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Abstract

Incorporating large-scale pre-trained models
with the prototypical neural networks is a
de-facto paradigm in few-shot named entity
recognition. Existing methods, unfortunately,
are not aware of the fact that embeddings
from pre-trained models contain a prominently
large amount of information regarding word
Jfrequencies, biasing prototypical neural net-
works against learning word entities. This dis-
crepancy constrains the two models’ synergy.
Thus, we propose a one-line-code normaliza-
tion method to reconcile such a mismatch with
empirical and theoretical grounds. Our experi-
ments based on nine benchmark datasets show
the superiority of our method over the coun-
terpart models and are comparable to the state-
of-the-art methods. In addition to the model
enhancement, our work also provides an an-
alytical viewpoint for addressing the general
problems in few-shot name entity recognition
or other tasks that rely on pre-trained models
or prototypical neural networks.'

1 Introduction

Named entity recognition (NER) is a classical task
in natural language processing (NLP) which aims
to automatically identify entities in the plain text
by classifying each word to a set of pre-defined
entities, e.g. “person/location”, or to the “others”
(no-entity) (Yadav and Bethard, 2019). As a crucial
sub-component of many language understanding
tasks, NER has been widely adopted to different
applications, e.g. news (Sang and De Meulder,
2003) and the medical (Stubbs and Uzuner, 2015).

Neural networks (NNs) have achieved great suc-
cess in NER (Lample et al., 2016). However, NNs
face the adaptation challenge (Wilson and Cook,
2020) as words in different entities can change to
a great extent (Yang and Katiyar, 2020), e.g. "Mr.

T Correspondence to Wengjiang Lei.

'Our code is available at https://github.com/
HamLaertes/EMNLP_2022_Reconciliation

Bush" in the "person” v.s. "budgets" in the "money",
and obtaining sufficient annotations of new entities
can be expensive (Ding et al., 2021). Few-shot
NER, a cost-efficient solution, aims at training a
model to be aware of unseen entities given few
labeled examples (Huang et al., 2021). Few-shot
NER has received a rising interest in the NLP com-
munity, where new datasets (Ding et al., 2021) and
methods (Das et al., 2022; Yang and Katiyar, 2020;
Tong et al., 2021) have been constantly proposed.

Low-dim manifold encodes more adaptive infor-
mation (Wang et al., 2018). Prototypical neural
networks (PNNs) (Snell et al., 2017) learn an em-
bedding space where the same-entity datapoints
are clustered around a center, called the prototype,
and distances between the query data to all proto-
types represent its entity probabilities. In addition
to using an embedding network, PNNs calculate
the prototypes and distances via a non-parameteric
algorithm, gaining popularity for the flexibility
and low computing cost (Wang et al., 2020). A
supplementary enhancement will be using embed-
dings from large-scale pre-trained models (PTMs),
like BERT (Devlin et al., 2019), to provide ex-
tra knowledge that helps PNNs’ learning of en-
tities. As such, incorporating PTMs with PNNs
has become a de-facto paradigm for few-shot NER
that achieves competitive results to state-of-the-arts
(Ding et al., 2021; Huang et al., 2021; Bao et al.,
2020). Related works consider NER-specific prop-
erties (Tong et al., 2021) or new learning algorithms
(Das et al., 2022; Yang and Katiyar, 2020) to en-
hance the model, but they tend not to examine the
coordinating effects between PTMs and PNNs in
terms of the information contained in embeddings.

It should be reminded that PNNs calculate dis-
tances between word embeddings and prototypes
to represent entity probabilities. However, PTMs
embeddings may not effectively provide entity in-
formation as they prominently contain information
on word frequencies (Mu and Viswanath, 2018; Li
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et al., 2020b), and we find frequencies are shallow
statistics that can cause a loss of in-depth and use-
ful entity-denoting information. By probing into
PNNs, we find that words tend to be classified to
the entity centred with words of higher frequencies.
Therefore, the distance measure is biased towards
focusing on frequencies. Such a bias can cause the
over-fitting of the PNNs and the unreliability on
classifying new entities. As a consequence, when
frequencies are changed on a new corpus, the dis-
tances can no longer effectively represent the entity
probabilities.

Form a mathematical view, the biased distance is
mainly caused by the varying prototype £2-norms.
However, we argue that those £2-norms contribute
little to but actually undermine the correct classi-
fication. We propose to normalize all prototypes
to unit vectors as a simple yet effective remedy
to reconcile PNNs and PTMs for few-shot NER.
Our experiments on nine few-shot NER datasets
(Huang et al., 2021; Ding et al., 2021) demonstrate
the effectiveness of our one-line-code remedy. The
normalized PNNs achieve competitive results com-
pared to the state-of-the-art methods while retain-
ing all the PNNs’ advantages, such as easy im-
plementation and low computation cost. We also
demonstrate normalization can make PNNs learn
more effectively about correctly classifying entities,
and conduct ablation studies on different normal-
ization strategies.

Our study on reconciling PTMs and PNNs, and
the promising performance of the simple normaliza-
tion method may inspire new research motivations
to the few-shot NER, as well as other fields that
involve the use of PTMs /or PNNs.

