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Abstract

Word translation without parallel corpora has
become feasible, rivaling the performance of su-
pervised methods. Recent findings have shown
the improvement in accuracy and robustness
of unsupervised word translation (UWT) by
utilizing visual observations, which are uni-
versal representations across languages. Our
work investigates the potential of using not
only visual observations but also pretrained
language-image models for enabling a more
efficient and robust UWT. We develop a novel
UWT method dubbed Word Alignment using
Language-Image Pretraining (WALIP), lever-
aging visual observations via the shared image-
text embedding space of CLIPs (Radford et al.,
2021). WALIP has a two-step procedure. First,
we retrieve word pairs with high confidences of
similarity, computed using our proposed image-
based fingerprints, which define the initial pivot
for the alignment. Second, we apply our robust
Procrustes algorithm to estimate the linear map-
ping between two embedding spaces, which
iteratively corrects and refines the estimated
alignment. Our extensive experiments show
that WALIP improves upon the state-of-the-
art performance of bilingual word alignment
for a few language pairs across different word
embeddings and displays great robustness to
the dissimilarity of language pairs or training
corpora for two word embeddings.

1 Introduction

Translating words across different languages is
one of the long-standing research tasks and a stan-
dard building block for general machine translation.
Word translation is helpful for various downstream
applications, such as sentence translation (Conneau
et al., 2017; Hu et al., 2019) or cross-lingual trans-
fer learning in language models (de Vries and Nis-
sim, 2020). Unsupervised word translation (UWT)
has recently drawn a great deal of attention (Artetxe
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Figure 1: Conceptual visualization of WALIP for unsu-
pervised word translation between English and French.
We can connect English and French words in an un-
supervised fashion through the shared images. CLIP
models (Radford et al., 2021) can be used as human
simulators to associate words with images.

et al., 2017; Conneau et al., 2017; Hartmann et al.,
2019), reducing the need for bilingual supervision.

Without any prior knowledge of the languages’
connection, aligning their words is non-trivial.
Most works on UWT exploit the structural sim-
ilarity between continuous word embedding spaces
across languages (Mikolov et al., 2013a; Ormaza-
bal et al., 2019) to learn a linear mapping. Early
works (Smith et al., 2017; Artetxe et al., 2017; Con-
neau et al., 2017; Hoshen and Wolf, 2018; Grave
et al., 2019) focus on using only the text data to
establish the bilingual alignment and solve the Pro-
crustes problem (Schönemann, 1966). These meth-
ods rely on the similarity between pairs of lan-
guages and training corpora, thus not working well
when the languages or corpora are dissimilar (Sø-
gaard et al., 2018; Sigurdsson et al., 2020). They
may also need a large amount of data to achieve
good alignments (Sigurdsson et al., 2020).

Words can also be connected via the visual
world. Visual similarity provides additional prior
knowledge for easing language translation (Mihal-
cea and Leong, 2008). Recent works (Sigurdsson
et al., 2020; Surís et al., 2020) demonstrate the
promise of using visual information to improve
UWT. However, they mostly require intense joint
training for the embedding shared between images
or videos with texts of multiple languages. More-
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over, these embeddings are used for translating all
words, whereas not every word can be described by
images or videos. Thus, it is unclear how they are
helpful for non-visual words and whether the meth-
ods properly utilize topological similarity between
word vector spaces (Mikolov et al., 2013a).

Our contributions. We propose WALIP (Word
Alignment with Language-Image Pretraining) as
a new unsupervised word alignment method that
leverages the joint image-text embeddings provided
by CLIP (Radford et al., 2021). Fig. 1 shows an ex-
ample inspiring WALIP. Consider a conversation
between a French and an English speaker. As the
English speaker shows an apple image, the French
speaker can easily understand and provide its trans-
lation as pomme. They can similarly pair more
words describing simple objects, helping translate
more complex words. This observation inspires
us to leverage visual information as the pivot for
matching words across languages. To do so, we use
CLIP (Radford et al., 2021) to correlate texts and
images and construct an image-based word repre-
sentation, called a fingerprint, where each coordi-
nate measures the similarity between the word and
an image a diverse image set. Note that fingerprints
share similar merits with the pictorial representa-
tion of sentence (Mihalcea and Leong, 2008) that
represents simple sentences by sequences of pic-
tures. We use fingerprints to identify initial word
pairs. As not every word can be described by im-
ages, we rely on the topological similarity of word
vector spaces (Mikolov et al., 2013b) for the full
alignment in the second step, i.e., solving a lin-
ear mapping between two spaces using our robust
Procrustes algorithm with identified word pairs.

Via extensive experiments, we show that
WALIP is highly effective in bilingual alignment.
We achieve comparable or better performance than
the state-of-the-art (SOTA) baselines and close the
gap to supervised methods. For instance, on the
Dictionary benchmark (Sigurdsson et al., 2020)
with HowToWorld-based word embedding (Miech
et al., 2019), we achieve the SOTA performance
on all evaluated pairs (English→{French, Ko-
rean, Japanese}), achieving significant accuracy
improvements (6.7%, 2.5%, and 4.5%, cf. Table 2)
over the previous SOTA (Sigurdsson et al., 2020).
Our method also displays great robustness to the
dissimilarity of language pairs and static word em-
beddings. We empirically show the effectiveness
of our method through various ablation studies.

2 Related Works

Unsupervised word translation (UWT). Most
UWT methods exploit the structure similar-
ity between word vector spaces across lan-
guages (Mikolov et al., 2013a) to learn linear map-
pings. Early works (Smith et al., 2017; Artetxe
et al., 2017) establish the parallel vocabulary and
estimate the mapping by solving the Procrustes
problem (Schönemann, 1966; Gower and Dijkster-
huis, 2004). Others study assignment problems
and directly solve Wasserstein-Procrustes for the
one-to-one word assignment matrix (Zhang et al.,
2017b; Grave et al., 2019) or hyper-alignment for
multiple languages (Alaux et al., 2018; Taitelbaum
et al., 2019). Recent works (Zhang et al., 2017a;
Conneau et al., 2017; Hoshen and Wolf, 2018) pro-
pose to learn the mapping via aligning the embed-
ding distributions with the notable MUSE frame-
work (Conneau et al., 2017) using the adversarial
training to achieve high translation performance
for multiple pairs. We use MUSE as our baseline.
While MUSE involves intense training for aligning
two embedding spaces, WALIP does not require
this training by utilizing pretrained CLIP models.

