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Abstract

Text editing, such as grammatical error cor-
rection, arises naturally from imperfect textual
data. Recent works frame text editing as a
multi-round sequence tagging task, where op-
erations – such as insertion and substitution –
are represented as a sequence of tags. While
achieving good results, this encoding is lim-
ited in flexibility as all actions are bound to
token-level tags. In this work, we reformulate
text editing as an imitation game using behav-
ioral cloning. Specifically, we convert conven-
tional sequence-to-sequence data into state-to-
action demonstrations, where the action space
can be as flexible as needed. Instead of gen-
erating the actions one at a time, we introduce
a dual decoders structure to parallel the decod-
ing while retaining the dependencies between
action tokens, coupled with trajectory augmen-
tation to alleviate the distribution shift that im-
itation learning often suffers. In experiments
on a suite of Arithmetic Equation benchmarks,
our model consistently outperforms the autore-
gressive baselines in terms of performance, ef-
ficiency, and robustness. We hope our findings
will shed light on future studies in reinforce-
ment learning applying sequence-level action
generation to natural language processing.

1 Introduction

Text editing (Malmi et al., 2022) is an important
domain of processing tasks to edit the text in a
localized fashion, applying to text simplification
(Agrawal et al., 2021), grammatical error correc-
tion (Li et al., 2022), punctuation restoration (Shi
et al., 2021), to name a few. Neural sequence-to-
sequence (seq2seq) framework (Sutskever et al.,
2014) establishes itself as the primary approach
to text editing tasks, by framing the problem as
machine translation (Wu et al., 2016). Applying
a seq2seq modeling has the advantage of simplic-
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Figure 1: Three approaches – sequence tagging (left),
end-to-end (middle), sequence generation (right) – to
turn an invalid arithmetic expression “1 1 2” into a valid
one “1 + 1 = 2”. In end-to-end, the entire string “1 1 2”
is encoded into a latent state, which the string “1 + 1 =
2” is generated directly. In sequence tagging, a local-
ized action (such as “INSERT_+”, meaning insert a “+”
symbol after this token) is applied/tagged to each token;
these token-level actions are then executed, modifying
the input string. In contrast, sequence generation out-
put an entire action sequence, generating the location
(rather than tagging it), and the action sequence is ex-
ecuted, modifying the input string. Both token-level
actions and sequence-level actions can be applied mul-
tiple times to polish the text further (up to a fixed point).

ity, where the system can simply be built by giv-
ing input-output pairs consisting of pathological
sequences to be edited, and the desired sequence
output, without much manual processing efforts
(Junczys-Dowmunt et al., 2018).

However, even with a copy mechanism (See
et al., 2017; Zhao et al., 2019; Panthaplackel et al.,
2021), an end-to-end model can struggle in car-
rying out localized, specific fixes while keeping
the rest of the sequence intact. Thus, sequence
tagging is often found more appropriate when out-
puts highly overlap with inputs (Dong et al., 2019;
Mallinson et al., 2020; Stahlberg and Kumar, 2020).
In such cases, a neural model predicts a tag se-
quence – representing localized fixes such as in-
sertion and substitution – and a programmatic in-
terpreter implements these edit operations through.
Here, each tag represents a token-level action and
determines the operation on its attached token (Ko-
hita et al., 2020). A model can avoid modifying the
overlap by assigning no-op (e.g., KEEP), while the
action space is limited to token-level modifications,
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such as deletion or insertion after a token (Awasthi
et al., 2019; Malmi et al., 2019).

In contrast, alternative approaches (Gupta et al.,
2019) train the agent to explicitly generate free-
form edit actions and iteratively reconstructs the
text during the interaction with an environment
capable of altering the text based on these actions.
This sequence-level action generation (Branavan
et al., 2009; Guu et al., 2017; Elgohary et al., 2021)
allows higher flexibility of action design not limited
to token-level actions, and is more advantageous
given the narrowed problem space and dynamic
context in the edit (Shi et al., 2020).