2 Background and Related Works

2.1 Few-shot Classification and
Embedding-based Classifiers

Entities: ‘{ [ Organization M Money J[ Others ]]~

Target: @ @ @ @
t t
Model: [ A Neural Classifier J
I I I ! ! I I
Input Text: asked Congress to raise budgets

Figure 1: An example of the input and output of NER.

Named entity recognition can be formalized as the
word classification (Figure 1). For few-shot classi-
fication (FSC), "K-way N-shot" describes the task

setting: after the training, the model needs to clas-
sify the query data to K training-unseen classes,
given N labeled examples per class. The core issue
in FSC is the unreliable empirical loss minimiza-
tion: as the labeled data is extremely limited during
testing, the loss defined on new classes will result
in a sub-optimal solution that may lead to undesired
performance (Wang et al., 2020).

To tackle this issue, researchers seek solutions
with the embedding-based methods (Wang et al.,
2020; Koch et al., 2015; Vinyals et al., 2016; Sung
et al., 2018; Snell et al., 2017). Specifically, an
embedding network projects datapoints to a low-
dim manifold that contains some general features
shared among training and testing classes. On the
embedding space, to train only a small classifier for
new classes consumes fewer data and can achieve
equivalently good results. The recent embedding-
based classifiers with meta-learning (Hochreiter
et al., 2001) divides the training data into several
"episodes" mimicking the "K-way N-shot" testing
format. Such a method is popularly known for its
effectiveness in FSC.

2.2 Prototypical Neural Network

PNNs (Snell et al., 2017) assume in the embed-
ding space, the same-class datapoints are clustered
around class centers, called the prototypes, and the
distances between datapoints to prototypes repre-
sent their class probabilities. Based on this assump-
tion, PNNs need only calculate: 1) the prototypes
using the embedded labeled data, and 2) the dis-
tances between the embedded query data and pro-
totypes to conduct the classification. The detailed
discussions about PNNs will be presented in sec-
tion 3 and 5. Utilizing large-scale PTMs as the
embedding networks, PNNs can achieve competi-
tive results in various natural language FSC tasks
(Ding et al., 2021; Holla et al., 2020; Huang et al.,
2021; Bao et al., 2020).

In NER, recent works consider a bunch of meth-
ods to enhance the coordinating usage of PTMs and
PNNs, including in-domain pre-training (Huang
et al., 2021), NER specific properties (Tong et al.,
2021), and sophisticated learning algorithm (Das
et al., 2022; Yang and Katiyar, 2020). However,
to best of our knowledge, little has been explored
for the correct combination of PTMs and PNNs.
There have been works that find both the small-
scale (Mikolov et al., 2013; Pennington et al., 2014)
and recent large-scale (Devlin et al., 2019; Liu
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et al., 2019) PTMs have limitations in representing
diverse language semantics (Mu and Viswanath,
2018; Yang et al., 2018; Gao et al., 2018; Li et al.,
2020b). Such limitations may prevent PNNs from
correctly adopting entity information, reducing the
possibility of getting optimal results.

3 Distance in Prototypical Neural
Networks

In this section, we describe PNNs’ feed-forward
propagation from the mathematical viewpoint fo-
cusing on the PNNs’ distance function. In K -way
N-shot, let Si, denote the small support set contain-
ing N labeled examples with the class k. PNNs
calculate the prototype of each class through mean-
aggregating the embedded support examples:

1
cp = @( Z )f¢(Xz') (1)

xiGSk

where f; is the embedding network. The class
probabilities of a query data x are given by a dis-
tance function d following a softmax operation:

il — exp(—d(fs(x), ck)
Po(y =k [ x) = S exp(—d(fs(x), crr)

Theorem 1. Assume data embeddings of the sup-
port and query set are independent and identi-
cally distributed. Let cy, be the class prototype
calculated by an aggregation function proto(-) :
H£i1 H; — h € H, the problem: min,.o(.) J
, where J is the classification loss, achieves min-
imization given by proto(-) being the arithmetic
mean.

2

Corollary 1.1. Based on the support set, PNNs es-
timate a Gaussian distribution Ny (cy,, o%) for the
embeddings in the class k (o is a constant vector).
The corresponding choice of the Bregman diver-
gence d should be the squared Euclidean distance.

Proofs are provided in the Appendix B. While d
is proposed to be any Bregman Divergence (Baner-
jee et al., 2005; Snell et al., 2017), we prove the
optimal distance function should be the squared
Euclidean distance: ||z — z/||. 2

PNNSs consider that distances between embed-
dings and prototypes represent the entity proba-
bilities. Therefore, we count on the distance to

2 According to corollary 1.1, PNNs require the embeddings
to follow Gaussian distribution. Similarly, works (Yang et al.,
2020; Hu et al., 2022) empirically follow the assumption and

propose corresponding embedding post-processions to achieve
performance gains.

capture the sharing entity information between the
word and the prototypes. Factorizing the distance
(=11 £5() = exl12) 10 (=L £ ()12 +2F () T —
|cx]|?), the entity probabilities are not only propor-
tional to the dot production, but are also reversely
proportional to the two ¢2-norms. While || f,5(x)]|?
represents query data information, different ||cz||?
implies part of the probabilities are priorly deter-
mined, and the word is more likely to be classified
to the entity that has the smaller prototype ¢£2-norm.
Unfortunately, because of the representation degen-
eration of PTMs, these priorly determined probabil-
ities tend to introduce non-entity information, and
bias the PNNs’ distance towards frequencies.

