lk,
TR S E(4]
b BERRGEIE
N — WREEIT S BB AP S

- BNES 3
ETOR, Bk,
&, 1]

BENE S 2 AR R EAS BN EFREL. XEFARIHIMRE LBRTR, &
AfER. FEFFIEZIE), BE—-TWE, WiREmREEEmHEnR. (1]

BSHEERIZIATESILRMNRNE LBE TR, EMER.
HERNTE

EIE/FRE v
RGN EER B

RAABBRRLMBN

R

Figure 7: Annotation interface to write a system sentence. Compared to the interface of user turn, we will have
more suggestions to help crowdsourcers make up an utterance, which is shown in the red box.

1832



Model Variant Parameters HuggingFace Pre-trained Model Corpus

BERT base 102M hfl/chinese-bert-wwm—ext -
RoBERTa base 102M hfl/chinese-roberta-wwm-ext -
ELECTRA base 102M hfl/chinese-electra-base-discriminator -

Pegasus base 214M uer/pegasus—base-chinese-cluecorpussmall 14G

BART base 116M fnlp/bart-base-chinese 200G

T5 base 215M uer/t5-base-chinese-cluecorpussmall 14G

Table 6: The detail of the pre-trained model for all baselines. Exact corpus size of the ROBERTa model is not
reported by the owner.

Task ‘ Model Best Epoch Runtime Score
‘ Training Inference Validation Test
DPR 47750 21.3h 0.1h 75.06 73.81
BERT 3/5 1.6h <0.1h 89.91 89.52
BERTy,,25 5/5 17.3h 4.3h 89.69 89.39
BERT g, 3/5 16.8h 3.3h 84.52 83.67
DST RoBERTa,; 5/5 1.7h <0.1h 89.73 89.38
RoBERTay,,,25 4/5 19.4h 4.2h 90.32 89.95
RoBERTay,, 2/5 18.4h 2.0h 84.78 83.99
ELECTRA 5/5 1.6h <0.1h 87.34 87.88
ELECTRA, .25 4/5 17.4h 3.9h 90.50 90.09
ELECTRA 4, 3/5 16.6h 3.5h 85.29 84.31
BERT 2/5 1.7h <0.1h 81.61 82.58
BERT f 5/5 25.0h 0.5h 89.16 81.40
- structure 5/5 26.6h 0.6h 82.75 75.61
- dialog state 5/5 16.5h 0.3h 84.48 73.14
RoBERTa,; 5/5 1.5h <0.1h 82.38 82.87
DPL RoBERTa 5/5 24.3h 0.5h 89.67 81.65
- structure 5/5 30.8h 0.6h 84.44 77.18
- dialog state 5/5 18.7h 0.3h 84.86 73.71
ELECTRA 5/5 1.7h <0.1h 81.96 81.91
ELECTRA 5/5 22.5h 0.5h 88.28 81.31
- structure 5/5 26.6h 0.6h 82.24 75.66
- dialog state 5/5 15.7h 0.3h 83.63 73.17
Pegasus 18 /20 13.0h 1.4h 52.39 52.63
Pegasus,; /o act 18/20 12.6h 1.4h 51.41 51.27
RG BART 19/20 10.7h 0.8h 53.04 53.13
BART, /6 act 16 /20 13.1h 0.8h 51.72 51.81
T5 19/20 12.0h 1.2h 53.18 53.53
T5u/0 act 20/20 13.8h 1.2h 51.77 52.16

Table 7: The average runtime and validation performance for all baseline models. For the validation score, we use a
sample-level F1 score for the dialog state tracking and dialog policy learning baselines. For response generation, we
use the average value of BLEU-{1, 2, 4}. We also give the sample-level score of the test set, as a comparison of the
validation set results.

1833



o RAETHIERZ—R, [35] AMIIERE A% : [107)]
1. FRARMALILE ; [104]
2. FREREEENBIFERE ; [105]
3. BEARKMEERAOEMAETRALIE, [106]

A WMREAERERBNL LRNEAKINE SRSLLEE?

