
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1610–1622
December 7-11, 2022 ©2022 Association for Computational Linguistics

Knowledge Graph Generation From Text

Igor Melnyk, Pierre Dognin, Payel Das
IBM Research

Yorktown Heights, NY 10598, USA
igor.melnyk@ibm.com, pdognin@us.ibm.com, daspa@us.ibm.com

Abstract

In this work we propose a novel end-to-end
multi-stage Knowledge Graph (KG) generation
system from textual inputs, separating the over-
all process into two stages. The graph nodes
are generated first using pretrained language
model, followed by a simple edge construction
head, enabling efficient KG extraction from the
text. For each stage we consider several ar-
chitectural choices that can be used depending
on the available training resources. We eval-
uated the model on a recent WebNLG 2020
Challenge dataset, matching the state-of-the-art
performance on text-to-RDF generation task, as
well as on New York Times (NYT) and a large-
scale TEKGEN datasets, showing strong overall
performance, outperforming the existing base-
lines. We believe that the proposed system can
serve as a viable KG construction alternative
to the existing linearization or sampling-based
graph generation approaches.

1 Introduction

Automatic Knowledge Graph (KG) construction is
an active research area aiming at representing the
information present in abundant textual corpora in
a more organized, structured and compressed form,
which can be efficiently utilized in a variety of
downstream applications, including reasoning, de-
cision making, question answering, to name a few.
However, this is a challenging problem due to the
inherent non-unique graph representation (graph
with N nodes can have N ! equivalent adjacency
matrices), complex node and edge structure (node
set is not fixed and edges are not binary), large
output spaces (for graph with N nodes the system
may need to output up to N2 edges to specify its
structure), lack of efficient architectures specialized
for graph-structured generation output and limited
parallel training data.

The related problem of generating text from
a given KG is generally more widely studied,
with many suggested architectures and approaches.

Generate
Edges

Generate
Nodes

Output
Graph

Input
Text

Figure 1: Grapher overview. For a given text input, in
the first step we generate graph nodes, leveraging the
representation power of pre-trained language models,
fine-tuned on the task of entity extraction. In the second
step, the graph edges are generated using the available
entity information to construct the final graph.

Among the proposed methods, some of the cur-
rent state-of-the-art systems that work on small or
moderately-sized graphs, (Li et al., 2020; Ribeiro
et al., 2020; Agarwal et al., 2020; Xie et al.,
2022), usually formulate it as a simple sequence-
to-sequence problem by representing the graph in
a linearized form and fine-tune the pre-trained lan-
guage models (PLMs), such as T5 (Raffel et al.,
2020) or BART (Lewis et al., 2020), on the task
of translating the sequence of triples to the corre-
sponding textual description.

Nevertheless, KG generation remains a popular
research area, receiving attention from many com-
munities, including natural language processing
(NLP), data mining, and machine learning. Re-
cent success of the Transformer-based language
models from the NLP community (Vaswani et al.,
2017; Devlin et al., 2019; Raffel et al., 2020), pre-
trained on large textual corpora, led to a series of
works that attempted to exploit the vast amounts of
learned linguistic knowledge for the downstream
task of KG construction. Some of these approaches
looked into a simpler problem of graph completion
(Li et al., 2016; Yao et al., 2019; Malaviya et al.,
2020). The drawback of these methods is that they
are limited to the task of extending existing graphs
by local neighborhood modifications and are not
suitable for building the entire global graph struc-
tures. Alternatively, other works (Petroni et al.,

1610

2019; Roberts et al., 2020; Jiang et al., 2019; Shin
et al., 2020; Li and Liang, 2021) proposed to query
the pre-trained models to extract the learned fac-
tual and commonsense knowledge. The idea is to
prompt the language model to predict the masked
objects in cloze sentences describing the partially
complete triples. Similarly as before, these meth-
ods are usually only suitable for local graph patch-
ing, lacking the ability to perceive the global graph
structure.

Alternatively, there are a number of works that
propose to generate the entire graph structure
ground up. One example is GraphRNN from You
et al. (2018), which models a graph as a sequence
of additions of new nodes using node-level RNN
and edges using another edge-level RNN. Although
promising for our task of KG construction, the se-
quential and greedy nature of its generation can
cause sub-optimal graph structures. CycleGT of
(Guo et al., 2020b) is an unsupervised method for
text-to-graph and graph-to-text generation, where
the graph generation part relies on off-the-shelf
entity extractor followed by a classifier to predict
the relationships. The reliance on external NLP
pipelines breaks the end-to-end continuity of sys-
tem training, potentially leading to sub-optimal
results. Similarly, (Dognin et al., 2020) proposed
DualTKB employing unsupervised cycle loss to
enable the graph-text translation in both directions.
However, their method was applied only to single
sentence-single triple generation, limiting applica-
bility for larger graphs. Other approaches, such
as BT5 from (Agarwal et al., 2020) proposed to
utilize large pre-trained T5 model to generate KG
in a linearized form, where the object-predicate-
subject triples are concatenated together and the
entire text-to-graph problem is viewed as sequence-
to-sequence modeling. The potential issue with
this approach is that the graph linearization is not
unique and inefficient due to the repetition of graph
components multiple times, leading to long se-
quences and increased complexity. (Lu et al., 2022)
is another text-to-structure method, however it uses
predefined schema (e.g., for entity or triplet extrac-
tion), while our method is schema-free and gen-
eralizes to any text form of nodes and edges. Fi-
nally, (Wang et al., 2020) proposed MaMa for KG
construction, where entities and relationships are
first matched using the attention weight matrices
from the forward pass of the LM. Those are then
mapped to the existing KG schema to generate the

final graph.
The proposed system: Grapher Analyzing the

shortcomings of the existing methods, in this work
we propose to address them with a novel Knowl-
edge Graph construction system which we call Gra-
pher, presented schematically in Fig. 1. Given input
text, the graph generation is split into two steps. In
the first step, we leverage the representation power
of pre-trained language models, e.g., T5 (Raffel
et al., 2020), fine-tuned on the task of entity (graph
nodes) extraction, while in the second stage the
relationships (graph edges) are generated using the
available entity information. There are three main
properties of Grapher: (i) The use of state-of-the-
art language models pre-trained on large textual
corpora, used for node generation is key to the
algorithm’s performance as it lays out the founda-
tion for the entire graph. The available parallel
data for learning the text to graph translation is
usually small, therefore training custom-built en-
tity extraction architectures from scratch on this
limited data is inferior to fine-tuning the already
pretrained Transformer-based language models. (ii)
The partitioning of graph construction process into
two steps ensures efficiency that each node and
edge is generated only once, which is in contrast
to graph linearization approaches, e.g., (Agarwal
et al., 2020) (Dognin et al., 2021), whose graph
sequence representation is non-unique and can be
inefficient. (iii) Finally, the entire system is end-to-
end trainable, where the node and edge generation
are optimized jointly, enabling efficient informa-
tion transfer between the two modules, avoiding
the need of any external NLP pipelines such as
entity/relation extraction, co-reference resolution,
etc. We evaluate the proposed Grapher on three
datasets: the WebNLG+ 2020 Challenge (Ferreira
et al., 2020) matching state-of-the-art performance
for Text-to-RDF generation as well as on NYT
(Riedel et al., 2010) and a recent large-scale TEK-
GEN (Agarwal et al., 2021) dataset showing strong
results outperforming existing baselines.