The mechanisms of sequence tagging and se-
quence generation against end-to-end are exem-
plified in Figure 1. Both methods allow multiple
rounds of sequence refinement (Ge et al., 2018; Liu
et al., 2021) and imitation learning (IL) (Pomer-
leau, 1991). Essentially an agent learns from the
demonstrations of an expert policy and later imi-
tates the memorized behavior to act independently
(Schaal, 1996). On the one hand, IL in sequence
tagging functions as a standard supervised learning
in its nature and thus has attracted significant inter-
est and been widely used recently (Agrawal et al.,
2021; Yao et al., 2021; Agrawal and Carpuat, 2022),
achieving good results in the token-level action gen-
eration setting (Gu et al., 2019; Reid and Zhong,
2021). On the other hand, IL in sequence-level
action generation is less well defined even though
its principle has been followed in text editing (Shi
et al., 2020) and many others (Chen et al., 2021).
As a major obstacle, the training is on state-action
demonstrations, where the encoding of the states
and actions can be very different (Gu et al., 2018).
For instance, the mismatch of the lengths dimen-
sion between the state and action makes it tricky
to implement for an auto-regressive modeling that
benefits from a single, uniform representation.

To tackle the issues above, we reformulate
text editing as an imitation game controlled by a
Markov Decision Process (MDP). To begin with,
we define the input sequence as the initial state, the
required operations as action sequences, and the
output target sequence as the goal state. A learning
agent needs to imitate an expert policy, respond to
seen states with actions, and interact with the envi-
ronment until the success of the eventual editing.
To convert existing input-output data into state-
action pairs, we utilize trajectory generation (TG),
a skill to leverage dynamic programming (DP) for

an efficient search of the minimum operations given
a predefined edit metric. We backtrace explored
editing paths and automatically express operations
as action sequences. Regarding the length misalign-
ment, we first take advantage of the flexibility at
the sequence-level to fix actions to be of the same
length. Secondly, we employ a linear layer after the
encoder to transform the length dimension of the
context matrix into the action length. By that, we
introduce a dual decoders (D2) structure that not
only parallels the decoding but also retains captur-
ing interdependencies among action tokens. Taking
a further step, we propose trajectory augmentation
(TA) as a solution to the distribution shift problem
most IL suffers (Ross et al., 2011). Through a suite
of three Arithmetic Equation (AE) benchmarks
(Shi et al., 2020), namely Arithmetic Operators
Restoration (AOR), Arithmetic Equation Simplifi-
cation (AES), and Arithmetic Equation Correction
(AEC), we confirm the superiority of our learning
paradigm. In particular, D2 consistently exceeds
standard autoregressive models from performance,
efficiency, and robustness perspectives.

In theory, our methods also apply to other imi-
tation learning scenarios where a reward function
exists to further promote the agent. In this work,
we primarily focus on a proof-of-concept of our
learning paradigm landing at supervised behavior
cloning (BC) in the context of text editing. To this
end, our contributions1 are as follows:
1. We frame text editing into an imitation game

formally defined as an MDP, allowing the high-
est degrees of flexibility to design actions at the
sequence-level.

2. We involve TG to translate input-output data to
state-action demonstrations for IL.

3. We introduce D2, a novel non-autoregressive
decoder, boosting the learning in terms of accu-
racy, efficiency, and robustness.

4. We propose a corresponding TA technique to
mitigate distribution shift IL often suffers.

2 Imitation Game

We aim to cast text editing into an imitation game
by defining the task as a recurrent sequence gener-
ation, as presented in Figure 2 (a). In this section,
we describe the major components of our proposal,
including (1) the problem definition, (2) the data
translation, (3) the model structure, and (4) a solu-
tion to the distribution shift.

1Code and data are publicly available at GitHub.
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Figure 2: (a) shows the imitation game of AOR. Considering input text x as initial state s1, the agent interacts with
the environment to edit “1 1 2” into “1+1 = 2” via action a1 to insert “+” at the first position and a2 to insert “=”
at the thrid position. After a3, the agent stops editing and calls the environment to return s3 as the output text y.
Using the same example, (b) explains how to achieve shifted state s′2 by skipping action a∗1 and doing a′2. Here we
update a∗2 to a′2 accordingly due to the previous skipping. The new state s′2 was not in the expert demonstrations.