4 Representation Degeneration of
Pre-trained Models

In this section, we introduce the concept of rep-
resentation degeneration in PTMs and explain its
associated effects to PNNs. Small-scale PTMs, like
GloVe (Pennington et al., 2014) and Word2Vec
(Mikolov et al., 2013), are argued by researchers
as low-capacity models for representing the rich-
ness in semantics of natural languages (Yang et al.,
2018; Zhao et al., 2018). Both theoretical (Gao
et al., 2018) and empirical (Mu and Viswanath,
2018) results in literature have proven: the learned
word embeddings contain substantial non-semantic
statistics information, i.e. the frequencies of the
words, causing a lower performance on various
downstream tasks, like the task of word classifica-
tion (Mu and Viswanath, 2018).

BERT

RoBERTa

5000

4000

3000

2000

1000

Figure 2: The first two coefficients of PCA analysis
on the word embeddings. Color represents frequencies.
The deep colors are clustered.

Recent Transformer (Vaswani et al., 2017)-based
large-scale PTMs (Devlin et al., 2019; Liu et al.,
2019) are groundbreaking in modeling natural lan-
guage. However, we are concerned that the learned
embeddings might also contain the information re-
garding the non-semantic word frequencies. In line
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with (Mu and Viswanath, 2018), we use the on-
line statistics data®, get the word embeddings from
BERT and RoBERTa3, and do principal component
analysis (PCA) to extract the first two coefficients,
and plot them on point diagrams. Figure 2 displays
the result. The results show both models’ embed-
dings have correlation to frequencies.

In addition, (Li et al., 2020b) finds in the em-
bedding space, word embedding /2-norms are in-
versely proportional to their frequencies. As in
PNNS, the prototypes are the mean-aggregation of
the words in the support set. Therefore, the proto-
type ¢2-norms are also correlated to word frequen-
cies as well as the priorly determined probabilities
we find in section 3. However, we hypothesize that
word frequencies are shallow statistics that are irrel-
evant to word entities, and the priorly determined
probabilities represent little entity information.

Frequencies
—

Entity ID

Figure 3: A bar chart displaying the mean word frequen-
cies of different entities. The deeper the color, the larger
the mean frequency.

Ratio
Ratio

Word Frequencies Word Frequencies

Figure 4: A histogram displaying the word frequencies
in two entities.

We empirically demonstrate the irrelevance be-
tween entities and frequencies in this section. We
will demonstrate the irrelevance between prototype
£2-norms and entities in the next section. In a few-
shot NER dataset (Ding et al., 2021), we count the
mean word frequencies of different entities and the
frequencies of each word in two random sampled
entities.* Figure 3 and Figure 4 display the results.
Frequencies can be similar among different enti-
ties yet distinct in the same entity. Same as the

3Data are taken from the Corpus of Contemporary Ameri-
can English (COCA) that provides 60000 English words with
frequencies (COCA_60000).

“The words frequencies are counted on the first 2.5 million
sentences in BookCorpus (Zhu et al., 2015) processed by
HuggingFace (Wolf et al., 2020).

analysis in the next section, we suppose that this
irrelevance introduces non-entity information into
PNNs probabilities, and biases the PNNs distance
towards focusing on frequencies.

5 Distance Bias of Prototypical Neural
Networks

In section 3, we have shown that PNNs have a pri-
ori on the distances between word embeddings and
different entities: embeddings are more likely to be
close to the entity that has a smaller prototype ¢2-
norm, and the word is more likely to be classified
to that entity. However, in section 4, we argue this
priori will introduce non-entity information that
confuses the calculation of probabilities in PNNs.
We have shown frequencies and entities are irrele-
vant. In the following two figures, we further show
the prototype ¢2-norms vary in a manner that is
also irrelevant to entities.

Figure 5 displays the average prototype 12-norms
of all classes. The ¢2-norms vary greatly among dif-
ferent classes (min=7.25, max=17.13, coefficient
of variation=0.202). In Figure 6, the blue column
represents the largest class-prototype £2-norm, the
orange one the smallest and the green one the av-
erage. Even within the same class, the prototypes
£2-norms demonstrate large variance due to the
contrasting difference among episodes.

Ratio
o o
NWw

0.0
8 10 12 14 16

12-norm values

Figure 5: A histogram displays the average prototypes
£2-norm of all classes.

012345678 910111213141516171819
Entity ID

= e
o N

N B O ©

12-norm values

o

Figure 6: Max(Blue)/Avg.(Green)/Min(Orange) proto-
types ¢2-norms within a same class.

Distances between prototypes and word embed-
dings should represent entity probabilities. Unfor-
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tunately, with respect to the above problem, the
distances in the original PNNs are biased towards
frequencies instead of being entity-oriented. As a
result, PNNs tend to overfit the training data and
be trained with unreliable loss minimization.

5.1 The Overfitting Problem

In this section, we aim to account for the overfitting
problem caused by the biased distance. Let S, be
the embeddings of few-labeled data set and Q,, be
the embeddings of the query data set.