2 Method

In this Section we cover the details of the proposed
approach, first describing the functionality of the
node generation in Section 2.1, followed by the
edge generation in Section 2.3 and the discussion
on edge imbalance problem in Section 2.4. In Fig. 2
we summarize all the architectural choices of the
Grapher system. The branches marked with a red

1611

cross denote the setups which in our earlier evalu-
ations did not show advantage over the neighbor-
ing branch, e.g., the focal loss underperformed the
sparse edge training for the text nodes combined
with edge generation head. The branches with
green check marks are the ones we select for fur-
ther evaluation. The bold dark green check marks
show two best performing systems across multiple
experiments. In what follows, we now show the
details of these choices.

Grapher

Nodes

Edges

Edge
Imbalance

text
query

gen

class gen
class

fo
ca
l sparse fo

ca
l sparse fo

ca
l sparse

sparsefo
ca
l

<latexit sha1_base64="w0oZwnfiivWETlpkF3XC07T/vcQ=">AAACbnicbVDbattAEF0raZs4beM00JcSImoCfjKSIbSPoYWmjwnUScAyZrQa24v3InZHbozQL/Rr8tr8R/6in9C1rYc67sDC4ZyZnTknzaVwFEVPjWBn98XLV3v7zYPXb94eto7e3ThTWI59bqSxdyk4lEJjnwRJvMstgkol3qazr0v9do7WCaN/0CLHoYKJFmPBgTw1anUSwnta/VN+MxYdXVpEXZXJFGG+4FPkMwV2Vo1a7agbrSrcBnEN2qyuq9FRo5tkhhcKNXEJzg3iKKdhCZYEl1g1k8JhDnwGExx4qEGhG5arU6rwzDNZODbWP03hiv13ogTl3EKlvlMBTd1zbUn+TxsUNP48LIXOC0LN14vGhQzJhMt8wkxY5CQXHgC3wt8a8ilY4ORT3NiSi+Vpmz6yuchd7eR+baWZaPzJjVKgs61UyyQTelKe96rqzCccP89zG9z0uvF5N7rutS++1FnvsQ/sI+uwmH1iF+w7u2J9xtkv9sB+s8fGn+B9cBKcrluDRj1zzDYq6PwFeaDBRg==</latexit>

4
<latexit sha1_base64="ph5LqoMlQ2FD5/kcQOI5U2UmKBs=">AAACjXicbVHbattAEF2rt8S95NLHvIiaQJ+M5GLSh1JC85DSp7TUScAyYbQa24v3InZHbsyiD+jX9LX9lP5N17agVdKBhcOZMzszZ/JSCkdJ8rsTPXj46PGTnd3u02fPX+ztHxxeOlNZjiNupLHXOTiUQuOIBEm8Li2CyiVe5Yuzdf5qidYJo7/SqsSJgpkWU8GBAnWz38sIb2nzj/9U6ZnEc4uoa5/xOfKFAruogyrpJ5uI74O0AT3WxMXNQedLVhheKdTEJTg3TpOSJh4sCS6x7maVwxL4AmY4DlCDQjfxmynq+DgwRTw1NjxN8Yb9t8KDcm6l8qBUQHN3N7cm/5cbVzR9O/FClxWh5ttG00rGZOK1NXEhLHKSqwCAWxFmjfkcLHAKBra6lGI9WnuPYilK12xyu12lm2n8xo1SoAufzRGWq7+u+qwQeuaHg7o+bgu5Nc61NG+CJlwhvev5fXA56KfDfvJ50Dv90Nxjhx2xV+w1S9kJO2Uf2QUbMc6+sx/sJ/sV7UXD6F30fiuNOk3NS9aK6PwPJ6zM9Q==</latexit>X <latexit sha1_base64="ph5LqoMlQ2FD5/kcQOI5U2UmKBs=">AAACjXicbVHbattAEF2rt8S95NLHvIiaQJ+M5GLSh1JC85DSp7TUScAyYbQa24v3InZHbsyiD+jX9LX9lP5N17agVdKBhcOZMzszZ/JSCkdJ8rsTPXj46PGTnd3u02fPX+ztHxxeOlNZjiNupLHXOTiUQuOIBEm8Li2CyiVe5Yuzdf5qidYJo7/SqsSJgpkWU8GBAnWz38sIb2nzj/9U6ZnEc4uoa5/xOfKFAruogyrpJ5uI74O0AT3WxMXNQedLVhheKdTEJTg3TpOSJh4sCS6x7maVwxL4AmY4DlCDQjfxmynq+DgwRTw1NjxN8Yb9t8KDcm6l8qBUQHN3N7cm/5cbVzR9O/FClxWh5ttG00rGZOK1NXEhLHKSqwCAWxFmjfkcLHAKBra6lGI9WnuPYilK12xyu12lm2n8xo1SoAufzRGWq7+u+qwQeuaHg7o+bgu5Nc61NG+CJlwhvev5fXA56KfDfvJ50Dv90Nxjhx2xV+w1S9kJO2Uf2QUbMc6+sx/sJ/sV7UXD6F30fiuNOk3NS9aK6PwPJ6zM9Q==</latexit>X <latexit sha1_base64="HcuWqBjk4G1CB2zlOIfdcxljOKg=">AAACi3icbVFNT9tAEN24tEBaSijHXgwRUk+RHYRaoR5QEVKPgJqAFEfRej1JVtkPa3ecEq187q/hCr+l/6Ybx1UbYKSVnt682Zl5k+aCW4yi343g1cbrN5tb282373be77b2PvStLgyDHtNCm9uUWhBcQQ85CrjNDVCZCrhJZ+fL/M0cjOVa/cBFDkNJJ4qPOaPoqVHrIEG4w+of1+daAF5DVrqEGW2tpGZWjlrtqBNVET4HcQ3apI7L0V7jOsk0KyQoZIJaO4ijHIeOGuRMQNlMCgs5ZTM6gYGHikqwQ1fNUIZHnsnCsTb+KQwr9v8KR6W1C5l6paQ4tU9zS/Kl3KDA8Zeh4yovEBRbNRoXIkQdLo0JM26AoVh4QJnhftaQTamhDL19a11yvhxtfY9sznNbb3K3WqWZKPjJtJRUZS6ZAp0v2BTYrHLVJRlXE3fSLcujdeE/5/9qjr3GXyF+6vlz0O924pNOdNVtn32r77FFPpJD8onE5DM5I9/JJekRRn6Re/JAHoOd4Dg4Db6upEGjrtknaxFc/AGHUsxF</latexit>