Visual information has been used to improve ma-
chine translation (Hewitt et al., 2018; Zhou et al.,
2018; Kiros et al., 2018; Yang et al., 2020; Li et al.,
2022b). Focusing on word translation, MUVE (Sig-
urdsson et al., 2020) trains a linear mapping be-
tween two embeddings via learning a joint video-
text embedding space for pairs with captioned in-
structional videos. Globetrotter (Surís et al., 2020)
learns the multilingual text embeddings aligned
with image embeddings via contrastive learning.
The learned text embeddings are used for multilin-
gual sentence translation and refined for word trans-
lation. These methods require intense training with
a large amount of vision-text data for learning the
encoders, while WALIP only utilizes pretrained
embeddings of off-the-shelf CLIP models. MUVE
and Globetrotter are our main baselines.

Language-Vision (LV) models. We can cate-
gorize LV models into two types: single-stream
and dual-stream models. The former feeds the
concatenation of text and visual features into a
single transformer-based encoder, such as Visu-
alBERT (Li et al., 2019) and ViLT (Kim et al.,
2021). The latter uses separate encoders for text
and image and aligns semantically similar features
in different modalities with contrastive objectives,

155



such as CLIP (Radford et al., 2021), ALIGN (Jia
et al., 2021), and FILIP (Yao et al., 2021). We use
CLIP as our language-image pretraining model due
to its inference efficiency, high performance, and
the availability of pretrained models in multiple
languages. CLIP inspires numerous works (Zhang
et al., 2021; Li et al., 2022a; Zhou et al., 2022)
for better data efficiency and task adaptation of LV
models. In this line of work, Zhai et al. (2022)
recently show the feasibility of training multilin-
gual image-text models without parallel corpora by
connecting languages via image embeddings.

3 Problem Setup and Preliminaries

We formally describe the target problem of unsu-
pervised word alignment and provide two prelimi-
naries to our method: Procrustes and CSLS.
Unsupervised word alignment. We focus on
the word alignment (translation) problem: finding
the mapping from Adict to Bdict, where Adict =
{a1, · · · , ana} and Bdict = {b1, · · · , bnb

} are dic-
tionaries of source language A and target language
B, with na and nb being the number of words
in each dictionary, respectively. This mapping
can be represented by an equivalent index map-
ping π : [na] → [nb], i.e., we consider word ai
is mapped (aligned) to word bπ(i), for i ∈ [na].
Here, [n] = {1, 2, · · · , n} is defined as the set of
positive integers up to a positive number n. Note
that we focus on unsupervised word alignment in
which no ground-truth word pairs (ai, bπ(i)) are
given to the algorithm. To solve this problem,
we assume the access to three ingredients: (1) a
large-scale image dataset with d images denoted by
G = {g1, · · · , gd}, (2) a pre-trained monolingual
CLIP model for each language, and (3) static word
embeddings (Bojanowski et al., 2016; Pennington
et al., 2014) for all words in dictionaries.
Procrustes problem. Let X,Y ∈ Rn×d be ma-
trices of the d−dimensional embeddings for n
words in the source and target languages. The Pro-
crustes problem aims to find W ∈ Rd×d such that
∥XW − Y ∥F is minimized. Regularizing W with
the orthogonality is found to improve the transla-
tion (Xing et al., 2015), where the optimal W is

W ∗ = argmin
W∈Od

∥XW − Y ∥F = SVD(Y TX)

where Od is the set of d × d orthogonal matrices
and SVD is the singular value decomposition.
CSLS. Conneau et al. (2017) proposed Cross-
domain Similarity Local Scaling (CSLS) to ro-
bustly measure the similarity between words’ em-
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Figure 2: WALIP for translating between na words
{a1, · · · , ana} and nb words {b1, · · · , bnb

} in two lan-
guages A and B. We have access to: (1) a set of d
images {gi}di=1, (2) the CLIP model for each language,
and (3) static word embeddings for each language, de-
noted by Ãtxt and B̃txt. In step 1, we build a fingerprint
f(ai) defined in equation 1 for each word ai and build
f(bi) for words bi. We match words whose fingerprints
share high similarities, thus having an initial mapping
π : [na]→ [nb] pairing ai and bπi

for i ∈ S ⊆ [na]. In
step 2, we use static word vectors and initially matched
pairs to solve the linear word mapping with the robust
Procrustes algorithm for better alignment.

beddings. Given two sets X = {xi}i∈[nX ],
Y = {yi}i∈[nY ] and the number of neigh-
bors K, the CSLS of xi and yj is defined as
CSLS(xi, yj) = 2 cos(xi, yj) − rY (xi) − rX(yj)
where cos(·, ·) is the cosine similarity, rY (xi) =
1
K

∑
yj∈NY (xi)

cos(xi, yj) is the average similar-
ity of xi, and NY (xi) is the set of K nearest
neighbors of xi among elements of Y . CSLS per-
forms cross-domain normalization to address the
hub phenomenon (Radovanovic et al., 2010) of the
K-nearest-neighbor method in high-dimensional
spaces, which occurs when some vectors are near-
est to many vectors while others are isolated.

4 WALIP

We first provide the high-level idea and then spec-
ify each stage of WALIP. Algo. 2 in Appendix
presents the pseudocode for our algorithm.

4.1 Method Overview

Our idea is to enable effective and robust word
alignment by using (1) the similarity of visual rep-
resentations of words with similar meanings and
(2) the structural similarity of static word embed-
ding spaces across languages. Specifically, we use
images to connect similar words in two languages
with the aid of CLIP (Radford et al., 2021). How-
ever, a naïve application of this method only makes
sense for visual words such as non-abstract nouns
that images can describe. To map non-visual words,
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we utilize the topological similarity (i.e., the degree
of isomorphism) between word vector spaces (Vulić
et al., 2020). Motivated by the existence of a linear
association between two static word embeddings
of different languages (Ormazabal et al., 2019), we
learn a linear mapping using the robust matching
algorithm on identified word pairs.

Fig. 2 illustrates WALIP used for aligning
words {ai} and words {bi} in languages A and
B. WALIP has two steps. First, it selects pairs
{ai, bπi} having similar visual meanings by using
each word’s fingerprint, defined as the similarity
of the word and an image set via CLIP’s encoders.
Second, it iteratively aligns word embeddings of
languages A and B, i.e., find a linear mapping be-
tween two embeddings, using robust Procrustes
and the initial pairs identified in the first step.

4.2 Step 1: Pairing up Visually Similar Words
using Language-Image Association

As shown in Algo. 2, our Step 1 pairs words via
images. This is available by an image-based finger-
print representation of each word, defined below.

4.2.1 Image-based Fingerprints
We denote the image/text encoder of the CLIP
model for language A as Aimg and Atxt. Simi-
larly, we define Bimg and Btxt for language B.
The critical advantage of the CLIP model is the ac-
cess to the shared embedding space aligning image
gi and its corresponding word (ai or bi). WALIP
utilizes this embedding space of each source/target
language to find the bilingual mapping.