Theorem 2. PNNs learn on a Markov Chain:
Sy — Qu, and maximizes the information bound
on the mutual information between S,, and Q,,.

Corollary 2.1. Let Si, be unknown embeddings
that the Markov chain: S7, — Q. holds accord-
ing to entity information. The integrated Markove
chain becomes: S} — S, — Q,, and PNNs will
overfit the words frequencies information in S,,.

Proofs are provided in the Appendix A-B. PNNs
learn to maximize the information bound of the
mutual information between the support and query
data, where the information bound is modeled by
the frequency-related distances. However, it is be-
cause frequencies are irrelevant to entities. Thus,
frequency-related distances will confuse PNNs
with incorrect evidences, i.e. word frequencies,
when connecting labeled and query data, prevent-
ing PNNs from learning meaningful entity informa-
tion. As the frequencies can change randomly on
new classes, the distances can no longer correctly
model the entity probabilities on a new testing data.

5.2 Unreliable Empirical Loss Minimization

In this section, we provide a further explanation to
the problem of unreliable empirical loss minimiza-
tion of training PNNs with biased distances. Given
a hypothesis space H and its element h°, we aim
at minimizing the expected loss to find the optimal
solution for a given task:

R = [ Uhieiinxy) )
Noted that p(x, y) is unknown and we use the em-
pirical loss in practical as a proxy for R(h):
I

Rr(h) = jzg(h(xhyi)) €]

> can be the all potential parameters of a given network
structure and h can be an arbitrary parameter.

Let h* = argmin,cqy R(h) be the hypothe-
sis that minimizes the expected loss and h; =
argminy,cq, Rr(h) be the hypothesis that mini-
mizes the empirical loss. The approximation error
[R(hr) — R(h*)] quantifies the degree of closeness
to the optimal result ~;. Noting that the frequency
information guides the loss minimization during
training PNNs as analyzed in section 5.1. Due to
the uncertainty of word frequencies, a good ap-
proximation on the training data can have a large
approximation error on the testing, which can jeop-
ardize PNNs testing performance.

Moreover, the labeled examples for each episode
are limited to /N-shot, where data in each episode
is not likely to cover many words. As such, the fre-
quencies of the words and prototype ¢2-norms can
vary among episodes, resulting in unstable training
with low efficiency in model learning and lowering
the testing performance.

6 Normalizing the Prototypes

In this section, we aim to provide a solution to
the above-mentioned problems through a normal-
izing method. Varying ¢2-norms mainly causes
frequency-biased distances and the above two prob-
lems. As a result, we consider normalizing the pro-
totypes to £2-norm-invariant vectors. Earlier works
in Computer Vision find normalizing both proto-
types and the query data embeddings can achieve
better and more stable results (Gidaris and Ko-
modakis, 2018). However, we do not normalize the
query data embeddings, because word embeddings
represent more detail and other useful information
that may be eliminated by the normalization.
Representing high-level entity information, pro-
totypes should not be priorly distinguished from
each other. Furthermore, observing the following
evidence, we argue that prototype ¢2-norms have
limited contribution to the correct classification.

=
@

Ratio

0.0+
0.8 1.0 1.2 1.4 1.6 1.8 2.0

12-norm values

Figure 7: A histogram displays the £2-norms of the pre-
trained classifier in BERT.

In both the BERT’s pre-training (1) and the orig-
inal PNNs (2), we find the /2-norms of class fea-
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14.0 142 144 146 148 150 152
12-norm values

Figure 8: A histogram displays the average prototypes
£2-norms of all classes after training.

tures play limited roles to the correct classification.

(1) In the BERT’s pre-training that predicts a
word by its context, the /2-norms of the words
features, i.e. rows of the classifier, show sub-
tle variance. Figure 7 presents the £2-norms
of the classifier rows: min=0.766, max=2.045,
coefficient of variation=0.138.

(2) Without any intervention to the original PNNs,
after the training, the prototype ¢2-norms vary
much less compared to the original, i.e. after
the training: (min=14.00, max=15.25, coef-
ficient of variation=0.014) compared to the
original :(min=7.25, max=17.13, coefficient
of variation=0.202), and Figure 8 compared
to Figure 5.

Based on the above analysis, we propose to nor-
malize the prototypes to unit vectors before calcu-
lating the class probabilities.

Algorithm 1 Normalizing the Prototypes

#** Pseudo-code in PyTorch ***
import torch.nn.functional as F

C = Calculate Prototype (S) € RF*"
*#%* The Normalization ***

C = F.normalize (C, dim=-1)

... the same as the original PNNss ...

Connection to the Adaptive Loss: Different data
may associate with different difficulties to be classi-
fied. Adaptive loss is proposed to be able to change
dynamically in magnitude so as to capture the diffi-
cult ones (Han et al., 2021; Oreshkin et al., 2018;
Li et al., 2020a). Humans are prone to processing
high-frequency words as reported in psychologi-
cal studies (Brysbaert et al., 2018). Applying this
psychological finding to the named entity recogni-
tion in natural language processing, we postulate
that if a word appears more frequently, its entity
should be easier to be classified. To this end, PNNs

well adapt to task difficulty through the frequency-
related embedding £2-norms of the query data.