5
<latexit sha1_base64="HcuWqBjk4G1CB2zlOIfdcxljOKg=">AAACi3icbVFNT9tAEN24tEBaSijHXgwRUk+RHYRaoR5QEVKPgJqAFEfRej1JVtkPa3ecEq187q/hCr+l/6Ybx1UbYKSVnt682Zl5k+aCW4yi343g1cbrN5tb282373be77b2PvStLgyDHtNCm9uUWhBcQQ85CrjNDVCZCrhJZ+fL/M0cjOVa/cBFDkNJJ4qPOaPoqVHrIEG4w+of1+daAF5DVrqEGW2tpGZWjlrtqBNVET4HcQ3apI7L0V7jOsk0KyQoZIJaO4ijHIeOGuRMQNlMCgs5ZTM6gYGHikqwQ1fNUIZHnsnCsTb+KQwr9v8KR6W1C5l6paQ4tU9zS/Kl3KDA8Zeh4yovEBRbNRoXIkQdLo0JM26AoVh4QJnhftaQTamhDL19a11yvhxtfY9sznNbb3K3WqWZKPjJtJRUZS6ZAp0v2BTYrHLVJRlXE3fSLcujdeE/5/9qjr3GXyF+6vlz0O924pNOdNVtn32r77FFPpJD8onE5DM5I9/JJekRRn6Re/JAHoOd4Dg4Db6upEGjrtknaxFc/AGHUsxF</latexit>

5
<latexit sha1_base64="HcuWqBjk4G1CB2zlOIfdcxljOKg=">AAACi3icbVFNT9tAEN24tEBaSijHXgwRUk+RHYRaoR5QEVKPgJqAFEfRej1JVtkPa3ecEq187q/hCr+l/6Ybx1UbYKSVnt682Zl5k+aCW4yi343g1cbrN5tb282373be77b2PvStLgyDHtNCm9uUWhBcQQ85CrjNDVCZCrhJZ+fL/M0cjOVa/cBFDkNJJ4qPOaPoqVHrIEG4w+of1+daAF5DVrqEGW2tpGZWjlrtqBNVET4HcQ3apI7L0V7jOsk0KyQoZIJaO4ijHIeOGuRMQNlMCgs5ZTM6gYGHikqwQ1fNUIZHnsnCsTb+KQwr9v8KR6W1C5l6paQ4tU9zS/Kl3KDA8Zeh4yovEBRbNRoXIkQdLo0JM26AoVh4QJnhftaQTamhDL19a11yvhxtfY9sznNbb3K3WqWZKPjJtJRUZS6ZAp0v2BTYrHLVJRlXE3fSLcujdeE/5/9qjr3GXyF+6vlz0O924pNOdNVtn32r77FFPpJD8onE5DM5I9/JJekRRn6Re/JAHoOd4Dg4Db6upEGjrtknaxFc/AGHUsxF</latexit>

5
<latexit sha1_base64="HcuWqBjk4G1CB2zlOIfdcxljOKg=">AAACi3icbVFNT9tAEN24tEBaSijHXgwRUk+RHYRaoR5QEVKPgJqAFEfRej1JVtkPa3ecEq187q/hCr+l/6Ybx1UbYKSVnt682Zl5k+aCW4yi343g1cbrN5tb282373be77b2PvStLgyDHtNCm9uUWhBcQQ85CrjNDVCZCrhJZ+fL/M0cjOVa/cBFDkNJJ4qPOaPoqVHrIEG4w+of1+daAF5DVrqEGW2tpGZWjlrtqBNVET4HcQ3apI7L0V7jOsk0KyQoZIJaO4ijHIeOGuRMQNlMCgs5ZTM6gYGHikqwQ1fNUIZHnsnCsTb+KQwr9v8KR6W1C5l6paQ4tU9zS/Kl3KDA8Zeh4yovEBRbNRoXIkQdLo0JM26AoVh4QJnhftaQTamhDL19a11yvhxtfY9sznNbb3K3WqWZKPjJtJRUZS6ZAp0v2BTYrHLVJRlXE3fSLcujdeE/5/9qjr3GXyF+6vlz0O924pNOdNVtn32r77FFPpJD8onE5DM5I9/JJekRRn6Re/JAHoOd4Dg4Db6upEGjrtknaxFc/AGHUsxF</latexit>

5
<latexit sha1_base64="w0oZwnfiivWETlpkF3XC07T/vcQ=">AAACbnicbVDbattAEF0raZs4beM00JcSImoCfjKSIbSPoYWmjwnUScAyZrQa24v3InZHbozQL/Rr8tr8R/6in9C1rYc67sDC4ZyZnTknzaVwFEVPjWBn98XLV3v7zYPXb94eto7e3ThTWI59bqSxdyk4lEJjnwRJvMstgkol3qazr0v9do7WCaN/0CLHoYKJFmPBgTw1anUSwnta/VN+MxYdXVpEXZXJFGG+4FPkMwV2Vo1a7agbrSrcBnEN2qyuq9FRo5tkhhcKNXEJzg3iKKdhCZYEl1g1k8JhDnwGExx4qEGhG5arU6rwzDNZODbWP03hiv13ogTl3EKlvlMBTd1zbUn+TxsUNP48LIXOC0LN14vGhQzJhMt8wkxY5CQXHgC3wt8a8ilY4ORT3NiSi+Vpmz6yuchd7eR+baWZaPzJjVKgs61UyyQTelKe96rqzCccP89zG9z0uvF5N7rutS++1FnvsQ/sI+uwmH1iF+w7u2J9xtkv9sB+s8fGn+B9cBKcrluDRj1zzDYq6PwFeaDBRg==</latexit>

4

Figure 2: Grapher architectural choices. ✕ - setups
that did not show advantage or did not perform well
during preliminary evaluations, ✓ - selected for further
evaluation , ✔ - best performing system

2.1 Node Generation: Text Nodes

Given text input, the objective of this module
is to generate a set of unique nodes, which de-
fine the foundation of the graph. As we men-
tioned in Section 1, the node generation is key
to the successful operation of Grapher, therefore
for this task we use a pre-trained encoder-decoder
language model (PLM), such as T5. Using a
PLM, we can now formulate the node genera-
tion as a sequence-to-sequence problem, where
the system is fine-tuned to translate textual input
to a sequence of nodes, separated with special to-
kens, ⟨PAD⟩ NODE1 ⟨NODE_SEP⟩ NODE2 · · · ⟨/S⟩,
where NODEi represents one or more words.

As seen in Fig. 3, in addition to node generation,
this module supplies node features for the down-
stream task of edge generation. Since each node
can have multiple associated words, we greedy-
decode the generated string and utilize the sepa-
ration tokens ⟨NODE_SEP⟩ to delineate the node
boundaries and mean-pool the hidden states of the
decoder’s last layer. Note that in practice we fix
upfront the number of generated nodes and fill the
missing ones with a special ⟨NO_NODE⟩ token.

2.2 Node Generation: Query Nodes

One issue with the above approach is ignoring that
the graph nodes are permutation invariant, since

Input
Text

Language Model

Decoder

Node
Features

Encoder

Generated
Nodes

Edge
Generation

Figure 3: Node generation using traditional sequence-
to-sequence paradigm based on T5 language model,
where the input text is transformed into a sequence
of text entities. The features corresponding to each
entity (node) is extracted and sent to the edge generation
module.