FIEREEARMEEERR (3) AR RBAEMINELE,

RLRIEN, BB Z I, ARIRSRKDLZL: (1) EREREMILLE (2)‘ @

Figure 8: Example of a condition-solution case, where
the type of the purple text is condition/disjunction, of the
green text is solution and of the blue text is condition.

C.1 Understanding Documents

Understanding Condition-Solution the agent
needs to be able to recognize fundamental parts of
consolution-solution structures and exploit appro-
priate information to generate system responses.

In Figure 8, the user asks “If the effectiveness
of my main insurance contract is terminated, will
this additional contract be terminated?” (%= % 4,
8 24 Bl 2k ) 40k 6935 KMo & Bl & 4.k
"3 2 ). Here, the user intention is to know whether
he/she meets the conditions of termination of the
additional contract. According to the given doc-
ument, there are three conditions for the termina-
tion of the effectiveness of the additional contract.
These conditions form a disjunction condition, and
the user meets the first condition. Therefore, it is
necessary to inform the user that the conditions
for termination of this additional contract are met.
Here, the agent replies “Yes, it will be terminated”
(4% 1k 49), with an additional introduction of all
the conditions for the termination of the additional
contract.

Understanding Sequence-Step The agent needs
to recognize the sequences and its steps, and know
to answer followup questions about specific steps.

In Figure 9, the user asks “Can you tell me
how to prepare Thanksgiving food?” (T VA4 F
KA TSR BT 2D ? ). The type of
ground node is sequence, whose content is "pre-
pare food" (/& %&£ 47). The agent needs to summa-
rize the steps (the green text) to respond. The user
follow-up query is “Do you have any suggested
recipes? Like Turkey and desserts.” (1% A t+ 2 #
BLEG R D2 Pode K 2 e dit 5 6 A1), target-
ing on the second step: “Choose your recipe” (&
#1457 89 £1%). The second step node has two child
nodes, node [10] and node [12]. Here, node[10]
is “Turkey. Fill the turkey with stuffing, roast the
turkey, and make a rich Turkey meal.” (X% . 1

AERY4)
c SRUBINRERE. [5)
o EHMEZARBEEEAS, TER, HE EMEXCEEE &
IR, MIBRE, FEHENR EEEER. (6]
« SE2 EERORE. [1
o RETT BIRARE, XERMRERBANEHES TR ST EREN
Egﬂo TRNESERARENNE, TESEERENRHN—
LR (8]
© K3, ZEXIBEE EER, HEAE, HIEHFRAAERE. [9)
- Bk, SENXEEREEE 2R, BiE HE W5 4
ERMGE b, [10]
< RMRY. MIBRE BERETNER. (11
c BERSR, BEIUR, BLE ENERNRETERE, BR
BT, REITINAREISAEBARENEH N,
© AERTEEMORY  SHEXNZEHATLE, [13]
¢ BB, LI, REMZEA, MRGHREHGRE
FHARRELLREE, XEBRIURIRHEATBEINR. K
EETNME—MERKS, BFN—EREREM ! [14]
o HEWORERY. [15]
© FUERYITNAERBLI—RAESS, LOBTAER EFLR
PILL KIS HATERRBTX — K G, Rt =T AT 8 7 RN K38
EERREMERJBRBIH IS, [16]

o

A AR ET R RE?

T .
rRnNEE. | G

A IFEHABINAIRIZD? LK CHIEHREIRIE.

Yo, GEILEGSRELEN, B8, BIEUERIULE. 20T (@)
LURE— LI, mIE, SRS, MESHT, (e
Dmm st sEs. | M

Figure 9: Example of a sequence-step case, where the
type of the purple text is sequence, the green text is step
and the blue text is ordinary.

K IR AR, KA, R FE A K
K% - ). And node [12] is “Baked goods. Baked
pumpkin pie, pumpkin roll, Thanksgiving dinner
plate decorated with flowers, Thanksgiving cook-
ies. You can also make other Thanksgiving desserts
out of pumpkins.” (1R & . BNk, @R
. KMERGBEETR G, BREFHT.
AR AL =T VAR g IR 2 A 2 B 4 & . ). The
agent needs to combine the information from the
two nodes to answer.