7 Experiments & Results

To demonstrate the effectiveness of our normal-
ized PNNs, we conduct experiments on nine few-
shot named entity recognition datasets proposed by
(Huang et al., 2021) and (Ding et al., 2021).
Datasets: Being a classical and basic natural
language understanding task, dozens of super-
vised NER datasets have been proposed, including
WikiGold (Balasuriya et al., 2009), CoNLL 2003
(Sang and De Meulder, 2003), WNUT 2017 (Der-
czynski et al., 2017), MIT Movie (Liu et al., 2013b),
MIT Restaurant (Liu et al., 2013a), SNIPS (Coucke
et al., 2018), ATIS (Hakkani-Tiir et al., 2016),
Multiwoz (Budzianowski et al., 2018). Based on
these datasets, researchers (Huang et al., 2021) re-
structure them to the "K-way N-shot" few-shot
setting into a comprehensive few-shot NER bench-
mark. However, except for the formatting change
of data, the simple and direct re-structuring shall
lose track of some critical NER properties, such
as the task-difficulty differences between the fine-
grained and coarse-grained entities (Ding et al.,
2021). Therefore, a new expert and challenging
dataset has been proposed as a benchmark in few-
shot NER (Ding et al., 2021).

Experimental Settings: Without special notations,
we basically follow the original implementations
in the two open sources®’, including models, train-
ing/testing pipelines, hyper-parameters, and sam-
pled episodes. We report results using the standard
evaluation metrics: micro averaged F1 score. We
re-run all the experiments of the origin PNNs to
examine the performance improvements by our
normalization method based on the same hardware
device. We add early stop constraints when repro-
ducing results of (Huang et al., 2021)) and relocate
the comparable results from the peer models (Das
et al., 2022; Ding et al., 2021). ¥ All the experi-
ments are conducted on a single 3090Ti GPU.
Comparison to the State-Of-The-Art Methods:
We compare the normalized PNN (Protogy,s) to
four advanced methods on Few-NERD. "Struct"
and "NNShot" are proposed by (Yang and Kati-
yar, 2020). "NNShot" classifies the query data

https://github.com/thunlp/Few-NERD

"https://github.com/few-shot-NER-benchmark

8The replicated performances are inferior to the reported
results in the related works, so we use the reported results for
a standard reference.
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Table 1: The performance State-of-the-art models and our method on FEW-NERD.

FEW-NERD(INTRA) F1 scores

Model Avg.
5 way 1~2 shot 5 way 5~10 shot 10 way 1~2 shot 10 way 5~10 shot
Struct (EMNLP 2020) 30.21 38.00 21.03 26.42 28.92
NNShot (EMNLP 2020) 25.75 36.18 18.27 27.38 26.90
CONTaiNER (ACL 2020) 40.43 53.70 33.84 47.49 43.87
+Viterbi (ACL 2020) 40.43 53.71 33.82 47.51 43.86
Proto (Neurips 2017) 20.76 42.54 15.05 35.40 28.43
Protoours * 36.83 54.62 30.06 47.61 42.28
Model FEW-NERD(INTER) F1 scores Ave.
5 way 1~2 shot 5 way 5~10 shot 10 way 1~2 shot 10 way 5~10 shot
Struct (EMNLP 2020) 51.88 57.32 43.34 49.57 50.53
NNShot (EMNLP 2020) 47.24 55.64 38.87 49.57 47.83
CONTaiNER (ACL 2020) 55.95 61.83 48.35 57.12 55.81
+Viterbi (ACL 2020) 56.10 61.90 48.36 57.13 55.87
Proto (Neurips 2017) 38.83 58.79 32.34 52.92 45.72
Protoours * 54.35 66.93 47.32 61.50 57.52

" We change the learning rate from le-4 to le-5. We lower the learning rate because normalized PNN converges too
rapidly to be tested on dev set (given the same evaluation steps) before it overfits the training set.

to its nearest data entity in the embedding space,
and "Struct" further leverages the Viterbi decod-
ing (Forney, 1973) to produce the final results.
"CONTaiNER" as well as the Viterbi enhanced ver-
sion are proposed by (Das et al., 2022). It utilizes
contrastive learning to differentiate word entities.
And unlike PNN, "NNShot" and "Struct", "CON-
TaiNER" will be fine-tuned on the new entities
using the limited labeled examples.

We briefly introduce the main characteristic
of Few-NERD: it defines entity types from two
perspectives called the fine-grained (INTER) and
coarse-grained (INTRA). Under the fine-grained
definition, different entities can share more abstract
similarities. For example, entities "Island" and
"Mountain" are both "Location", and entities "Di-
rector”" and "Athlete" are both "Person". Under
the coarse-grained definition, entities have more
differences, such as "Location" v.s. "Person" and
"Event" v.s. "Organization". If the training classes
contain "Island", the model can easily identify the
entity "Mountain" at the testing because they share
the same "Location" information. Therefore, train-
ing on the fine-grained set is less challenging for
NER on new testing entities.