Input
Text

Language Model

Decoder

Node Queries
(learned)

Node
Features

Node GRUEncoder

Generated
Nodes

Edge
Generation

Figure 4: Node generation using learned query vectors.
Here the input text and the query vectors (in the form
of embedding matrix) is transformed into node features.
Those are then decoded into graph nodes using node
generation head (e.g, LSTM or GRU). The same fea-
tures are also sent to the edge construction module.

any permutation of the given set of nodes should be
treated equivalently. To address this limitation, we
propose a second architecture, inspired by DETR
(Carion et al., 2020). See Fig. 4 for an illustration.

Learnable Node Queries The decoder receives
as input a set of learnable node queries, represented
as an embedding matrix. We also disable causal
masking, to ensure that the Transformer is able to
attend to all the queries simultaneously. This is in
contrast to the traditional encoder-decoder archi-
tecture that usually gets as an input embedding of
the target sequence with the causal masking dur-
ing training or the embedding of the self-generated
sequence during inference. The output of the de-
coder can now be directly read-off as N (number
of nodes) d-dimensional node features Fn ∈ Rd×N

and passed to a prediction head (LSTM or GRU) to
be decoded into node logits Ln ∈ RS×V×N , where
S is the generated node sequence length and V is
the vocabulary size.

Permutation Matrix To avoid the system to mem-
orize the particular target node order and enable
permutation-invariance, the logits and features are

1612

permuted as

L′
n(s) = Ln(s)P, F ′

n = FnP, (1)

for s = 1, . . . , S and where P ∈ RN×N is a permu-
tation matrix obtained using bipartite matching al-
gorithm between the target and the greedy-decoded
nodes. We used cross-entropy loss as the match-
ing cost function. The permuted node features F ′

n

are now target-aligned and can be used in the edge
generation stage.

2.3 Edge Generation
The generated set of node features from previous
step is then used in this module for the edge gen-
eration. Fig. 5 shows a schematic description of
this step. Given a pair of node features, a predic-
tion head decides the existence (or not) of an edge
between their respective nodes. One option is to
use a head similar to the one in Section 2.2 (LSTM
or GRU) to generate edges as a sequence of tokens.
The other option is to use a classification head to
predict the edges. The two choices have their own
pros and cons and the selection depends on the ap-
plication domain. The advantage of generation is
the ability to construct any edge sequence, includ-
ing ones unseen during training, at the risk of not
matching the target edge token sequence exactly.
On the other hand, if the set of possible relation-
ships is fixed and known, the classification head is
more efficient and accurate, however if the training
has limited coverage of all possible edges, the sys-
tem can misclassify during inference. We explore
both options in Section 4.

Note that since in general KGs are represented
as directed graphs, it is important to ensure the cor-
rect order (subject-object) between two nodes. For
this, we propose to use a simple difference between
the feature vectors: F ′

n(:, i)− F ′
n(:, j) for the case

when the node i is a parent of node j. We experi-
mented with other options, including concatenation
and adding position information but found the dif-
ference being the most effective, since the model
learns that F ′

n(:, i)− F ′
n(:, j) implies i → j, while

F ′
n(:, j)− F ′

n(:, i) implies j → i.

2.4 Imbalanced Edge Distribution
Observe that since we need to check the presence
of edges between all pairs of nodes, we have to
generate or predict up to N2 edges, where N is the
number of nodes. There are small savings that can
be done by ignoring self-edges as well as ignor-
ing edges when one of the generated nodes is the

Node Features

Edge
GRUNode

Features

Generated
Edges

Edge
Classifier

or

1 2 3 4 5 6

1

2

3

4

5

6

5

1

2 3

4

6

Figure 5: Edge construction, using generation (e.g.,
GRU) or a classifier head. Blue circles represent the
features corresponding to the actual graph edges (solid
lines) and the white circles are the features that are
decoded into ⟨NO_EDGE⟩ (dashed line).

Node Features

Node
Features

1 2 3 4 5 6

1

2

3

4

5

6

Edge
Head

Generated
Edges

5

1

2 3

4

6

Figure 6: Edge generation with sparse adjacency matrix,
using same decoder heads as in Fig. 5. Here while
keeping all the actual edges, we remove most of the
⟨NO_EDGE⟩ tokens, leaving only a few. This setup is
only used during training to improve the edge imbalance
problem and speedup the training.

⟨NO_NODE⟩ token. When no edge is present be-
tween the two nodes, we denote this with a special
token ⟨NO_EDGE⟩. Moreover, since in general the
number of actual edges is small and ⟨NO_EDGE⟩
is large, the generation and classification task is
imbalanced towards the ⟨NO_EDGE⟩ token/class.
To remedy this, we propose two solutions: one is
a modification of the cross-entropy loss, and the
other is a change in the training paradigm.

Focal Loss Here we replace the traditional Cross-
Entropy (CE) loss with Focal (F) loss (Lin et al.,
2020), whose main idea is down-weight the CE
loss for well-classified samples (⟨NO_EDGE⟩) and
increase the CE loss for mis-classified ones, as
illustrated below for a probability p corresponding
to a single edge and t is a target class:

CE = − log(pt), F = −(1−pt)γ log(pt),

where γ ≥ 0 is a weighting factor, such that γ = 0
makes both losses equivalent. The application of
this loss to the classification head is straightfor-
ward while for the generation head we modify it
by first accumulating predicted probabilities over
the edge sequence length to get the equivalent of pt
and then apply the loss. In practice, we observed
that Focal loss improved the accuracy for the clas-

1613

Table 1: WebNLG dataset (Text-to-RDF)

Train Dev Test
RDf triple sets 13,211 1,667 752
Texts 35,426 4,464 2,155

sification head, while for the generation head the
performance did not change significantly.

Sparse Edges To address the edge imbalance
problem another solution is to modify the training
settings by sparsifying the adjacency matrix to re-
move most of the ⟨NO_EDGE⟩ edges as shown in
Fig. 6, therefore re-balancing the classes artificially.
Here, we keep all the actual edges but then leave
only a few randomly selected ⟨NO_EDGE⟩ ones.
Note that this modification is done only to improve
efficiency of the training, during inference the sys-
tem still needs to output all the edges, as in Fig. 5,
since their true location is unknown. In practice,
besides seeing 10-20% improvement in accuracy,
we also observed about 10% faster training time
when using sparse edges as compared to using full
adjacency matrix.

3 Data

To evaluate Grapher’s performance and compare it
to the baselines, we use three datasets: two small-
scale datasets: WebNLG+ 2020 (Ferreira et al.,
2020) and NYT (Zeng et al., 2018), and a large-
scale TEKGEN dataset from (Agarwal et al., 2021).

3.1 WebNLG+ 2020

The WebNLG+ corpus v3.0 is part of the 2020
WebNLG Challenge that offers two tasks: the gen-
eration of text from a set of RDF triples (subject-
predicate-object), and the opposite task of semantic
parsing for converting textual descriptions into sets
of RDF triples. We preprocess the data to remove
any underscores and surrounding quotes, in order
to reduce noise in the data. Moreover, due to a mis-
match of T5 vocabulary and the WebNLG dataset,
some characters in WebNLG are not present in T5
vocabulary and ignored during tokenization. We
normalize the data mapping the missing characters
to the closest available, e.g., ‘ø’ is converted to ‘o’,
or ‘ã’ is mapped to ‘a’.

