
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1634–1640
December 7-11, 2022 ©2022 Association for Computational Linguistics

Investigating Ensemble Methods for Model Robustness Improvement
of Text Classifiers

Jieyu Zhao1∗ Xuezhi Wang2 Yao Qin2 Jilin Chen2 Kai-Wei Chang1

1University of California, Los Angeles 2Google Research
jieyuzhao@ucla.edu {xuezhiw, yaoqin, jinlinc}@google.com kwchang@cs.ucla.edu

Abstract

Large pre-trained language models have shown
remarkable performance over the past few
years. These models, however, sometimes learn
superficial features from the dataset and can-
not generalize to the distributions that are dis-
similar to the training scenario. There have
been several approaches proposed to reduce
model’s reliance on these bias features which
can improve model robustness in the out-of-
distribution setting. However, existing methods
usually use a fixed low-capacity model to deal
with various bias features, which ignore the
learnability of those features. In this paper,
we analyze a set of existing bias features and
demonstrate there is no single model that works
best for all the cases. We further show that by
choosing an appropriate bias model, we can
obtain a better robustness result than baselines
with a more sophisticated model design.

1 Introduction

Advances in pre-trained language models have
shown great performance in natural language pro-
cessing (NLP) benchmarks. However, these mod-
els often learn dataset-specific patterns and cannot
generalize well to out-of-distribution data (McCoy
et al., 2019; Niven and Kao, 2019; Si et al., 2019;
Ko et al., 2020). These patterns are referred to
as bias features, which have strong indications of
instance labels but do not necessarily generalize
to out-of-distribution data (Geirhos et al., 2020).
For example, in MNLI (Williams et al., 2018), the
appearance of a negation word in an example has a
strong correlation with label “contradiction” (Gu-
rurangan et al., 2018). A model leveraging such
bias features can exhibit good performance on in-
domain data but will break when evaluated on an
out-of-distribution test set where the correlation
between the patterns and labels no longer holds.

∗Work was done while interning at Google Research.

Given prior knowledge of possible bias features
in the dataset, several approaches have been pro-
posed to reduce models’ overreliance on the bias
features (Clark et al., 2019; He et al., 2019; Utama
et al., 2020). The underlying idea is to discour-
age the model to learn from “easy” examples that
can be predicted correctly solely based on bias
features. These works first train a bias model
to capture bias patterns. They then train a main
model and ensemble it with the bias model in a
way that the predictions of the main model are
adjusted by not leveraging the strategy captured
by the bias model. Product-of-experts (Hinton,
2002) and self-distillation approaches have been
widely adopted for the ensemble (Clark et al., 2019;
He et al., 2019; Mahabadi and Henderson, 2019;
Utama et al., 2020; Du et al., 2021).

Although these methods improve model robust-
ness on some benchmark datasets, none of them
study how to choose the bias model and only as-
sume that a weak classifier (e.g., logistic regres-
sion) can explicitly capture the bias patterns. We
argue that it is very important to choose the ap-
propriate bias model. On one hand, different bias
features may not be captured by one model with a
fixed model size (capacity). For example, in MNLI,
a model capturing the “negation word occurrence”
does not necessarily capture the token overlap pat-
tern at the same time. On the other hand, we do
not expect an over-capacity bias model as it may
capture non-bias features which will also be fac-
tored out during the ensemble, thus worsening the
overall model performance. To do this, we train
bias models with different capacities leveraging
the product-of-experts method and compare with
current state-of-the-art methods. We empirically
show the different learnability of the bias patterns
requires models with diverse capacities to better
capture them. For example, a BERT-mini model
can learn a token-overlap style bias pattern better
in the MNLI dataset compared with the logistic
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regression used by existing literature.
In this work, we conduct a deep analysis of

the existing literature on ensemble-based methods
for model robustness improvement where most of
them follow the hypothesis of adopting one sim-
ple model to learn bias patterns. Instead, we study
different bias models and demonstrate their abil-
ity to capture the bias patterns varies. We propose
an approach to selecting the “best” bias model by
splitting the development set into “easy” and “chal-
lenge” subsets. By utilizing the best bias models
for different bias features, we show that we can
make the models more robust compared to existing
baselines, on both natural language inference and
fact-verification tasks.