Table 1 reports our normalized PNNs on Few-
NERD as well as the results of state-of-the-art mod-
els, and the original PNNs for comparisons. Com-
pared with the original PNNs, the normalization
achieves at least 8.14% performance gain (largest:
16.07% and average: 12.82%). The sophisticated
contrastive learning-based CONTaiNER outper-

forms our method in certain settings. On average,
our model is slightly superior (49.84% (Protogyys)
v.s. 49.80%). Besides, CONTaiNER needs to be
fine-tuned on the testing data in order to alleviate
the differences between training and testing entities,
which can account for its superior performance on
the coarse-grained (INTRA) set. It should be noted
that our normalization method shows competitive
performances yet maintains the PNNs’ advantages,
i.e. the low computation cost and easy implemen-
tation. In addition, our model achieves the highest
average F1 scores (57.52% (Protogyys)) on the fine-
grained (INTER) set, demonstrating its superiority
in a more practical setting (Ding et al., 2021).

Incorporation with the Data-Driven Pre-
training: (Huang et al., 2021) proposes two pre-
training techniques called noisy supervised pre-
training (NSP) and self-training (ST). NSP utilizes
the large-scale noisy labeled entities on Wikipedia
to pre-train the models, while ST utilizes an NER
system (teacher model) to label large-scale unla-
beled datasets to pre-train the student models. Both
the techniques seek extra supervisions to help the
model tackle the challenges of the few-shot classifi-
cation. (Huang et al., 2021) chooses two baselines:
the linear classification (LC) and PNNs. And on ten
re-structured few-shot NER datasets, they compare
the performances of the two baselines as well as the
two baselines plus the two pre-training techniques.
They report the best performance is achieved by
the combination of "LC+NSP+ST".

Because the processed datasets "I2B2" and
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Table 2: The performance on benchmark datasets proposed by (Huang et al., 2021).

Datasets (5-shot) F1 scors

Model Avg.
CoNLL WikiGold WNUT17 MIT Movie MIT Restaurant SNIPS ATIS Multiwoz

Proto* 58.22 47.58 20.51 29.94 43.65 56.96 73.82 23.74 44.30

Protoours * 58.70 55.69 28.46 50.01 51.34 76.69 87.41 27.78 54.51

Proto+NSP* 62.92 63.33 33.87 35.25 44.15 51.66 74.58 40.52 50.79

Protogyurs+NSP* 66.50 67.63 37.75 51.32 54.98 83.17 90.47 47.26 62.39

LC+NSP+ST** 65.4 68.4 37.6 55.9 51.3 83.0 90.5 45.1 62.12

* For meaningful comparison and to calculate the performance gains, we re-run the baseline models "Proto" and
"Protoours" with the same setting. To reduce the time cost, we add the early stop constraints, i.e. stop the training

_if a continual 5 epochs training does not improve the dev-set F1 scores.

** The replicated results in [*] are lower than the reported results in the original paper. Therefore, we directly copy
the results in the original paper as a comparison for demonstrating our method’s effectiveness.

"Onto" are not open-sourced by (Huang et al.,
2021), we conduct the experiments on the other
eight datasets. For more details of the datasets,
please refer to (Huang et al., 2021).

Table 2 reports the results on the eight datasets.
Results vary among different datasets, but the nor-
malized PNNs consistently outperform the original
PNNs (min:0.48%, max:20.07%, average:10.20%).
In certain datasets, normalized PNNs achieves ex-
tremely close even higher results than the original
PNNs plus a pre-training method that is expen-
sive in time cost (Proto+NSP). Furthermore, higher
performance gains are obtained when incorporat-
ing the normalized PNNs with the NSP technique
(Proto+NSP +6.48% v.s. Protogyrs+NSP +7.88%).
Our results show that the classical PNNs combined
with the simple normalization and NSP can achieve
the best results on the eight few-shot NER datasets
(the open sources do not provide the ST check-
points for PNN). This finding is innovative com-
pared to the results in (Huang et al., 2021).

Effective Learning: Figure 9 (in Appendix C)
visualizes the training and dev F1 scores on two
settings of Few-NERD, including the original and
the normalized PNNs (the * mark denotes that we
set the learning rate to le™ 5 as the same as our
experimental settings). Comparing the red with
blue lines (with the same learning rate), normal-
ized PNNs can fit the training data in a faster mode
yet can achieve higher Dev F1 scores. Comparing
the red with green lines, setting the learning rate to
le~* and without normalizing, PNNs learn unsta-
bly and more significantly overfit the training data
(in INTER 5 way 5~5 shot, dev F1 scores decreases
before increasing, and in INTRA 10 way 1~2 shot,
the increasing of training F1 scores results in de-
creasing of dev F1 scores).

Ablation Studies: Based on our analysis in sec-
tion 6, we only normalize the prototypes and leave

the query data embeddings unchanged. We conduct
ablation studies about the normalization strategies
on Few-NERD as shown in Table 3 in Appendix C.
Proto 4 g1 means we normalize only the query data
embeddings and leave the prototypes unchanged,
and Proto 4 o means we normalize both the proto-
types and the query data embeddings. We provide
four sub-cases for ablation studies. All cases report
substantial performance decrease.