To prepare data for Grapher training, we
split the triples into nodes (extracting subjects
and objects) and edges (extracting predicates).
The nodes are then either sequentially joined as
⟨PAD⟩ NODE1 ⟨NODE_SEP⟩ NODE2 ⟨/S⟩ for Text

Table 2: Statistics of the TEKGEN dataset.

Train Dev Test
Original 6,383,051 797,881 797,882
Processed 5,391,944 673,953 678,233

Table 3: Statistics of the NYT dataset.

Train Dev Test
Normal 46,409 4,150 4,021

Nodes or passed separately as ⟨PAD⟩ NODE1 ⟨/S⟩,
⟨PAD⟩ NODE2 ⟨/S⟩ for Query Nodes, padding with
⟨NO_NODE⟩, if necessary. For edges, each ele-
ment i, j of the adjacency matrix is filled with
⟨PAD⟩ EDGEi,j ⟨/S⟩ if there is an edge between
NODEi and NODEj or with ⟨PAD⟩ NO_EDGE ⟨/S⟩
otherwise. In case sparse edges are used, we first
sparsify the adjacency matrix, and then flatten it
to a sequence of edges, similar as for the nodes.
Finally, for the classification edge head we scan the
training set and collect all the unique predicates to
be the edge class list. There are 407 edge classes
in our train split, including the ⟨NO_EDGE⟩ class.

3.2 TEKGEN

TEKGEN is a large-scale parallel text-graph dataset
built by aligning Wikidata KG to Wikipedia text,
and its statistics is shown in Table 2.

The data was preprocessed by filtering out triples
containing more than 7 predicates, with triple com-
ponents longer than 100 characters, and with cor-
responding textual descriptions longer than 200
characters. This was done to match the settings of
the WebNLG data and to reduce the computational
complexity of the scoring. The final statistics of the
dataset is shown in the second row of Table 2. In to-
tal, the training set contains 1003 predicates/graph
edges, which is more than twice larger than in the
WebNLG dataset. Note that to match the evaluation
to the baseline (Dognin et al., 2021), and to further
manage the limited computational resources, we
limit the Test split to 50K sentence-triples pairs.

3.3 NYT

As a third evaluation dataset, we selected the New
York Times (NYT) corpus for our experiments,
originally proposed by (Riedel et al., 2010), con-
sisting of 1.18M sentences. We used an adapted
version of the dataset pre-processed by (Zeng et al.,
2018), referred as "normal", and contains the non-
overlapping entities (i.e., head/tail pair has only

1614

single edge connecting them), and 25 relation types
(the smallest set as compared to WebNLG and TEK-
GEN). Table 3 shows the statistics of the dataset.

4 Experiments

In this Section we provide details about the model
setups for evaluations, describe the scoring metrics,
and present the results for both datasets.

4.1 Grapher Setup

For our base pre-trained language model we used
T5 “large”, for a total number of 770M parameters,
from HuggingFace, Inc (Wolf et al., 2020) (see
Appendix for the results using other model sizes).
For Query Node generation we also defined the
learnable query embedding matrix M ∈ RH×N ,
where H = 1024 is the hidden size of T5 model,
and N = 8 is the maximum possible number of
nodes in a graph. The node generation head uses
single-layer GRU decoder with HGRU = 1024 fol-
lowed by linear transformation projecting to the
vocabulary of size 32, 128. The same GRU setup is
used for the edge generation head, where we also
set the maximum number of edges to be 7. Finally,
for the edge classification head, we defined four
fully-connected layers with ReLU non-linearities
and dropouts with probability 0.5, projecting the
output to the space of edge classes.

During training we fine-tuned all the model’s pa-
rameters, using the AdamW optimizer with learn-
ing rate of 10−4, and default values of β =
[0.9, 0.999] and weight decay of 10−2. The batch
size was set to 10 samples using a single NVIDIA
A100 GPU for WebNLG and NYT training, while
for TEKGEN training we employed distributed
training over 10 A100 GPUs, thus making the ef-
fective batch size of 100. Under these settings,
it takes approximately 3,500 steps to complete a
training epoch for WebNLG, together with the vali-
dations done every 1,000 steps, we get a model that
reaches its top performance in approximately 6-7
hours. For NYT, the epoch takes approximately
4,600 mini-batches, achieving top performance in
about 15 epochs (24 hours). Finally, TEKGEN,
each epoch takes approximately 54,000 steps, with
the evaluations done every 1,000 steps we trained
and validated the model for 150,000 iterations, tak-
ing approximately 14 days of compute time.

4.2 Baselines

To evaluate the performance of Grapher, for base-
lines we selected the top performing teams reported
on the WebNLG 2020 Challenge Leaderboard, and
briefly describe them here: Amazon AI (Shang-
hai) (Guo et al., 2020a) was the Challenge win-
ner for Text-to-RDF task. They followed a sim-
ple heuristic-based approach that first does entity
linking to match the entities present in the input
text with the DBpedia ontology, and then query
the DBpedia database to extract the relation be-
tween them. BT5 (Agarwal et al., 2020) came in
second place and used large pre-trained T5 model
to generate KG in a linearized form, where the
object-predicate-subject triples are concatenated
together and the entire text-to-graph problem is
viewed as a traditional sequence-to-sequence mod-
eling. CycleGT (Guo et al., 2020b), third place
contestant, followed an unsupervised method for
text-to-graph and graph-to-text generation, where
the KB construction part relies on off-the-shelf en-
tity extractor to identify all the entities present in
the input text, and a multi-label classifier to predict
the relation between pairs of entities. Stanford
CoreNLP Open IE (Manning et al., 2014): This is
an unsupervised approach that was run on the input
text part of the test set to extract the subjects, rela-
tions, and objects to produce the output triplets to
give a baseline performance for the WebNLG 2020
Challenge. ReGen (Dognin et al., 2021): Recent
work that leverages T5 pretrained language model
and Reinforcement Learning (RL) for bidirectional
text-to-graph and graph-to-text generation, which,
similarly to Agarwal et al. (2020), also follows the
linearized graph representation approach.

4.3 Evaluation Metrics

For scoring the generated graph, we used the evalu-
ation scripts from WebNLG 2020 Challenge (Fer-
reira et al., 2020), which computes the Precision,
Recall, and F1 scores for the output triples against
the ground truth. In particular, since the order of
generated and ground truth triples should not influ-
ence the result, the script searches for the optimal
alignment between each candidate and the refer-
ence triple through all possible permutation of the
hypothesis-reference pairs. Then, the metrics based
on Named Entity Evaluation (Segura-Bedmar et al.,
2013) were used to measure the Precision, Recall,
and F1 score in four different ways. Exact: The
candidate triple should match exactly the reference

1615

Table 4: Evaluation results on the test set of the
WebNLG+ 2020 dataset. The top four block-rows are
the results taken from the WebNLG 2020 Challenge
Leaderboard (Ferreira et al., 2020). The bottom part
shows the results of our proposed Grapher system for
several architectural choices, as discussed in Section 2.
Bold font shows the best performing systems.