Given d images {g1, · · · , gd}, we first de-
fine a d−dimensional vector (called fingerprint)
for each word ai ∈ Adict in the source lan-
guage as f(ai) = [fa

i,1, · · · , fa
i,d] where fa

i,j =

sim(Atxt(ai), A
img(gj)) is the similarity between

the embedding of the i-th word and the embed-
ding of the j-th image. Similarly, we define the
fingerprint of each word bi ∈ Bdict in the tar-
get language as f(bi) = [f b

i,1, · · · , f b
i,d] where

f b
i,j = sim(Btxt(bi), B

img(gj)). This fingerprint
represents a word’s similarity to images, according
to the embedding space of pretrained CLIP models.
We denote the fingerprint of the i-th word in the
dictionary of a language l ∈ {a, b} as

f(li) = [f l
i,1, · · · , f l

i,d]. (1)
Figs. 3a, 3b show examples of English and French
fingerprints. Here, we measure the similarity of
each word with 12 images from ImageNet (Deng
et al., 2009), obtaining a 12-dim vector. The top
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Figure 3: Illustration of image-based fingerprints for En-
glish words (a) and their translations in French (b). The
similarity between each word (inserted in a simple tem-
plate such as “A photo of []”) and all images serves as
the fingerprint (each row). Fingerprints of visual words
(top three rows) are more distinguishable than abstract
words (three bottom rows) and share similar patterns to
the fingerprints of their French translations.

three rows of each figure are fingerprints for visual
words (cock, goldfish, tiger shark), and
the bottom rows are of abstract words (culture,
philosophy, phenomenon). Unlike visual words,
fingerprints of abstract words are more uniform
(similar values for most coordinates), i.e., they are
not distinguishable. Note that fingerprints of each
English-French pair of visual words {(cock, coq),
(goldfish, poisson rouge), (tiger shark,
requin)} share highly similar patterns.

4.2.2 Identifying Pivot Pairs
Consider two visual words ai, bj in two languages
with similar meanings (e.g., ai = “tiger shark”
and bj = “requin” in Fig. 3). For a given image
set, fingerprints of the two words would be similar,
i.e., f(ai) ≈ f(bj) as shown in Fig. 3, allowing the
use of fingerprint similarity for word translation.

Keeping only visually aligned words. Recall
that fingerprints are meaningful for visual words
only, as observed in Fig. 3. Motivated by this ob-
servation, we focus on words well represented by a
set of images. Specifically, for the i-th word li in
language l ∈ {a, b}, we compute the maximum
similarity value f

(l)
i,max = maxj f

(l)
i,j within the

corresponding fingerprint f(li) = [f
(l)
i,1 , · · · , f

(l)
i,d ].

Then, for each language l ∈ {a, b}, we keep the
set of words Sl having the maximum similarity be-
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yond the median. To focus on components with
high similarity, we sparsify fingerprints by eliminat-
ing values below the 0.9th-quantile and normalize
the vectors. This revised fingerprint allows us to
focus on images highly similar to the given word.

Selecting pairs with high similarity. For source
words {ai}i∈Sa and target words {bj}j∈Sb

, we mea-
sure the similarity of fingerprints f(ai) and f(bj)
using CSLS (Sec. 3). Recall that our goal is to find
a mapping π : [na]→ [nb] indicating that the word
ai is translated to bπ(i), and we want to map ai to
bj having similar fingerprints. Based on the simi-
larity score ci,j = CSLS(f(ai), f(bj)) for i ∈ Sa

and j ∈ Sb, we set π(i) = argmaxj ci,j , giving
us an initial set of word pairs, where two words in
each pair are visual words and share highly similar
fingerprint patterns. See algorithms 3 and 4 for
pseudocodes of word filtering and pair selection.

4.3 Step 2: Iteratively Learning the Mapping
with Robust Procrustes

In Step 1 of WALIP in Algo. 2, we have identified
the initial word mapping π on visual words. In
Step 2, we learn and fine-tune π on the whole dic-
tionaries using linear mapping W ⋆ between static
word embeddings of two languages, learned by it-
eratively applying our robust Procrustes algorithm
(Algo. 1). We first explain Algo. 1 – the building
block of Step 2 in Sec. 4.3.1, and then explain how
this algorithm allows us to learn π in Sec. 4.3.2.

Algorithm 1 Robust-Procrustes

Input: Vectors X,Y ∈ Rn×d

Output: Linear mapping W ∗ ∈ Rd×d

Set ϵ = 0.001, M = 5
Initial mapping W0 = Procrustes(X,Y )
for m ∈ {1, · · · ,M} do

αi ← 1
∥yi−Wk−1xi∥2+ϵ

for i ∈ [n]

αi ← αi/maxj∈[n] αj

D ← Diag(α
1/2
1 , . . . , α

1/2
n )

Wm ← Procrustes(DX,DY )

W ⋆ ←WM

4.3.1 Error-Weighting Robust Procrustes
The initial word pairs identified in Step 1 are ob-
tained in an unsupervised manner with potentially
many mismatched pairs. Thus directly applying
the existing Procrustes algorithm (Sec. 3) to these
pairs may lead to an incorrect linear mapping W .

We introduce a robust matching algorithm
(Algo. 1) to eliminate the mismatched pairs and
learn the mapping from the correct ones. Inspired

by the existing robust Procrustes algorithms (Groe-
nen et al., 2005), we assign small weights to in-
correct pairs and large weights to correct pairs.
Given a word embedding matrix X and its aligned
counterpart Y , we first apply the Procrustes to
learn the initial W0. We then measure the error
of W0 on each word pair (x, y) by the residual
r(x, y) = ∥y − W0x∥2. Since the pair is likely
to be correct when the residual is small, we use
α(x, y) = 1/r(x, y) as the weight of the pair. Then,
we apply Procrustes on these weighted pairs to ob-
tain a new mapping W1. We repeat this process a
few times to achieve a stable linear mapping W ⋆.

4.3.2 Iteratively Updating the Word
Alignment π and Linear Mapping W ⋆

In Step 2 of WALIP, we iteratively apply two pro-
cedures: first, we update linear mapping W ⋆ by
applying the robust Procrustes on identified pairs,
and second, we update the word mapping π using
W ⋆ and the pair selection algorithm (Algo. 4).