8 Conclusion

We examine the synergistic effects of the large-
scale PTMs and the classical PNNs in the few-shot
NER. Our theoretical analysis of PNNs shows that
PNNS5’ distances that represent the query data’s en-
tity probabilities are partly priorily determined in
terms of the prototype ¢2-norms. However, on the
embeddings of the PTMs, we empirically verify
that embedding ¢2-norms contain little entity in-
formation, being a type of PTMs’ representation
degeneration. Furthermore, we show that such rep-
resentation degeneration makes PNNs’ distance bi-
ased towards frequencies instead of entity-denoting.
This distance bias prevents PNNs from learning
useful entity information and causes PNNs to over-
fit the training corpus and become unreliable on
new entities. Therefore, We propose a one-line-
code normalization remedy to reconcile PTMs and
PNNss for few-shot NER. The experimental results
based on nine datasets suggest that the normalized
PNNs proposed in this work achieve significant
performance improvements over the original PNNs
and get competitive results compared with the latest
sophisticated methods while maintaining PNNs’ all
advantages, such as easy implementation and low
computation cost. Considering the promising re-
sults and the innovation in normalizing the existing
models, our results and analysis may be an interest
of reference study for researchers and practitioners
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working with few-shot NER or other relevant tasks
that involve the use of PTMs or PNNS.

9 Limitations

There are certain limitations in this paper. While
our theoretical analysis about PNNs and the con-
cept of PTMs’ representation degeneration are not
limited to the few-shot named-entity recognition,
our focused problem, e.g. PNNs’ distance is biased
towards frequencies, is based on the fact that the
greatly varied word frequencies represent limited
entity information. It is possible that in other tasks,
the corpus frequencies can represent semantic fea-
tures, or the frequencies change much less. Our
normalization remedy, therefore, cannot be directly
applied to those tasks. Also, representation degen-
eration is a crucial intrinsic problem of large-scale
PTMs. Our focused aspects, e.g. frequencies and
entity information, is one type of practical issue.
We argue that such intrinsic problems can result in
different practical issues affecting other NLP tasks
beyond this current work’s scope.
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A Bregman Divergence

Definition 1 (Bregman (1967); Censor and Zenios
(1998)). Let ¢ : S — R, S = dom(¢) be a strictly
convex function defined on a convex set S C R?
such that ¢ is differentiable on ri(S), assumed
to be nonempty. The Bregman divergence dy :

S x ri(S) — [0, 00) is defined as

dy = ¢(x) — d(y) — (v —y,Vo(y)) (5)

where NV ¢(y) represents the gradient vector of ¢
evaluated at y.

Proposition 1 (Banerjee (2005)). Let X be a ran-
dom variable that take values in X = {x;}I" | C
S C R following a positive probability measure
v such that E,[X]| € ri(S). Given a Bregman di-
vergence dy : S x ri(S) — [0,00), the problem

in B,[d(X, 6
Jmin [dy(X, s)] (6)

has a unique minimizer given by s' = i = E,[X].

Theorem 3 (Banerjee (2005)). Let p(y gy be the
probability density function of a regular exponen-
tial family distribution. Let ¢ be the conjugate func-
tion of ¢ so that (int(dom(¢)), ¢) is the Legendre
dual of (©, V). Let 6 € © be the natural param-
eter and p € int(dom(¢))be the corresponding
expectation parameter. Let dy be the Bregman
divergence derived from ¢. Then p(y g can be
uniquely expressed as

P.0) (@) = exp(—dg(z, p))bg(x), Va € dom(¢)

(7
where by : dom(¢) — Ry is a uniquely deter-
mined function.
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B Prototypical Neural Networks

Algorithm 2 K-way N-shot Prototypical Neural
Network
Input: An episode E; containing: support data
S, and query data Q,,.
Output: The loss J for the episode E;.
#Calculating prototypes on S,
C = NewEmptyList(Length=K)
for k =1to K do
Ck = NLIk Z(xi,yi::k) fenc(xl)
end for
#Classification on Q,, and calculating the loss J
J = NewEmptyList(Length=0)
for k = 1to K do
for (x',y’ == k) in Q, do
Qs == Kx) =
exp(—dy (fenc(x*),ck))
25:1 exp(—de (fene(xt),c41)) o
J.Add(CrossEntropyLoss(y*, y*))
end for
end for
J = Mean(J)

Remark. Prototype calculation and query data
classification are independent but have the same
goal of minimizing the classifying loss.

Theorem. Assume data embeddings of the support
and query data are independent and identically dis-
tributed. Let cy, be the class prototype calculated
by an aggregation function proto(-) : Hfi (Hi =
h € H, the problem

min_ J
proto(-)

,where J is the classifying loss, achieves minimiza-
tion given by proto(-) being the arithmetic mean.

Proof. In the above Remark, we argue the proto-
type calculation should also minimize the classi-
fying loss while the query data is unseen. As the
optimal prototypes should minimize the classifica-
tion loss on query data, and the support and query
data are independent and identically distributed, we
let the support data be the agency of the query data.
Therefore, the optimal prototype should minimize
the classification loss on support data.