2 Bias Model Selection

To understand to what extent our models can con-
quer the biases, for each bias, we create a bias
training dataset only consisting of examples with
this bias feature to reduce the impact of other bi-
ases. To evaluate model’s ability to overcome the
bias, we create a corresponding challenge test set
which is composed of examples with that specific
bias feature and not following the distribution in the
training set. Examples of such sets are in Sec. 3.3.

To obtain the best bias model for each bias fea-
ture, we first train various bias models with differ-
ent capacities on the bias training set and ensemble
them with the main model. We then evaluate the
main model on the corresponding challenge set and
choose the one exhibiting the best robustness result.
Our model pipeline is shown in Figure 1.

In this work, following Clark et al. (2019),
we leverage product-of-experts (PoE), a com-
monly used method for model robustness improve-
ment, as an example to illustrate our argument.1

Given a dataset D = {(xi, yi)}i∈[1,n], where
yi ∈ {1, 2, . . . , C}, a bias model h(xi; θb) =
⟨bi1, bi2, . . . , biC⟩ and a main model f(xi; θ) =
⟨pi1, pi2, . . . , piC⟩ where bij and pij are the prob-
abilities predicted for label category j, the goal is
to learn θ that can make a correct prediction for an
input example without using the patterns learned by
the bias model. To achieve such a goal, PoE (Hin-
ton et al., 2015) fuses the two models as

p̂i = softmax(log(pi) + log(bi)).

1Various methods can be chosen for the analysis such as
learned-mixin which is the adaptive version of PoE. However,
as stated in Clark et al. (2019), the learned-mixin method
could be unstable in some cases.
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Figure 1: An overview of model pipeline. Bias model is
trained on biased subset of the original training dataset
(more details are in Sec. 3.3). Blue arrows stand for the
gradient flow. We only use the main model when doing
the evaluation.

During training, the model is optimized for the
cross-entropy loss based on p̂. After training, only
the main model f will be used for evaluation.

3 Experiment

In this section, we use two tasks (in English) to
study the effects of different bias models. We ana-
lyze the best bias model for various bias features.

3.1 Dataset

Fact Verification. FEVER (Thorne et al., 2018)
is a dataset for fact verification task. Each instance
contains a claim sentence and an evidence sentence.
The goal is to verify if the claim is Supported, Re-
futed or NotEnoughInfo with the evidence. We
evaluate model robustness on Fever-Symmetric
dataset (Schuster et al., 2019).

Natural Language Inference. The goal of the
natural language inference (NLI) task is to identify
the relationship (Entailment, Contradiction or Neu-
tral) between the hypothesis and premise sentences.
We use the MNLI dataset (Williams et al., 2018)
for training and evaluate the model robustness on
the HANS dataset (McCoy et al., 2019).

3.2 Bias Features

Schuster et al. (2019) show that for the FEVER
dataset, only using the claim sentence can obtain
comparable results to using both claim and evi-
dence. Hence we use this CLAIM-ONLY feature as
one of our bias features. Similarly, we add another
type of bias feature, which only uses the evidence
sentence to make the prediction, and we refer to
this as EVIDENCE-ONLY bias.

Clark et al. (2019) list several bias features in
MNLI dataset, such as whether all the tokens of
the hypothesis appear in the premise (ALL-IN-P),
whether the hypothesis is a subsequence in premise
(H-IS-SUBSEQ), the percentage of words in hypoth-
esis that are also in premise (PERCENT-IN-P), and
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Bias Model FEVERDev CLAIM-ONLY

None 86.10±0.13 82.53±0.48

MLPclaim 90.25±0.44 87.78±0.24

BERTtiny 86.85±0.50 86.89±0.79

BERTmini 83.56±0.58 86.81±0.55

BERTsmall 84.52±0.20 87.67±0.12

BERTmedium 83.78±0.38 87.15±0.73

BERTbase 86.15±0.59 89.82±0.89

Table 1: Model evaluation results with different bias
models for CLAIM-ONLY bias in FEVER. The values
are accuracy scores (average ± standard deviation, in %) over
3 runs on FEVER dev and CLAIM-ONLY challenge set.
The best bias model for the CLAIM-ONLY bias is a
BERT-base model.