The first phase is described in Sec. 4.3.1. In the
second phase, we transform each source vector xi
into W ⋆xi in the target embedding space and ap-
ply the k-nearest-neighbor (NN) on this space. We
update π using Algo. 4 in the following manner:
retrieving k > 1 candidate target words for each
source word and choosing candidates having the
similarity (with source word) higher than a thresh-
old q. For the updated π, we measure the Euclidean
distance between paired vectors as the validation
loss and repeat the two procedures (update W ⋆

and π) until the validation loss is convergent. In
this process, two hyperparameters q and k are ini-
tialized with high values and gradually decayed at
each update step of π. Once the validation loss con-
verged, we obtain the final mapping π by applying
Algo. 4 with k = 1 and q = 0.

Step 2 is crucial to achieving high translation per-
formance from initial mapping. While sharing sim-
ilar merits to ours, the refinement procedure (Con-
neau et al., 2017) is only used for marginally im-
proving upon a high-accuracy linear mapping W .

4.4 Advantages of WALIP

First, WALIP is computationally efficient, espe-
cially compared to MUSE, MUVE, and GLOBE-
TROTTER. With pretrained CLIPs, our first step
(Sec. 4.2) requires no extra training for pivot pair
matching, while Step 2 (Sec. 4.3) involves a few
matrix computations. Second, WALIP is more
robust to language dissimilarity. Assuming well-
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trained CLIPs, fingerprints of words having similar
meanings are intuitively similar across languages
as they all represent the same visual correlation to
the same image set. Thus, fingerprints improve the
robustness of pivot matching, especially for dissim-
ilar languages. This may not be the case for meth-
ods only using static word embeddings (Søgaard
et al., 2018). Finally, our image-based fingerprint
provides an interpretable representation of words.

5 Experiments

We evaluate WALIP on bilingual alignment tasks.
Sec. 5.2 compares WALIP and baselines in multi-
ple language pairs. The following sections pro-
vide additional experimental results that either
highlight the benefits of WALIP or help under-
stand the component that enables the high perfor-
mance of WALIP. Our code is available at https:
//github.com/UW-Madison-Lee-Lab/walip.

5.1 Settings
WALIP setting. We use publicly available pre-
trained CLIPs for English, Russian, Korean, and
Japanese. For other languages, we fine-tune En-
glish CLIP models on Multi30K (Elliott et al., 2016,
2017) and MS-COCO variants (Lin et al., 2014;
Scaiella et al., 2019; Carlos, 2020). For making
CLIP prompts, we convert single words to sen-
tences using prompt templates suggested in (Rad-
ford et al., 2021). We apply the prompt-ensemble
technique with 2–7 prompts for each word and use
their average as word embeddings. To make the
fingerprints, we use a set of 3000 images from Ima-
geNet (Deng et al., 2009) by default. See Sec. 5.6.3
for our detailed evaluation. For the static word
embedding, we use HowToWorld (HTW)-based
Word2Vec (Sigurdsson et al., 2020) and Wiki-based
Fasttext embeddings (Bojanowski et al., 2016).

Evaluation. We evaluate methods on the Dictio-
nary datasets (Sigurdsson et al., 2020), which are
test sets used in the MUSE benchmark (Conneau
et al., 2017). Each dictionary is a set of transla-
tion pairs where each word in the source language
may have multiple translations in the target lan-
guage. We report recall@n used in (Sigurdsson
et al., 2020), which presents the fraction of source
words correctly translated. A retrieval is correct for
a given query if at least one of n retrieved words
is the correct translation. By default, we report
recall@1, which is equivalent to precision@1, and
the accuracy used in (Conneau et al., 2017).

Baselines. Our baselines include the video-
grounding method MUVE (Sigurdsson et al.,
2020) and the image-grounding method Globe-
trotter (Surís et al., 2020). We also compare our
method with two versions of the text-only method
MUSE (Conneau et al., 2017): the default one
trained on the Dictionary dataset (with 1.5K–3K
words per dictionary), and the other one trained
on the MUSE training data (with 200K words per
dictionary); we call the latter one as MUSE (extra-
vocabulary). We also consider a simple baseline
using CLIP, denoted by CLIP-NN, which performs
1-nearest neighbor (1-NN) based estimation on the
embedding spaces of two CLIP models: we first
find the image nearest to the source word, and then
find the target word nearest to the image found
in the first step. For measuring recall@n of this
baseline, we replace 1-NN with ⌈√n⌉-NN.

We also test three variants of our method by mak-
ing changes in Step 1: WALIP (clip-text in Step 1)
which replaces fingerprints with CLIP-based text
embeddings, WALIP (substring matching) which
replaces the initial matching by selecting pairs shar-
ing the longest common substrings, and WALIP
(character mapping) which improves substring
matching by first applying letter counting (Ycart,
2012) to map two languages’ character sets. We
also test two variants that replace the static word
embeddings used in Step 2 with CLIP-based text
embeddings (denoted by WALIP (clip-text in Step
2)) or fingerprints (denoted by WALIP (fingerprint
in Step 2)). Further details are in Appendix B.

5.2 How Well Does WALIP Perform
Bilingual Word Alignment?

Tables 1, 2 show our evaluation of bilingual align-
ment using Wiki-based and HTW-based embed-
dings on the Dictionary datasets.

Wiki-based embeddings. In Table 1, WALIP
achieves comparable or the best performances in
most cases among unsupervised methods, attaining
relatively small gaps to the full supervision. Specif-
ically, WALIP achieves SOTA on five pairs, espe-
cially for En→Ko, where WALIP outperforms oth-
ers with large margins. For the baselines using vi-
sual information, we outperform GLOBETROTTER

and all variants of WALIP across all pairs. Note
that MUVE only reports recall@10 for En→Fr as
82.4, far below ours (97.5). Compared to the ver-
sion of MUSE with extra vocabularies, WALIP
achieves comparable scores in most cases and out-
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Table 1: Comparing bilingual alignment methods on Wiki-based word embedding. We report recall@1 on the
Dictionary dataset. WALIP achieves SOTA performance in many pairs, close to the supervision. (Sigurdsson et al.,
2020) do not report results of MUVE in this setting and GLOBETROTTER uses its learned word embeddings.