Let us consider the m!” class, the corresponding

cross-entropy loss is:
Y tog ol el )
7 Sy 161‘1?( dg(fene(x"), Cr7))
=— Z —dy(fene(X"),Cm)

K

— log Z €$p(_d¢(fenc(xi7 cy)))]

k'=1

= quﬁ fenc Cm)

+ Z log Z exp(_dd)(fenc(xla Ck’)))
i k=1
| 8)
where x"* is the support data with the class m, c;,
and x;, be the m*" and k" class prototype. As we
aim to find the optimal c,,, we take the derivative
of J,, respect to c,,:

OJm 0, dg(h', cp)
oc, oc,
Y log > exp(—dg(hl, cpr))
_|_
ocy,
_ 93 dy(h’ cn)
N 8cm )

(—dg( (h?,c,n))/0cm
Z Zk’

exp(—dg(hi, cp))

1
- Zl(l N Zk’ exp(—dqb(hi,ck’)))
X 8(d¢(hza Cm))/acm

where h! = fo,.(x%). As dy is a Bregman Di-
vergence, according to Proposition 1, we have

OBl — ) if and only if s = E,[H]. If
we use « to normalize the weight of Equation 9 to
exp(—dy(h'em))  _
hav'e Zz a(l — s exp(i”dé(h,-7ck/))) = 1, then the
optimized c,, can be calculated as:
1 4
Cm = a(l — . h’
=2l 2 exp(—%(h%ckf)))(lo)

The Equation 10 show the optimized c,, should be
the arithmetic mean of the support data embeddings
minus the category confidences. But the category
confidences correspond to the probability normal-
ization of Softmax. If we ignore this, the optimal
prototype calculation is the arithmetic mean.

O

Corollary. Based on the support data, PNNs esti-
mate a Gaussian distribution Ny (cy, 02) for em-
beddings in class k, where o is a constant vector.
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And the corresponding choice of the Bregman diver-
gence d should be the squared Euclidean distance.

Proof. According to (Banerjee et al., 2005), for the
d-dimension spherical Gaussian distribution, the
parameter formula is:

2
p(x;0) = (27702)%1)(—HX20_;” ) (1)
nw=a (12)
1
o) = 552 H (13)
do (%, 1) = 5% = pl|” (14)

The p in PNNs is the prototypes, i.e. the arith-
metic mean of sampled observations, and it exactly
estimates the parameter in Gaussian distribution.
Therefore, the optimal prototype calculation results
in estimating a Gaussian distribution for each class.
On a Gaussian distribution where ¢ is a constant,
dy corresponds to the squared Euclidean distance.

O

Theorem. PNNs learn on a Markov Chain: S,, —
Qu, and maximizes the information bound on the
mutual information between S,, and Q,,.

Proof. According to the Theorem 3, a Bregman
divergence and a Distribution are connected:
log( Py 0)(h)) = —dg(h, ) + ¢() +log(po(h))
15)
when Py ) is the Gaussian distribution, we have
¢(h) = # |h||2 and po is uniquely determined.

PNNs calculate the distance between h and pu,
which can be viewed as the probability of observing
h given p. This relationship between the support
and query data implies the Markov Chain: S,, —
Q., for observing the query data is dependent on
the support data.

In the right of Equation 15, —d(h, ;) can be
viewed as the probability of observing h given p,
and the rest ¢(h) + log(po(h)) can be viewed as
the probability of observing h unknown u: p(h).
The first term p(h | u) is inversely proportional
to ||h||2, while the second p(h) is proportional
to ||h|[2. PNNs maximize —dy(h, u), resulting
in the implicit minimizing of p(h). Integratedly,
the learnt probability Py, g)(h) is proportional to

%. Substitute this back to the loss:

p(h*|p*)
p(h*)

J=—Elog
H

hk
Ly Y p(l‘l’;f) )

thk|ﬂk/)

k’yék

log |1+

h’“!u

Q

E
H
[E log
H

(16)

The results show I (h*, u*¥) > log(K) — J, which
means that PNNs minimize the classification loss
to maximize the information bound on the mutual
information between rvh and p, and integratedly,
between the support and query data. We notice
the above detail proof follows the same mathemat-
ical process in the works on contrastive learning
(Van den Oord et al., 2018)

O

Corollary. Let S} be unknown embeddings that
the Markov chain: S}, — Q, holds according to
entity information. The integrated Markove chain
becomes: S}, — S, — Qu, and PNNs will overfit
the words frequencies information in S,,.

Proof. In the Markov Chain: S — S, — Qu,
using the data processing inequality, © we have:

I(Su, Qu) = I(S§, Qu)

The learnt extra information I(S,,Q,) —
I(SY, Q) > Orepresents PNN’s overfitting to S,,’s
words frequencies introduced by the frequency-
related distances.

(17)

O]

*http://www.scholarpedia.org/article/Mutual_information
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C Effective Learning and Ablation

Studies
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Figure 9: Training and Dev F1 Scores on Few-NERD
of two cases.

Table 3: Ablation studies of our method on FEW-
NERD.

FEW-NERD(INTRA) F1 scores

Model

5 way 1~2 shot 5 way 5~10 shot 10 way 1~2 shot 10 way 5~10 shot
Protoours 36.83 54.62 30.06 47.61
Protoapi / / 1.04
Proto a2 / 9.89 / /
Model FEW-NERD(INTER) F1 scores

5 way 1~2 shot 5 way 5~10 shot 10 way 1~2 shot 10 way 5~10 shot
Protoours 54.35 66.93 47.32 61.50
Protoapi 9.24 / / /
Protoa s> / / 1.56 /
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