C.2 Understanding Dialog Context

User Under-Specified Requests The user re-
quest could be under-specified, and so the agent
needs to decide to either ask clarifying questions
or provide answer.

In Figure 10, the user first asks “Hello, I'd like
to ask about vaccination.” (%%, &8 %14 —
T J& @ %A 699 & . ). Since the question is too
general, the system asks the user to choose among
several choices of vaccines: "Hello, would you
like to consult hepatitis B vaccine, herpes zoster
vaccine, chickenpox vaccine, influenza vaccine, ro-
tavirus vaccine or others?" (1847, BB %19
FaEREG . FREASEE . KBRS REK
W, R RFRGERL LM ). The user se-
lects one and replies “Hello, I want to know how

the hepatitis B vaccine is vaccinated.” (4%, %
Bl CAT R & AR 25 XEMHG . ).

1834



RE[TI]
. %T?%EF[T%E%]
ZBHEH#(1]
© ZEHEERIER19]
© HREBEER
« IKISIEE3]
o BRI
© BRREFERED]
« HAthl6]

A 1R, BAR AR — TR HIERE?

4F, REAZITRE. TREDRE. NeRE. RS, PREER ﬁ @

FRE | )

& 4, BEREZ FREREd AT EE?

Figure 10: Example of an under-specified request.

Textual Entailment The agent needs to be able
to recognize if a node text entails the user utterance,
thus requiring deeper semantic understanding than
text matching. In Figure 11, the user asks “Good
morning. I want to ask you something. My child
has made my lipstick all over my body and clothes,
but I have run out of makeup remover. What should
I do? I checked that lipstick is dyed with food color-
ing” (FLr¥F, RBFANF, KL FRAY 2

4 43 % J:%ﬂi@]&i'] AR, 12 & & F KA

T BREAHT? RET—TF, v TiEA

B R & & # 4TS @89 o ). From “lipstick is every-
where” and “I have run out of makeup remover”,
we can know that the user intent is to remove the
traces of lipstick. In combination with “I checked
that lipstick is dyed with food coloring”, we know
that the user request entails “How to clear the food
pigment on the skin” (32T H & E Ik L6g£ R &
).

RESEZ(T9]

© WMETERERK LA RAEEL
. HEERL8]

‘ B, BREANE, REFCROOIFES EARRIKER, BEHE
KFIRT , WEANN? WET—T, DLRERARBERHTREN.,

SHERSEMRIRRIR, REERRREEIRE—T, ATSRER,

,IFunL.%zzﬁﬁﬁﬁEéﬁﬁéé RN EEEFNEREHSER, _JLA @
EJ#@Hm%ESE

Figure 11: Example of a textual entailment case

Coreference The phenomenon of coreference
could occur in a number of user queries. The agent
needs to identify these cases and resolve such coref-
erences for better text understanding.

In Figure 12, user asks “Hello, I bought a ham-
ster recently. Is there any way to judge whether it is
a male or a female?” (f7¥%F, REAKEXT ©RA

t+ 2 73 ik 7T CA R BT ST 69 38 & FR 69?2 ). Since
the current user questions are under specified, the
agent guides the user to clarify whether the ham-
ster is an adult. Then the user replies “I bought
two hamsters, an adult and a baby. The big one
is Panghu and the small one is Maomao. Can you
tell me what the judgment method is? If you can,
please tell me Panghu first. Panghu is right beside
me” (KX THMACR, RFEFRARFAA
KEGHBER, ey 2l . T AR ER—T H
BT 77 % & ee e do R 7T A6 %15 R R e
MR E4F £ & & 1 . ). In this sentence, Panghu
and adult refer to the same hamster. And he/she
wants to know the answer for the adult hamster
first, so the system needs resolve coreference to
provide correct answer.

AT E R A ESI[]
© HHRFECREMRZEF16]

o IHEERALMRAN. [17]

c BERECRMEETE. [20]

© RECREBELEILL BERERETEMNBITEREEN. 22
© SHRARRECRMR EHXFI[26]

A 1RF, RIAEL T SRAMHAMNET LA R ARERBHID?