Method En→Ko En→Ru En→Fr En→It En→Es En→De Es→De It→Fr

Text-only

(Upper bound) Supervision 69.1 85.5 93.5 92.1 93.3 92.5 91.5 95.1
MUSE (extra-vocabulary) 59.3 83.0 92.5 91.6 93.0 92.5 89.1 94.5

MUSE 2.8 65.9 84.5 84.9 85.1 73.6 83.0 92.3
WALIP (substring matching) 0.2 0.0 92.0 90.3 92.0 92.1 88.7 94.3
WALIP (character mapping) 0.2 5.0 90.9 0.1 0.1 0.3 0.5 0.5

Text-Image

CLIP-NN 2.5 9.4 1.3 10.5 8.2 7.1 7.3 6.5
GLOBETROTTER 0.1 4.0 52.3 50.1 46.4 46.8 38.3 49.3

WALIP (clip-text in Step 1) 0.3 0.0 58.9 79.4 56.2 50.8 46.5 52.5
WALIP (clip-text in Step 2) 0.2 15.7 59.3 59.1 59.1 52.3 46.8 52.1

WALIP (fingerprint in Step 2) 0.2 0.5 31.3 39.0 32.6 31.3 34.7 43.3
WALIP 62.3 82.7 92.6 90.7 92.2 92.6 89.2 94.5

Table 2: Comparing bilingual alignment methods on
HTW-based embedding. WALIP achieves highest re-
call@n scores on Dictionary dataset across all pairs.

Method En→Fr En→Ko En→Ja
R@1 R@10 R@1 R@10 R@1 R@10

(Up.) Sup. 57.9 80.1 41.8 72.1 41.1 68.3
MUSE (extra.) 26.3 42.3 11.8 23.9 11.6 23.5

MUSE 0.8 6.6 0.3 3.1 0.3 2.5
MUVE 28.9 45.7 17.7 33.4 15.1 31.2

WALIP (substr.) 35.5 56.0 0.0 0.2 0.3 2.1
WALIP 35.6 56.2 20.2 42.4 19.6 41.0

performs in En→Ko. The score gaps between the
two methods are larger in Table 2, as described in
the next paragraph. It is worth mentioning that this
version of MUSE needs a large number of extra
vocabularies for training while WALIP directly
performs on the test dictionaries. Moreover, most
baselines (except CLIP-NN) require intense train-
ing for aligning embedding spaces, while WALIP
needs a few matrix computations.

HTW-based embeddings. Following (Sigurds-
son et al., 2020), we test for three language pairs
(En→{Fr, Ko, Ja}). Table 2 compares WALIP
with MUVE and the baselines that perform well
in Table 1. Results of MUSE (extra.) and MUVE
are from (Sigurdsson et al., 2020). WALIP out-
performs other unsupervised baselines with large
margins, achieving the SOTA for all pairs, with the
recall@1 gaps to the second-best method (MUVE)
being 6.7, 2.8, and 4.5 for En→{Fr, Ko, Ja}, re-
spectively. WALIP also outperforms the substring
matching variant on En→{Ko, Ja}.

The performance on dissimilar language pairs.
For both embedding types, WALIP works rela-
tively well regardless of the similarity of language
pairs. In contrast, most baselines do not perform
well on a few or all dissimilar pairs (En→{Ko, Ja,
Ru}). We expect that the low performance of the
substring matching method partly comes from the
dissimilarity of alphabets in such pairs.

Table 3: Comparing methods when static word em-
beddings of source and target languages are trained
on different corpora. We report recall@1 on En→Fr
translation evaluated on Dictionary dataset. WALIP
outperforms other baselines across two settings.

Method Wiki-HTW HTW-Wiki
MUSE (extra.) 0.3 0.3

MUSE 0.3 0.2
VecMap 0.1 0.1
MUVE 32.6 41.2
WALIP 34.3 60.0

5.3 Robustness against the Dissimilarity of
Static Word Embeddings

Following (Sigurdsson et al., 2020), we evalu-
ate WALIP when the static word embeddings of
source and target languages come from different
training corpora: Wiki and HTW corpora. We also
compare with VecMap (Artetxe et al., 2017), the
baseline used in the MUVE paper. Table 3 com-
pares WALIP with MUSE variants, VecMap, and
MUVE on En→Fr.1 WALIP and MUVE are more
robust to the dissimilarity of word embeddings than
MUSE variants and VecMap. In addition, WALIP
outperforms MUVE on both settings. For instance,
on the Wiki-HTW setting, recall@1 of WALIP is
60% while that of MUVE is 41.2%.

5.4 Can We Reuse CLIP Models Trained on
English Texts for Other Languages?

Large-scale language models exhibit the strong
ability of cross-lingual zero-shot transfer (Hu et al.,
2020). We investigate whether WALIP can utilize
a CLIP model trained on English texts (English-
CLIP) for other languages. Intuitively, this is prob-
ably doable when the other language uses the same
alphabet (and the same tokenizer). Here, we use the
English-CLIP model to obtain fingerprints for all
languages, resulting in a new version of WALIP,

1MUVE only provides results for the English-French pair.
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Figure 4: Zero-shot cross-lingual transfer. We observe
the following when we replace the original CLIPs (yel-
low) with English-CLIP (cyan). Top: The initial match-
ing accuracy drops for all pairs. Bottom: The final recall
score becomes nearly 0 for the dissimilar pair (En→Ru)
but remains mostly the same for other pairs.

Table 4: The percentage (%) of each word class in
the Dictionary dictionaries. Each class of abstract and
concrete nouns accounts for approximately 4% of words,
with the total nouns being nearly 50% of words.

Dict. Noun OthersAbstract Concrete Non-ID
En→Ru 3.8 4.3 39.5 52.4
En→It 3.9 3.8 38.9 53.4

denoted English-WALIP. Here, our static word
embeddings are Wiki-based Fasttext embeddings.
As shown in Fig. 4, using English-WALIP causes
drops in initial matching accuracies, which mea-
sure the precision of mapping on selected pairs.
However, these drops only affect the translation
performance of languages dissimilar to English
(e.g., Russian) and do not significantly affect the
ones similar to English, i.e., the recall@1 remains
mostly the same for En→{It, Fr, Es, De}. Thus,
English-CLIP can be used in WALIP framework
for languages similar to English, reducing the need
for training their new CLIP models.

5.5 WALIP on Different Word Types

In this section, we check how the performance of
WALIP changes for different types of words. We
categorize words into 4 classes: abstract nouns
(e.g., beauty), concrete nouns (e.g., computer), non-
identified nouns (e.g., Copenhagen), and non-noun
(e.g., pretty). We use spaCy noun parser2 to detect
nouns and then use lists of popular English abstract
and concrete nouns3 to match their classes. We
denote the unmatched nouns as non-identified (non-

2https://spacy.io
3englishvocabs.com/nouns/1000-concrete-and-abstract-

nouns-examples, onlymyenglish.com/list-of-abstract-nouns

Table 5: Recall@1 (↑) of each word type reported on
each step of WALIP. In the early stages, concrete nouns
obtain the highest scores in both dictionaries. After step
2, abstract and concrete nouns share more comparable
scores, higher than scores of non-noun words.