Bias Model FEVERDev EVIDENCE-ONLY

None 86.10±0.13 88.10±0.79

MLPevidence 92.47±0.08 94.18±1.21

BERTtiny 93.37±0.31 96.03±1.37

BERTmini 93.13±0.24 94.97±1.21

BERTsmall 92.74±0.06 94.44±0.79

BERTmedium 93.12±0.10 94.44±2.10

BERTbase 92.02±0.22 93.92±0.92

Table 2: Model evaluation results with different bias
models for EVIDENCE-ONLY in FEVER. The values are
the averaged accuracy scores (in %) on FEVER Dev
and EVIDENCE-ONLY challenge set over 3 runs. To deal
with EVIDENCE-ONLY bias feature, the best bias model
is a BERT-tiny model.

some bias features based on word embeddings. In
this work, we study the first two and in addition,
we also consider a “NEG-IN-H” bias which refers
to having negation words in the hypothesis (Guru-
rangan et al., 2018).

3.3 Bias and Challenge Sets

Our method leverages the known bias features
and verifies model’s ability to overcome the bi-
ases based on the bias training and challenge test
sets. To obtain the biased training set for MNLI,
we follow Clark et al. (2019) to select the exam-
ples equipped for each bias features separately. For
both ALL-IN-P and H-IS-SUBSEQ, they are strongly
related to “entailment” label while NEG-IN-H is
closely related to “contradiction” label. To build
the CHALLENGE SET, we filter test examples with
a corresponding bias (e.g., satisfying the ALL-IN-P)
but the label does not follow the bias pattern in the
training dataset (e.g., labels are not “entailment”).

Method FEVERDev Symmv1 Symmv2

BERT-base 86.10±0.13 58.34±2.22 65.26±0.77

PoEMLP 86.26±0.09 59.93±0.81 64.93±1.27

SelfDistill 85.13±0.40 55.65±0.56 62.55±0.53

Reweight 85.20±0.38 58.86±1.09 64.79±0.57

PoEOurs 93.33±0.30 69.08±2.02 73.46±1.70

Table 3: Robustness results on FEVER when fusing all
the bias features. BERT-base means the baseline model
without fusing a bias model.

In FEVER, there is no straightforward way to de-
termine if one example can be purely predicted
by one sentence. To create the bias training set
for the CLAIM-ONLY, we first fine-tune a BERT-
base model on the FEVER dataset. We then make
the prediction based only on the claim sentence
and collect all the examples that can be predicted
correctly as the biased training set. To build the
challenge set, we collect examples that cannot be
correctly predicted by only looking at the claim
sentence from the dev set. We do the same for the
EVIDENCE-ONLY bias in FEVER. For these two
tasks, the bias training set is obtained from the cor-
responding task training set and the challenge set
is obtained from the task dev (or test) set. Our bias
only models are trained on the bias training dataset
and evaluated on the bias challenge set.

3.4 Capacity for Bias Models

In this section, we verify the best bias model for
each bias feature. We use a BERT-base model
as the main model for both the FEVER and MNLI
datasets. In terms of the capacity for the bias model,
we consider different BERT models (from tiny to
base) as well as the one used in the existing litera-
ture. For MNLI, a widely used bias model is a lo-
gistic regression model trained on some predefined
biased features (Clark et al., 2019). For FEVER
dataset, existing work (Utama et al., 2020) lever-
ages a shallow non-linear classifier, in this work,
we use a multilayer perceptron (MLP) model.

Table 1 shows the results on FEVER when we
use the bias models with different capacities, from
MLP to BERT-base. The first row “None” stands
for a naive BERT-base model without any bias
model. CLAIM-ONLY stands for the model’s per-
formance on the challenge set we create. It sug-
gests that to deal with the CLAIM-ONLY bias, using
BERT-base as the bias model can better improve
the robustness on the challenge set, at the same
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Bias Model dev-m dev-mm ALL-IN-P

None 83.78±0.24 84.21±0.11 28.60±5.51

Logistic Reg. 83.52±0.13 83.80±0.12 38.87±1.77

BERTtiny 80.02±0.83 80.87±0.30 45.27±3.19

BERTmini 80.72±0.09 80.78±0.37 43.03±3.78

BERTsmall 81.98±0.42 82.27±0.14 40.67±1.70

BERTmedium 81.97±0.34 82.40±0.14 36.80±0.85

BERTbase 82.71±0.35 83.17±0.32 37.77±5.2

Table 4: Model accuracy on MNLI dev-matched, dev-
mismatched and corresponding challenge set when deal-
ing with ALL-IN-P bias. BERT-tiny is the best bias
model for this bias feature. More results about other
bias features are in appendix.

time, we see the model keeps its performance on
the in-distribution dev set. Similarly, when dealing
with the EVIDENCE-ONLY bias, in Table 2 we see
that using BERT-tiny as the bias model can improve
the model robustness better than other choices with-
out performance loss in the in-distribution data.