BIRRZRMFCRERRMFOR? FRFRBRIIMRFIBITTIER—HH. ‘ g

@ BxTAReE, MRS, KOUNE, NOWEE. AR
MR TR AR RIS, PR R,

‘/ESZEE@ERE(JE, RGBT AN, @Eiﬂg“‘lsﬁ/ﬁﬁﬂ;‘cﬁ%ﬁ%%&“?ﬁﬂﬂm O
| i E%?Lﬁ“bfili

Figure 12: Example of a situation where coreference
analysis is needed for understanding user request.

C.3 Abstractive Response Generation

Summarization If the number of grounding
nodes for a turn is large, the system needs to be
able to summarize the information for more concise
responses.

In Figure 13, the user wants to know how many
different subtypes of E. coli can cause diarrhea
(KRMHFABEITUATRI R TG 2B E? ).
Since there are 5 grounding nodes, including [65],
[70], [73], [74] and [75], the agent needs to summa-
rize information, and give more concise response:
“There are the following subtypes: EHEC, entero-
toxigenic Escherichia coli, enteropathogenic Es-
cherichia coli, enteroinvasive Escherichia coli, and
enteroaggregative Escherichia coli.” (A VAT JL
MRR . E KR P EEERY
O lz’rJ - B EBGRERMAT B - MR R KT
nREWERKWITE - ).

1835



RFFEHNTAANRELERSSIZES : [64]

© BHOWEKETE (BRI ERSERAGTE) REEREROEN
RIBITE TR, TTEESHE 100 ABER 4 I M 45 7 470 I 14 PRESAE

YR REERESNFTINRETINRZSREK

5 i, BEPEROGHAASAZENERRENL, bk,

E??mrﬁaﬁﬁ%Aﬁ*E&iﬂﬁ%i&(ﬁﬁﬁ%m*ﬁ%ﬁ

%) . [65

© FHERMAGTETSEBMHSIRKEESNER, XRTENAR
FHEEEHXRTERNARFIERGEMSHRENFRE. [70]

¢ BEREABITEGRSIRKEEE. BEMABRFHTROEER
K, HERRNESRENKE, BRERIM. [73]

© BRFMABTETSRENMEREH DS, ERTFRRPER.
EEFEM. [74]

© BRENAGTHS ERNEEANAGTRE, BRENEEK. 5
Hip—ETRIEE, SERBRTERESR, T3l2RGTEES. (75

& ‘ R ARG HeES?

BUTNATR: BHIMATGRE, FHERMAGTE, BT (@
B BERLAGITE, FRALAGTE gl

Figure 13: Example of a situation where the agent needs
to answer by summarizing the information.

Common-Sense Knowledge For some user re-
quests, common-sense knowledge is needed for
agents to reason the next system response.

In Figure 14, the user asks “What red blood cell
related diseases are easy to get during pregnancy?”
(R E B8 5 5434 24 tmppAa % 899572 ). In
the document, we can identify three diseases that
are easy to get during pregnancy : 1. Blood clots
in the legs or lungs (thromboembolic disease) (A&
R kR (ki BHIER)) 2. Ane-
mia (R £2) 3. Urinary tract infection (fk¥& &
%) . The fact that “Anemia is a red blood cell
related disease” is not in the document, but it is a
common knowlwedge. So the response is “Some
diseases are more likely to occur during pregnancy
since it will lead to many changes in the mother.
The easily acquired red blood cell related disease
is anemia.” (A Lk IR L4ERIP E B H X7
ABEREGFEFREAERS KT, EH/Y
4rim AR % 69 kIR A R o ).

SEIR AR AR 1]
- BESFERNERSAR, BNERS SHBGRLRENE. Wi« [25]
- EREEMOMTERE (MERENER) (26

+ #IMm[29)
* REERE(32]

A { REHRIRIE PG ALTBBER AR ?

F%ﬁﬁ&%ﬁﬁ%ﬁ%ﬁﬁ. ErEReSHANEERENE, 590D (@
‘ FEXOREEAN g

Figure 14: Example of a situation where common-sense
knowledge is needed.

1836