Dict. Step (Iter.)
Noun

Others
Abstract Concrete Non-ID

En→Ru
#1 7.0 47.6 9.8 5.8

#2 (first) 40.4 66.2 42.2 23.7
#2 (last) 86.0 86.2 86.0 78.8

En→It
#1 3.3 35.1 13.2 12.9

#2 (first) 72.9 77.2 68.0 55.1
#2 (last) 96.6 94.8 92.0 89.3

id). Table 4 reports the percentage of each class
in the En→{Ru, It} dictionaries. Nearly 47% of
words are nouns, with approximately 8% of words
being abstract or concrete nouns.

Table 5 reports recall@1 scores for all word
classes after the initial matching (Step 1 in Sec. 4.2)
and after the first and the last iterations of linear
mapping (Step 2 in Sec. 4.3). We use the Wiki-
based Fasttext embeddings for static word embed-
dings. After completing step 1 and the first iter-
ation of step 2, concrete nouns have the highest
scores. Note that the score gap between concrete
and abstract nouns on En→Ru is more than 40%
after step 1. This indicates that the initial match-
ing using fingerprints works better with concrete
nouns. After completing step 2, the scores are
improved for all classes, where scores of abstract
and concrete nouns become more comparable, e.g.,
86.0, 86.2 on En→Ru. Note that nouns have much
higher recall@1 than non-noun words. These re-
sults show that step 2 improves the matching for
all word types, especially for nouns.

5.6 Ablation Study

We perform ablation studies using the Wiki-based
Fasttext embedding and the Dictionary dataset.

5.6.1 Effect of Fingerprints
Fig. 5 shows the effect of fingerprints on transla-
tion performance. We compare variants of WALIP
using various initial mapping methods: random
matching (red), clip-text embeddings (olive), sub-
string matching (green), and image-based finger-
prints (ours, dark blue). The evaluation scores can
be found in Table 1. Fingerprint-based WALIPs
are the best among variants across all pairs.

5.6.2 Effect of Robust Procrustes
Fig. 6 shows the comparison between our robust
Procrustes (in Algo. 1) and the standard Procrustes
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Figure 6: Investigating the effect of robust Procrustes.
Robust Procrustes helps improve the translation across
different language pairs. The effect is more significant
on “difficult” pairs, such as English-Russian.

algorithm, given the same initial mapping. Robust
Procrustes indeed helps improve over the standard
Procrustes, especially when two languages are dis-
similar. For instance, on En→Ko, using robust
Procrustes increases the final recall@1 by 12.9%.

5.6.3 Effect of the Image Set
Here we check how the images used for making
fingerprints affect the performance of WALIP.

Size of image sets. Fig. 7 compares recall@1
scores of WALIP when different number of images
(from ImageNet) are used for building fingerprints.
When the number of images increases, the recall@1
increases and converges for all pairs. As the lan-
guages become more dissimilar, WALIP may need
more images to attain good performance. WALIP
needs only 1000 to 3000 images to achieve good
performance across all evaluated language pairs.

Diversity of images. To see the importance of im-
age diversity, we fix the total number of images as
3000 and vary the number of classes. Table 6 com-
pares the recall@1 of WALIP on En→Ru varying
the image diversity. Here, we use the CIFAR10
dataset for 10 or fewer classes, CIFAR100 for 20–
100 classes, and ImageNet for 1000 classes. Note
that WALIP achieve high performance only when
we use a large number of classes (e.g., more than 37
classes in the Table). This is probably because im-
age sets with higher diversity provide more distin-
guishing coordinates of fingerprints to obtain more

100 200 500 1000 2000 3000
Number of images

0

50

100

R
ec

al
l@

1 En-Ru

En-It

En-Fr

It-Fr

Figure 7: Recall@1 (↑) of WALIP varying the size of
image (ImageNet) set used for fingerprints. The per-
formance improves as the number of images increases
from 100 to 1000 and then remains mostly unchanged.
Hence, a sufficiently large number of images is required.

Table 6: Recall@1 (↑) of WALIP on En→Ru, varying
the number of image classes given a fixed number of
images as 3000. WALIP achieves high performance
(step 2) when 38 or more classes are used. Furthermore,
using 1000-class ImageNet results in the highest initial
matching score (62.2) among the settings.

No. classes Dataset Step 1 Step 2
1 CIFAR10 0.9 0.8
2 CIFAR10 0.9 0.6

10 CIFAR10 6.2 8.1
20 CIFAR100 7.6 5.4
37 CIFAR100 9.1 4.4
38 CIFAR100 10.3 82.1
50 CIFAR100 11.1 82.5

100 CIFAR100 11.1 82.3
1 000 ImageNet 62.2 83.0

pivot pairs in the initial matching step – the con-
dition for robust Procrustes to learn. Furthermore,
compared to other settings, 1000-class ImageNet
obtains much better initial matching in step 1.

6 Conclusion

We propose WALIP, a novel unsupervised bilin-
gual word alignment method using pretrained CLIP
models. WALIP first leverages the visual similarity
between words as the auxiliary for matching initial
and simple word pairs via the image-based finger-
print representation computed by language-image
pretraining models. Then WALIP uses these ini-
tial pairs as pivots to learn the linear transformation
between two static word embeddings. We intro-
duce a robust Procrustes algorithm based on error-
weighting to estimate the linear mapping. Com-
pared with existing baselines, WALIP needs less
computation for aligning two embeddings, thanks
to the aid of visual information and pretrained CLIP
models. WALIP achieves the SoTA alignment per-
formances on several language pairs across word
embedding types, especially for pairs in which two
languages are highly dissimilar. WALIP also dis-
plays the robustness against the dissimilarity of
static word embeddings’ training corpora.
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7 Limitations

Despite achieving high translation performance on
various language pairs, WALIP has some limita-
tions, coming from the requirements of CLIP mod-
els, the presence of visual words, and the structural
similarity of static word embedding spaces.

As shown in Fig. 5, the initial mapping in Step
1 of WALIP needs to be sufficiently good for
WALIP to achieve high translation performance.
The conditions for good initial mappings are (1)
well-trained CLIP models and (2) a sufficiently
large number of visual words in the two dictio-
naries. First, our setting assumes the availability
of pretrained CLIP models for the two languages.
However, this may not be the case for many lan-
guages, especially for low-resource ones having
small amounts of training data publicly available.
We also observe that the CLIP models for non-
English languages (either trained from scratch or
fine-tuned from a model pretrained on English cor-
pora) are not as good as the OpenAI CLIP trained
on English corpora4 in terms of image-text align-
ment and zero-shot image classification. Fortu-
nately, our results on zero-shot transfer (Fig. 4)
indicate that we may only need a few well-trained
CLIP models in some major languages and fur-
ther use them for their highly similar languages.
Second, we have shown that image-based finger-
prints work the best with visual words and may
not show the distinguishable pattern on non-visual
words (Fig. 3). Therefore, the two dictionaries
need to have a sufficient number of visual words
for WALIP to obtain initial pairs with adequate
quantity and high accuracy.