M. F1 Prec. Rec.

Amazon AI
E 0.689 0.689 0.690
P 0.696 0.696 0.698
S 0.686 0.686 0.687

BT5
E 0.682 0.670 0.701
P 0.713 0.700 0.736
S 0.675 0.663 0.695

CycleGT
E 0.342 0.338 0.349
P 0.360 0.355 0.372
S 0.309 0.306 0.315

Stanford OIE
E 0.158 0.154 0.164
P 0.200 0.194 0.211
S 0.127 0.125 0.130

ReGen
E 0.723 0.714 0.738
P 0.767 0.755 0.788
S 0.720 0.713 0.735

G
ra

ph
er

Query
Nodes

Gen
Edges

E 0.395 0.391 0.400
P 0.325 0.318 0.337
S 0.289 0.285 0.294

Class
Edges

E 0.466 0.463 0.469
P 0.360 0.356 0.368
S 0.347 0.345 0.351

Text
Nodes

Gen
Edges

E 0.683 0.675 0.695
P 0.713 0.702 0.730
S 0.681 0.673 0.693

Class
Edges

E 0.722 0.715 0.733
P 0.750 0.741 0.765
S 0.719 0.712 0.730

triple, while the type (subject, predicate, object) is
not important. Partial: The candidate triple should
match at least partially with the reference triple,
while the type (subject, predicate, object) is irrele-
vant. Strict: The candidate triple matches exactly
the reference triple, and the element type (subject,
predicate, object) should match exactly as well.

4.4 WebNLG Results
The main results for evaluating all the compared
methods on WebNLG test set are presented in Ta-
ble 4. As one can see, our Grapher system, based
on Text Nodes and Class Edges, achieved on par
top performance, as the ReGen (Dognin et al.,
2021) model. Our system also uses the Focal loss
to account for edge imbalance during training. We
can also see that Grapher based on Text Nodes,

where the T5-based model generates the nodes di-
rectly as a string, outperforms the alternative ap-
proach that generates the nodes through query vec-
tors and permutes the features to get invariance to
node ordering. A possible explanations is that the
graphs at hand and the training data are both quite
small. Therefore, the representational power of
T5, pre-trained on textual corpora several orders
of magnitude larger, can handle the entity extrac-
tion task much better. As we mentioned earlier,
the ability to extract the nodes is very crucial to
the overall success of the system, so if the query-
based node generation constructs less reliable sets
of nodes, the follow-up stage of edge generation
will underperform as well.

Agra Airport is in India where one of its leaders is T.S. Thakur
0.5 0.19 0.06 0.07

Agra Airport

Agra Airport is in India where one of its leaders is T.S. Thakur
0.08 0.03 0.36 0.35

T.S. Thakur
0.05

Agra Airport is in India where one of its leaders is T.S. Thakur
0.1 0.04 0.16 0.15

India
0.10.2

Agra Airport is in India where one of its leaders is T.S. Thakur
0.2 0.09 0.09 0.140.18

<no_node>

Agra Airport is in India where one of its leaders is T.S. Thakur
0.27 0.1 0.12 0.080.16

<no_node>
0.08

Agra Airport is in India where one of its leaders is T.S. Thakur
0.25 0.09 0.16 0.10.13

<no_node>

Agra Airport is in India where one of its leaders is T.S. Thakur
0.2 0.08 0.17 0.15

<no_node>

Node Query 1:

Node Query 2:

Node Query 3:

Node Query 4:

Node Query 5:

Node Query 6:

Node Query 7:

Input Text

Figure 7: Visualization of the cross-attention weights
in the T5 model between the node query embedding
vectors and the embeddings of the input text.

Comparing the edge generation versus classifi-
cation, we see that the former approach already
brings up the system to the level of the top two
leaderboard performers, while the edge classifica-
tion adds extra accuracy and makes Grapher one
of the leading system. This again might be due
to a smaller training set, in which case GRU edge
decoder underperforms, generating less accurate
edges, while the classifier just needs to predict a
single class to construct an edge, making it a better
alternative in the low-data scenarios.

Finally, note that although the query-based node
generation did not perform well in our evaluations,
it is still informative to examine the behaviour of
these vectors learned during the training. For this,
we analyze the cross-attention weights in the T5
model between the node query vectors and the em-
beddings of the input text; the results are shown in
Fig. 7. The ground truth nodes for this sentence are
‘Agra Airport’, ‘India’ and ‘T.S. Thakur’. It can
be seen that each query vector focuses on a set of
words that can potentially become a node. For ex-
ample, the first query vector emphasizes the words
‘Agra’, ‘Airport’, ‘T.S.’ and ‘Thakur’, but since the

1616

Table 5: Evaluation results on the test set of TEKGEN
dataset for different configurations of the Grapher sys-
tem. The use of text-based nodes with generation edges
performs the best.

M. F1 Prec. Rec.
ReGen E 0.623 0.610 0.647

G
ra

ph
er

Query
Nodes

Gen
Edges

E 0.386 0.361 0.430
P 0.438 0.405 0.496
S 0.386 0.361 0.430

Class
Edges

E 0.361 0.338 0.401
P 0.408 0.378 0.463
S 0.360 0.337 0.401

Text
Nodes

Gen
Edges

E 0.707 0.693 0.730
P 0.741 0.723 0.771
S 0.706 0.692 0.729

Class
Edges

E 0.700 0.686 0.722
P 0.735 0.717 0.764
S 0.700 0.685 0.721

weight on the first two words is higher, the resulting
feature vector sent to the Node GRU module cor-
rectly decodes it as ‘Agra Airport’. The same pro-
cess happens for the third and forth query vectors.
It is also interesting to see that the rest of the queries
were also correctly decoded as ⟨NO_NODE⟩ token,
even though they had high attention weights on
some of the words (e.g., weight of 0.2 on ‘Agra’
and 0.18 on ‘India’ for the second query vector).
One potential explanation is that since no causal
mask is used when feeding query vectors to the
decoder, T5 has an opportunity to exchange the
information between all of the query vectors across
all the layers and heads. Thus, once the found
nodes are assigned to specific vectors, the rest of
them are suppressed and decoded into ⟨NO_NODE⟩,
irrespective of the attention weights.

4.4.1 TEKGEN Results

The results on the test set of the TEKGEN dataset
(Agarwal et al., 2021) are shown in Table 5. To
compute the graph generation performance, we use
the same scoring functions as in WebNLG 2020
Challenge (Ferreira et al., 2020). As in Table 4,
in this experiment we observe a similar pattern in
which the Grapher based on Text Nodes outper-
forms the query-based system. At the same time
we see now that the GRU-based edge decoding
performs better than the classification edge head.
Recall that for the smaller-size WebNLG dataset
the classification edge head performed better, while
now on the larger-size TEKGEN dataset, the GRU
edge generation is more accurate, outperforming

Table 6: Evaluation results on the test set of NYT dataset
for different configurations of the Grapher system. Text-
based nodes with generation edges performs the best.