We compare our methods with two other base-
lines, one is Reweight, where a model is trained on
the weighted dataset. The weight of example xi is
1− biyi where biyi is the probability from the bias
model on the correct label yi (Clark et al., 2019).
Another baseline is self-distillation (Utama
et al., 2020), where the ensemble is based on the
knowledge distillation (Hinton et al., 2015). It is a
more complicated ensemble method than PoE and
requires an additional teacher model. More details
are provided in the Appendix.

We show that by fusing different bias logits to-
gether, we can provide a way to improve the model
robustness. We compare our methods with existing
literature which leverages the biases from a fixed
model (Utama et al., 2020). In Table 3, PoEMLP
refers to a baseline which uses the MLP as the
bias model.2 PoEOurs fuses a BERT-base model
with weighted bias logits from our claim-only and
evidence-only bias models and it outperforms the
baselines by over 8% on the test benchmarks.

For MNLI, we consider the same set of BERT
models. All of the bias models are trained on the
examples that have this bias feature. The results are
shown in Table 4, where we demonstrate again that
the best bias model dealing with one bias feature
(e.g., ALL-IN-P) does not necessarily work best for
another one (e.g. NEG-IN-H). By mixing the logits
from the best bias models for each bias feature, a

2For the self-distillation, we use the logits released by
Utama et al. (2020)

Method dev-m dev-mm HANS

BERT-base 83.78±0.24 84.21±0.11 63.05±3.07

PoELogisticReg. 83.52±0.13 83.80±0.12 67.07±1.27

SelfDistill 84.74±0.27 85.19±0.16 70.51±0.63

Reweight 83.89±0.09 84.06±0.30 65.10±2.75

PoEOurs 81.46±0.38 81.63±0.17 70.58±1.10

Table 5: Robustness results for combining all bias fea-
tures in MNLI. BERT-base means the baseline model
without fusing a bias model.

PoE method can outperform self-distillation which
has a more sophisticated ensemble schema.

Insights We notice that the logits fused into the
main models can play a significant role in the model
performance. For example, we observe that an
overconfident bias model can hurt the model per-
formance in the in-distribution evaluation set. We
also find a possible negative effect on the robust-
ness result when dealing with the bias features not
related to the test set. For example, in HANS, there
are no instances with the NEG-IN-H bias, and fus-
ing the logits from the bias model for NEG-IN-H

sometimes hurts the performance on HANS (more
in appendix). However, in most cases, we do not
have access to the bias features in the test set, how
to deal with the potential conflicts between differ-
ent bias features remains an unexplored yet very
important direction and we leave it for future study.

4 Related Work

Recent NLP models show great performance when
evaluating on the in-distribution test set. However,
such results might not hold when the test set is out-
of-distribution. For example, Schuster et al. (2019)
discover that a fact verification model may make a
prediction by looking at the occurrence of certain
phrases in the input example. Similar scenarios
have been observed in other applications such as in
visual question answering (Agrawal et al., 2018),
and paraphrase identification (Zhang et al., 2019).

Several ensemble-based methods have shown im-
provement in model robustness when dealing with
dataset biases (Clark et al., 2019; He et al., 2019;
Mahabadi and Henderson, 2019; Utama et al.,
2020). Such methods usually contain two com-
ponents for the ensemble and focus on different
ensemble strategies. In contrast, we analyze the
components for the ensemble. Our work fills in the
gap of a deeper understanding of the bias patterns
in the dataset and provide a pipeline to choose the
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best component for the ensemble so that we can
improve model robustness.