Furthermore, WALIP, as well as most exist-
ing unsupervised word translation methods (Con-
neau et al., 2017; Artetxe et al., 2017; Sigurdsson
et al., 2020) rely on the structural similarity of
static word embedding spaces across languages.
However, such linear mapping between two spaces
may not exist in several cases, especially when two
languages are highly dissimilar. For instance, we
observed that the supervision method (with Pro-
crustes) achieved low translation accuracy (approx-
imately 40%) on the English-Japanese pair eval-
uated on the Dictionary dataset with HTW-based
embeddings, indicating that the linear transforma-
tion assumption may not be fully satisfied for these
two languages’ static word embedding spaces.

4https://github.com/openai/CLIP

8 Broader Impact and Ethical
Considerations

WALIP provides a simple yet effective solution
to word translation, contributing to the progress of
machine translation, which brings more benefits to
our society. Our method is unsupervised and com-
putationally efficient, thus significantly saving the
computing and reducing the need for human label-
ing. Furthermore, the robustness of WALIP to the
dissimilarity of language pairs and the dissimilarity
of training corpora for static word embeddings may
be beneficial to low-resource languages.

However, employing WALIP without careful
consideration and understanding may lead to un-
desired outcomes. First, the provided dictionaries
may contain harmful contexts and racist or sexist
content. WALIP can be used to translate these
contents to other languages, bringing unwanted
adverse effects to society. Second, though achiev-
ing the SOTA performances, WALIP still has not
attained sufficiently high accuracies (greater than
50%) on several dissimilar pairs (e.g., En→Ja), po-
tentially producing wrong translations for multiple
words, and hence having undesired impacts to the
users. Third, our methods may inherit biases and
undesired contents from language-image (CLIP)
models pretrained on large-scale datasets. Apply-
ing efficient fine-tuning to the pretrained CLIP
models with fairness consideration methods (Gira
et al., 2022) may help mitigate these biases.
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Appendix
Section A presents the pseudocodes for algorithms
discussed in the main paper. We provide details
of the experimental setting, chosen hyperparam-
eters, computing resources, and running times in
Section B for reproducibility.

A Algorithms

We present the pseudocodes for algorithms in Sec-
tion 4 of the main paper, including the WALIP
algorithm (Algo. 2), the visual-word filtering algo-
rithm (Algo. 3), and the word matching algorithm
(Algo. 4).

Algorithm 2 WALIP

Input: Source dictionary Adict = {a1, · · · , ana},
target dictionary Bdict = {b1, · · · , bnb

},
CLIP models (Atxt, Aimg), (Btxt, Bimg),
set of images G = {g1, · · · , gd},
word vectors TA for Adict, TB for Bdict,
number of alignment steps M , threshold
quantile q, number of candidates k.

Output : π : [na]→ [nb] such that aπ(i) ≡ bi
/* STEP 1. PAIRING USING FINGERPRINTS */
for language l ∈ {a, b} do

f(li)← fingerprint in (1) for i ∈ [nl]

F ← {f(li)}l∈{a,b},i∈[nl]

F ← Visual-Word-Filtering(F)
π0 ← Matching-Filtering(F , q)
/* STEP 2. ITERATIVE ROBUST PROCRUSTES */
Set Qs = {0.5, 0.5, 0.3, 0.1},Ks = {10, 5, 3, 1}
Set q = 0.5, k = 10, ϵ0 =∞, δ = 0.5
for m ∈ {1, · · · ,M} do

sAm−1 ← {i ∈ [na] : πm−1(ai) ∈ Bdict}
sBm−1 ← {j ∈ [nb] :∃ai s.t. πm−1(ai)= bj}
T ′
A ← TA[s

A
m−1], T ′

B ← TB[s
B
m−1]

W ⋆ ← Robust-Procrustes(T ′
A, T

′
B)

TA ← TAW
⋆

ϵm = ∥TA − TB∥F
if ϵm < ϵm−1 + δ then

t← min{⌈M/10⌉, 4}
q ← Qs[t], k ← Ks[t]
πm ←

Matching-Filtering({TA, TB}, q, k)
π ← Matching-Filtering({TA, TB}, 0, 1)

B Experimental Setup, Implementation,
and Running

We present details of the experimental setting
(Sec. 5.1 in main paper) and the chosen hyperpa-
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Algorithm 3 Visual-Word-Filtering

Input: Fingerprints F = {f(li)}l∈{a,b},i∈[nl]

Output :Updated fingerprints F
for l ∈ {a, b} do

f
(l)
i,j ← j-th element of f(li), for j ∈ [d]

f
(l)
i,max ← maxj f

(l)
i,j for i ∈ [nl]

Sl ← {i : f (l)
i,max ≥ mediani(f

(l)
i,max)}

for i ∈ Sl do
q̄ ← 0.9-th quantile of {f (l)

i,k}dk=1

f
(l)
i,j ← f

(l)
i,j · 1{f (l)

i,j≥q̄}

f
(l)
i,j ← f

(l)
i,j /|f

(l)
i,j |

Algorithm 4 Matching-Filtering

Input: F = {f(li)}l∈{a,b},i∈[nl],
Threshold quantile q,
Number of candidates k (k = 1 by default).

Output : Word index mapping π : [na]→ [nb]
ci,j ← CSLS(f(ai), f(bj)) for i ∈ [na], j ∈ [nb]
c̄← q-th quantile of {ci,j}
π ← empty mapping from [na] to [nb]
for i ∈ [na] do

J⋆ ← {j ∈ [nb] : ci,j ≥ k -thmaxj ci,j}
π(i)← {j ∈ J⋆ : ci,j ≥ c̄}

rameters in (B.1), the computing sources, running
time, and validation performance in (B.2).

B.1 Experimental Setup

Static word embeddings. We use two
embeddings: HowToWorld (HTW)-based
Word2Vec (Miech et al., 2019; Sigurdsson et al.,
2020) that trains Word2Vec (Mikolov et al.,
2013b) on HTW video datasets and Wiki-based
Fasttext (Bojanowski et al., 2016) that trains
Fasttext on the Wikipedia corpus.