M. F1 Prec. Rec.

T5 + Linearized Graph
E 0.832 0.831 0.834
P 0.834 0.832 0.837
S 0.824 0.822 0.826

G
ra

ph
er

Text
Nodes

Gen
Edges

E 0.918 0.917 0.920
P 0.919 0.918 0.921
S 0.913 0.911 0.914

Class
Edges

E 0.870 0.867 0.872
P 0.871 0.869 0.874
S 0.860 0.858 0.862

the simpler classification edge head. Also, our
Grapher model now outperforms the ReGen base-
line from (Dognin et al., 2021), which is based on
the linearization technique to represent the graph,
showing advantage of the proposed multi-stage gen-
eration approach.

4.4.2 NYT Results
Finally, Table 6 shows the results on NYT dataset.
Similar as for the TEKGEN, Grapher based on text
nodes and generation edges performs the best, out-
performing the other architectural choices and the
baseline (note that this baseline is our own im-
plementation similar to (Dognin et al., 2021) and
(Agarwal et al., 2020), which uses T5 pre-trained
language model on the linearized graph represen-
tation). Comparing with the results from Tables 4
and 5, we can see that for smaller datasets, the clas-
sification head has a clear advantage, while as more
training data becomes available, the GRU edge de-
coder becomes more accurate, outperforming the
classifier edge head.

5 Conclusion

In this work, we proposed Grapher, a novel multi-
stage KG generation system, that separates the over-
all graph generation into two steps. In the first step,
the nodes are generated from the input text using a
pretrained language model. The resulting node fea-
tures are then used for edge generation to construct
the output graph. We proposed several architec-
tural choices for each stage. In particular, graph
nodes can either be generated as a sequence of text
tokens or as a set of query-based feature vectors
decoded into tokens through generation head (e.g.,
GRU). Edges can be either generated by a GRU
decoding head or selected by a classification head.
We also addressed the problem of skewed edge

1617

distribution, where the token/class corresponding
to the missing edge is over-represented, leading
to inefficient training. For this, we proposed to
use of either the focal loss, or the sparse adjacency
matrix. The experimental evaluations showed that
Grapher matched state-of-the-art performance on
smaller WebNLG dataset, and showed strong over-
all performance, outperforming existing baselines,
on NYT and TEKGEN datasets, serving as a viable
alternative to the existing baselines.

Limitations

There are several limitations of this work that need
to be addressed in the future work. The first is
the computational complexity of edge generation,
which is quadratic in the number of edges, and this
sets the limit on the sizes of the graphs that the sys-
tems can process. Moreover, since the nodes are
generated using transformer-based models, which
have quadratic complexity of the attention mecha-
nism, there is a limit on the size of the input text
the system can handle. Therefore, the current algo-
rithm is suitable for small or medium size graphs
and text passages. The extension to large scale is
important and will be a part of the future effort.
Moreover, the current setup was applied only to En-
glish domain datasets, which is a limitation, given
that there is a benefit of multi- and cross-lingual
training of language systems as ours. Finally, al-
though not being our objective, the current model
is designed to handle only the direction from text
to knowledge graph, and the reverse direction has
not been explored yet but can be a part of the future
investigation.

References
Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami

Al-Rfou. 2021. Knowledge graph based synthetic
corpus generation for knowledge-enhanced language
model pre-training. In Proceedings of the Associ-
ation for Computational Linguistics, pages 3554–
3565.

Oshin Agarwal, Mihir Kale, Heming Ge, Siamak Shak-
eri, and Rami Al-Rfou. 2020. Machine translation
aided bilingual data-to-text generation and semantic
parsing. In Proceedings of the International Work-
shop on Natural Language Generation from the Se-
mantic Web.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. ArXiv, abs/2005.12872.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. BERT: Pre-training of deep bidi-
rectional transformers for language understanding.
In NAACL-HLT.

Pierre Dognin, Igor Melnyk, Inkit Padhi, Cicero
Nogueira dos Santos, and Payel Das. 2020. Du-
alTKB: A Dual Learning Bridge between Text and
Knowledge Base. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing.

Pierre L. Dognin, Inkit Padhi, Igor Melnyk, and Payel
Das. 2021. Regen: Reinforcement learning for text
and knowledge base generation using pretrained lan-
guage models.

Thiago Castro Ferreira, Claire Gardent, N. Ilinykh,
C. Lee, Simon Mille, Diego Moussallem, and Anas-
tasia Shimorina. 2020. The 2020 Bilingual, Bi-
Directional WebNLG+ Shared Task: Overview and
Evaluation Results (WebNLG+ 2020). In Interna-
tional Workshop on Natural Language Generation
from the Semantic Web.

Qipeng Guo, Zhijing Jin, Ning Dai, Xipeng Qiu, Xi-
angyang Xue, David Wipf, and Zheng Zhang. 2020a.
P2: A plan-and-pretrain approach for knowledge
graph-to-text generation. In Proceedings of the Inter-
national Workshop on Natural Language Generation
from the Semantic Web.

Qipeng Guo, Zhijing Jin, Xipeng Qiu, W. Zhang,
D. Wipf, and Zheng Zhang. 2020b. CycleGT: Unsu-
pervised graph-to-text and text-to-graph generation
via cycle training. ArXiv, abs/2006.04702.

Zhengbao Jiang, F. F. Xu, J. Araki, and Graham Neu-
big. 2019. How can we know what language models
know? Transactions of the Association for Computa-
tional Linguistics, 8:423–438.

M. Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. ArXiv, abs/1910.13461.

Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel.
2016. Commonsense Knowledge Base Completion.
In Proceedings of the Annual Meeting of the ACL,
pages 1445–1455.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for gener-
ation. ArXiv, abs/2101.00190.

Xintong Li, Aleksandre Maskharashvili, S. Stevens-
Guille, and Michael White. 2020. Leveraging large
pretrained models for WebNLG 2020. In Interna-
tional Workshop on Natural Language Generation
from the Semantic Web.

1618

http://arxiv.org/abs/2108.12472
http://arxiv.org/abs/2108.12472
http://arxiv.org/abs/2108.12472

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaim-
ing He, and Piotr Dollár. 2020. Focal loss for dense
object detection. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 42:318–327.

Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu
Lin, Xianpei Han, Le Sun, and Hua Wu. 2022. Uni-
fied structure generation for universal information
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5755–5772.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Yejin Choi. 2020. Commonsense
Knowledge Base Completion with Structural and Se-
mantic Context. The Association for the Advance-
ment of Artificial Intelligence.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of the Association for
Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis,
A. Bakhtin, Yuxiang Wu, Alexander H. Miller, and
S. Riedel. 2019. Language models as knowledge
bases? In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Leonardo F. R. Ribeiro, Martin Schmitt, H. Schutze,
and Iryna Gurevych. 2020. Investigating pretrained
language models for graph-to-text generation. ArXiv,
abs/2007.08426.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 148–163.

Adam Roberts, Colin Raffel, and Noam M. Shazeer.
2020. How much knowledge can you pack into the
parameters of a language model? In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing.