5 Discussion

How to improve the model robustness has been an
important research topic, and several approaches
have been proposed for such a goal, ranging from
dataset augmentation (Kaushik et al., 2019) to
model architecture design (Lewis and Fan, 2018).
Although several ensemble-based methods have
shown great improvement, they treat all the dataset
artifacts exactly the same way. In this work, we
revisit such methods, and demonstrate that, not all
the dataset artifacts are the same and they require
different capacity models to deal with. Contrary to
the common beliefs in the existing literature that a
smaller-capacity model captures the bias features,
our paper is the first that investigates the effect of
the bias model size and shows that better robustness
needs to be achieved by bias models with different
capacities. We also show that by better leveraging
the information learned from the dataset artifacts,
a simple ensemble method can achieve a better or
the same level of model robustness.

Limitations

Our study in this paper only considers some known
bias features. While this setting is common in
the literature, we argue that in real applications, it
might be very hard to get such information. In ad-
dition, this work is based on the ensemble method
for robustness improvement and the bias models
obtained for PoE might not be the same for another
method. There are other ways to achieve robustness
such as adversarial training (Grand and Belinkov,
2019) which we leave for future study to show how
they can be used to deal with various bias features.
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A Appendix

Training details All the BERT model we used is
from HuggingFace (Wolf et al., 2019). We use the
default hyperparameters in Utama et al. (2020) to
train the FEVER model, e.g., 3 epochs with a learn-
ing rate 5× 10−5. To train the FEVER model, we
leverage the preprocessed training data as indicated
in Schuster et al. (2019). For the MNLI dataset, we
train the model using the default hypterparameters
except that we train the model for 6 epochs to make
all the models converge. All the results in the paper
are the averaged value for 3 runs. We train our
models with NVIDIA GeForce RTX 2080 Ti GPUs
on Pytorch, and each epoch takes approximate 1
hour.

Self-Distillation Given a teacher model, which
provides the prediction for input example xi as
⟨p̂i1, . . . , p̂iC⟩, with the probability from the bias
model ⟨bi1, . . . , biC⟩, the scaled teacher output for
each example is computed as s = ⟨si1, . . . , siC⟩,
where

sij =
p̂
(1−biyi )

ij
∑C

k=1 p̂
(1−biyi )

ik

.

Then a model is trained to minimize the cross en-
tropy loss between the scaled teacher output and
the current output of the main model.

Bias model results We list the results on the dev
and corresponding CHALLENGE sets for the MNLI
task when training on the H-IS-SUBSEQ (in Table 6)
and NEG-IN-H (in Table 7) bias features separately.

Bias Model dev-m dev-mm H-IS-SUBSEQ

None 86.10±0.13 88.10±0.79 14.40±4.44

Logistic Reg. 92.47±0.08 94.18±1.21 26.47±2.86

BERTtiny 81.45±0.27 81.75±0.55 29.53±3.87

BERTmini 79.51±0.10 80.35±0.11 33.77±4.17

BERTsmall 80.29±0.10 80.84±0.11 30.70±7.64

BERTmedium 80.39±0.24 80.94±0.24 27.13±1.35

BERTbase 81.47±0.27 81.69±0.39 29.93±5.20

Table 6: Results on dev and challenge sets for MNLI
dataset when dealing with the H-IS-SUBSEQ bias fea-
ture.

Bias features vs. Model robustness We show
here that dealing with the NEG-IN-H bias can po-
tentially have negative effect on the test result. For
example, when we fuse the logits from a BERT-
tiny model only on the examples having the NEG-
IN-H bias feature, we observe the accuracy on
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Bias Model dev-m dev-mm NEG-IN-H

None 86.10±0.13 88.10±0.79 77.15±0.47

Logistic Reg. 92.47±0.08 94.18±1.21 77.69±1.01

BERTtiny 82.87±0.21 83.29±0.05 77.06±0.77

BERTmini 82.63±0.15 82.91±0.25 75.18±1.10

BERTsmall 82.00±0.10 82.13±0.06 73.29±0.16

BERTmedium 80.33±0.37 80.57±0.27 72.37±1.40

BERTbase 83.55±0.12 84.06±0.23 60.84±2.89

Table 7: Results on dev and challenge sets for MNLI
dataset when dealing with the NEG-IN-H bias feature.

HANS drops from 63.05% to 59.93%, while fusing
ALL-IN-P or H-IS-SUBSEQ achieves the accuracy
65.39% and 63.65% respectively.
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