Evaluation benchmark and datasets. We
use the Dictionary datasets (Sigurdsson et al.,
2020) which are test sets of MUSE bilingual
dictionaries (Conneau et al., 2017). Each test set
provides a set of matched pairs in two languages
where each word in the source language can
have multiple translations in the target language.
For instance, the En→Fr dictionary has 1500
unique English words and 2943 corresponding
French words. All pairs used in our evaluation
are En→{Fr, Ru, It, Ko, Ja}, and It→Fr. Input
evaluation dictionaries are pre-processed to ensure

the delimiting character is a white-space character
and that there are no duplicate synonym pairs.
Words that do not appear in the word2vec files for
HowToWorld-based or Wiki-based embeddings
were removed. We also provide the modifications
of the original datasets that remove non-native
words (e.g., ’dot, gif’ in the Korean dictionary).
We provide all evaluated datasets in our source
codes. The test dictionaries can also be found at
https://github.com/facebookresearch/
MUSE and https://github.com/gsig/
visual-grounding/tree/master/datasets.

Evaluation metrics. Our metric is recall@n used
in (Sigurdsson et al., 2020) for n = 1, 10: the
retrieval for a query is correct if at least one of
n retrieved words is the correct translation of the
query. Recall@n presents the fraction of source
words that are correctly translated. In our setting,
the recall@1 is equivalent to precision@1, and the
matching accuracy used in (Conneau et al., 2017).

Baselines. We describe what baselines we have
compared in this paper. CLIP-NN is a simple base-
line that performs double 1-nearest neighbor (1-
NN) on CLIP embeddings: Given a source word,
we perform the 1-NN to find the nearest image
(using source CLIP) and then perform the 1-NN
on the target CLIP to find the nearest target word.
For recall@n, we perform the similar double k-
NN where k = ⌈√n⌉. MUSE (Conneau et al.,
2017) is a text-only method that learns the cross-
lingual linear mapping via adversarially aligning
embeddings’ distributions and iterative refinement
with Procrustes. As the adversarial training is sen-
sitive to initialization, we follow the procedure
in (Sigurdsson et al., 2020) and report the high-
est observed performance across different initial-
izations on the test set. As a result, this repre-
sents an upper bound on the true performance of
the baseline. MUVE (Sigurdsson et al., 2020) re-
places the linear layer learned in the first stage
of MUSE with the AdaptLayer learned by jointly
training the embeddings of videos and captions,
shared across languages. The AdaptLayer allows
monolingual embeddings to be transformed into
a shared space so the rest of the network can be
shared, even if the input languages are different.
Their results suggest that visually grounding trans-
lation with video allows for more robust transla-
tion. We use their reported performances (Sigurds-
son et al., 2020) in our comparison. Globetrot-
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ter (Surís et al., 2020) uses image-caption pairs to
jointly align the text embeddings of multiple lan-
guages to image embeddings using a contrastive
objective. Even though their model was trained
on pairing sentences with images, they show that
the text representation learned by their model can
also be used for unsupervised word translation by
using the Procrustes algorithm on the learned word
embeddings. We use their word embeddings for
word translation. We also evaluate the supervision
method using the Procrustes on different ground-
truth translation pairs and use its results as an upper
bound of performance.

Implementation details. Here, we provide the
details for implementing our algorithms.
CLIP models. We use publicly available pre-
trained CLIPs for English5, Russian6, Korean7, and
Japanese.8 For other languages, we fine-tune En-
glish CLIP models on Multi30K (Elliott et al., 2016,
2017) and MS-COCO datasets (Lin et al., 2014;
Scaiella et al., 2019; ?) with translated captions for
each target language. Precisely, we fine-tune each
model for 20 epochs using the NCEInfo loss (Oord
et al., 2018) without changing the architectures of
the original CLIP’s encoders. We use Adam opti-
mizer (Kingma and Ba, 2014) (β1, β2 = 0.9, 0.98)
with a learning rate of 1e-7 and cosine annealing
scheduler (Loshchilov and Hutter, 2016).
Image datasets. We use 3000 images from Im-
ageNet (Deng et al., 2009). We find that high-
resolution images provide the best initial mappings
among tested image data.
Prompts for words in CLIPs. As for the input
of CLIPs, we convert every single word to a com-
plete sentence. We use the prompt templates sug-
gested in (Radford et al., 2021) and apply prompt-
ensemble (Radford et al., 2021) for the best embed-
ding. In particular, we use a set of (two to seven)
prompts for each word and average these text em-
beddings as the word embedding.

Hyper-parameters. The robust Procrustes algo-
rithm (Algo. 1) uses M = 5 iterations. In Algo. 2,
we use M = 40 alignment iterations in Step 2 and
select the best model by our evaluation loss. We ob-
serve that the evaluation losses on pairs of similar
languages (e.g., English-French) converge quickly

5https://github.com/openai/CLIP
6https://github.com/sberbank-ai/ru-clip
7https://github.com/jaketae/koclip
8https://huggingface.co/rinna/

japanese-clip-vit-b-16

Table 7: Estimated WALIP validation loss (Euclidean
distance) on several language pairs performed on the
HTW-based embedding and Dictionary dataset.

En→Fr En→Ko En→Ja
Avg. Dist. 8.49 8.58 8.55

Table 8: Estimated WALIP validation loss (Euclidean
distance) on several language pairs performed on the
Wiki-based embedding and Dictionary dataset.

En→Ko En→Ru En→Fr En→It
Avg. Dist. 15.70 14.24 10.99 11.67

En→Es En→De Es→De It→Fr
Avg. Dist. 10.79 12.06 13.28 11.54

after a few iterations, while the dissimilar pairs
require more iterations. For quantile threshold q,
we use the simple scheme by gradually reducing
q from a set of discrete values {0.7, 0.5, 0.3, 0.1}.
The number of candidates k is decayed using the
following values {10, 5, 3, 1}.

B.2 Computation and Evaluation of WALIP
Validation. As WALIP is unsupervised, we esti-
mated the validation error (or loss) by evaluating
the average squared Euclidean distance between
the mapped source embeddings and the target word
embeddings. We use this criterion to select our
best mappings. We report the validation errors in
Table 7 and Table 8 for evaluated language pairs
on two types of static word embeddings. We can
see that the validation errors of the dissimilarity
of language pairs (e.g., En→Ko) are higher than
the similar pairs (e.g., En→Fr). We report the re-
call@1 scores corresponding to mappings with the
smallest validation errors.

Computing resources and time. We run our al-
gorithms and baselines on an NVIDIA GeForce
RTX 3090 GPU. The average running time of
WALIP is about less than 2 minutes, while MUSE
models take approximately an hour for each lan-
guage pair.

Number of parameters of WALIP models.
Each of our pretrained CLIP models has about
150 million trainable parameters. In ablation stud-
ies, we have tested WALIP with larger versions
of CLIP models, with upwards of 400 million
trainable parameters. However, we find that both
WALIP versions with smaller and large CLIP mod-
els share similar translation performances across
different language pairs.
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