Isabel Segura-Bedmar, Paloma Martínez, and María
Herrero-Zazo. 2013. SemEval-2013 Task 9 : Extrac-
tion of drug-drug interactions from biomedical texts
(ddiextraction 2013). In SemEval@NAACL-HLT.

Taylor Shin, Yasaman Razeghi, IV RobertLLogan, Eric
Wallace, and Sameer Singh. 2020. Autoprompt: Elic-
iting knowledge from language models with automat-
ically generated prompts. ArXiv, abs/2010.15980.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in Neural Information Pro-
cessing Systems.

C. Wang, Xiao Liu, and D. Song. 2020. Lan-
guage models are open knowledge graphs. ArXiv,
abs/2010.11967.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang,
Victor Zhong, Bailin Wang, Chengzu Li, Connor
Boyle, Ansong Ni, Ziyu Yao, Dragomir Radev, Caim-
ing Xiong, Lingpeng Kong, Rui Zhang, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2022. Unified-
skg: Unifying and multi-tasking structured knowl-
edge grounding with text-to-text language models.
EMNLP.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
KG-BERT: BERT for Knowledge Graph Completion.
arXiv preprint arXiv:1909.03193.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamil-
ton, and J. Leskovec. 2018. GraphRNN: Generating
realistic graphs with deep auto-regressive models. In
ICML.

Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu,
and Jun Zhao. 2018. Extracting relational facts by an
end-to-end neural model with copy mechanism. In
Proceedings of the 56th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 506–514.

1619

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1909.03193

A Appendix

In Tables 7 and 8 we present the results of the best
performing Grapher configurations, which uses
Text Nodes with either Class Edges or Gen Edges
respectively, with multiple random initializations
to examine the results variability on WebNLG and
NYT test set. As can be seen, the scores averaged
across 5 runs (with different random initializations)
show low standard deviation, further validating
Grapher’s stable performance.

Table 7: Mean and standard deviation for the results
of 5 randomly initialized runs of the best Grapher con-
figuration which uses Text Nodes and Class Edges on
WebNLG test set.

Match F1 Precision Recall
Exact 0.720±0.05 0.711±0.05 0.729±0.06

Partial 0.744±0.04 0.737±0.03 0.763±0.03

Strict 0.716±0.05 0.709±0.05 0.724±0.05

Table 8: Mean and standard deviation for the results of
5 randomly initialized runs of the best Grapher configu-
ration which uses Text Nodes and Gen Edges on NYT
test set.

Match F1 Precision Recall
Exact 0.908±0.06 0.909±0.05 0.910±0.04

Partial 0.910±0.03 0.910±0.04 0.908±0.05

Strict 0.905±0.04 0.903±0.04 0.904±0.05

In Tables 9 and 10 we also present additional
experiments by varying the T5 model size. In par-
ticular, in addition to the T5-large model, contain-
ing 770M parameters, used in the main paper, we
also considered T5-base (220M parameters) and
T5-small (60M parameters). It can be seen, that in
general the performance drops as the model size
decreases. However, for NYT dataset, the model
architecture that uses Text Nodes and Class Edges,
T5-small actually outperforms T5-base. At the
same time, for Gen Edges all three model choices
performed very similar with minor drop in perfor-
mance as the size decreases.

Table 9: WebNLG

Large Base Small

G
ra

ph
er Text

Nodes

Gen
Edges

0.683 0.660 0.596

Class
Edges

0.722 0.693 0.631

Table 10: NYT

Large Base Small

G
ra

ph
er Text

Nodes

Gen
Edges

0.912 0.907 0.897

Class
Edges

0.870 0.812 0.846

In Fig. 8 we present some examples of the gen-
erated graphs (right column) and their associated
ground truths (left column) for WebNLG dataset.
In Fig. 9 similar results are given for TEKGEN

dataset. Both examples show that the trained Gra-
pher system sometimes can generated more de-
tailed and accurate graphs corresponding to the
input text as compared to the ground truth (e.g.,
first three examples in Fig. 9, where it adds extra
edges for genre, occupation and birth date). Also,
the use of T5 model for node extraction shows that
the model can include information in the generated
nodes that is not present in the input text (e.g., third
example in Fig. 8, which included ‘inhabitants per
square kilometre’, possibly from T5’s original pre-
training on large textual corpora.)

1620

Danielle Harris had a main role in Super Capers, a 98 minute long movie.Input Text:

Output Graph:
Super Capers

Danielle Harris 98.0

starring runtime

Super Capers

Danielle Harris +98 minute

cast member runtime

The area code for Thurleigh is 01234.Input Text:

Output Graph:
Thurleigh

01234

areaCode

Thurleigh

01234

postalCode

Ciudad Ayala is a part of Morelos, which is located in the country of Mexico. Ciudad Ayala city
has a population density of 1604.0, the time zone is in PDT and its elevation is 1147.0 above sea level

Input Text:

Output Graph:

City Manager
Morelos

leaderTitle
isPartOf

Mexico

country

1147.0

elevationAboveTheSeaLevel

timeZone

Pacific Daylight Time

populationDensity

1604.0

City Manager
Morelos

leaderTitle
isPartOf

Mexico

country

1147.0

elevationAboveTheSeaLevel

utcOffset

PDT

populationDensity

1604.0 (inhabitants per square kilometre)

HBO's headquarters are situated in New York City, New York.Input Text:

Output Graph:
HBO

New York City, New York

headquarter

HBO

New York City

city
isPartOf

New York

Ciudad Ayala
Ciudad Ayala

Figure 8: Examples of some of the notable generated (right column) and the ground truth graphs (left column) for
WebNLG dataset.

1621

The Steel Tsar is a sci-fi/alternate history novel by Michael Moorcock, first published in 1981 by GranadaInput Text:

Output Graph:
The Steel Tsar

00 1981 Michael Moorcock

publication date author

Christian Kuntner (January 15, 1962 - May 18, 2005) was an Italian extreme climber.Input Text:

Output Graph:
Christian Kuntner

18 May 2005

date of death

The Crimes of Petiot (Spanish:Los crAmenes de Petiot) is a 1973 Spanish giallo film directed by
JosA Luis Madrid and starring Paul Naschy, Patricia Loran and Fernando MarAn.

Input Text:

Output Graph:

Paul Naschy
Film

cast member
instance of

Patricia Loran

cast member

director

JosA Luis Madrid

publication date

09 July 1973

The EMD 645-series diesel engine had a deeper crankcase and oil pan than the SW1200’s
EMD 567-series engine.

Input Text:

Output Graph:

EMD SW1001

EMD 645

powered by

EMD 645

diesel engine

subclass of

The Crimes of Petiot

The Steel Tsar

00 1981 Michael Moorcock

publication date author
Novel

genre

Christian Kuntner

18 May 2005

date of death

climber

occupation
date of birth

15 January 1962

Paul Naschy

Filmcast member
instance of

Patricia Loran

cast member

director

JosA Luis Madrid
publication
date

01 January 1973

The Crimes of Petiot

Fernando MarAn

cast member

Giallo

genre

Figure 9: Examples of some of the notable generated (right column) and the ground truth graphs (left column) for
TEKGEN dataset.

1622