2.1 Behavior cloning

We tear a text editing task X 7→ Y into recurrent
subtasks of sequence generation S 7→ A defined
by an MDP tupleM = (S,A,P, E ,R).
State S is a set of text sequences s = sj≤m, where
s ∈ VS . We think of a source sequence x ∈ X as
the initial state s1, its target sequence y ∈ Y as the
goal state sT , and every edited sequence in between
as an intermediate state st. The path x 7→ y can be
represented as a set of sequential states st≤T .
Action A is a set of action sequences a = ai≤n,
where a ∈ VA. In Figure 3, “INSERT”, “POS_3”,
and “=” are three action tokens belonging to the
vocabulary space of action VA. In contrast to token-
level actions in sequence tagging, sentence-level
ones set free the editing by varying edit metrics E

(e.g., Levenshtein distance) as long as X AE7−−→ Y .
It serves as an expert policy π∗ to demonstrate the
path to the goal state. A better expert usually means
better demonstrations and imitation results. Hence,
depending on the task, a suitable E is essential.
Transition matrix P models the probability p that
an action at leads a state st to the state st+1. We
know ∀s,a. p(st+1|st,at) = 1 due to the nature of
text editing. So we can omit P .
Environment E responds to an action and updates
the game state accordingly by st+1 = E(st,at)
with process control. For example, the environ-
ment can refuse to execute actions that fail to pass
the verification and terminate the game if a maxi-
mum number of iterations has been consumed.
Reward function R calculates a reward for each
action. It is a major factor contributing to the suc-
cess of reinforcement learning. In the scope of this
paper, we focus on BC, the simplest form of IL. So
we can also omitR and leave it for future work.

Algorithm 1 Trajectory Generation (TG)
Input: Initial state x, goal state y, environment E , and edit

metric E.
Output: Trajectories τ .
1: τ ← ∅
2: s← x
3: ops← DP(x,y, E)
4: for op ∈ ops do
5: a← Action(op) . Translate operation to action
6: τ ← τ ∪ [(s,a)]
7: s← E(s,a)
8: end for
9: τ ← τ ∪ [(s,aT )] . Append goal state and output action

10: return τ

The formulation turns out to be a simplified
MBC = (S,A, E). Interacting with the environ-
ment E , we hope a trained agent is able to follow
its learned policy π : S 7→ A, and iteratively edit
the initial state s0 = x into the goal state sT = y.

2.2 Trajectory generation

A data set to learn X 7→ Y consists of input-output
pairs. It is necessary to convert it into state-action
ones so that an agent can mimic the expert policy
π∗ : S 7→ A via supervised learning. A detailed
TG is described in Algorithm 1.

Treating a pre-defined edit metric E as the expert
policy π∗, we can leverage DP to efficiently find
the minimum operations required to convert x into
y in a left-to-right manner and backtrace this path
to get specific operations.

Operations are later expressed as a set of se-
quential actions a∗t≤T . Here we utilize a special
symbol DONE to mark the last action a∗T where
∀a ∈ a∗T . a = DONE. Once an agent performs
a∗T , the current state is returned by the environment
as the final output.

Given s∗1 = x, we attain the next state s∗2 =
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Figure 3: The conventional autoregressive decoder (a) compared with the proposed non-autoregressive D2 (b) in
which the linear layer aligns the sequence length dimension for the subsequent parallel decoding.

E(s∗1,a
∗
1) and continue the rest until achieving

s∗T = y, resulting in a set of sequential states s∗t≤T .
After one-to-one correspondence between states

and actions, we collect a set of sequential expert’s
demonstrations τ∗ = [(s∗t≤T ,a

∗
t≤T )]. Repeating

the same process, we eventually convert X 7→ Y
into trajectories T ∗ : S 7→ A.

2.3 Model architecture
We form S 7→ A as sequence generation. More
precisely, a neural model (i.e., the agent) takes
states as input and outputs actions. Training an
imitation policy with BC corresponds to fitting
a parametric model πθ that minimizes the nega-
tive log-likelihood loss l(a∗, πθ(s)). Most seq2seq
models have an encoder-decoder structure.
Encoder takes an embedded state E(s) ∈ Rm×d
and generates an encoded hidden state hE ∈ Rm×d
with d being the hidden dimension.
Autoregressive decoder in Figure 3 (a) conditions
the current step on the encoded context and pre-
viously predictions to overcome the mismatch of
sequence length. It calculates step by step

hiD = AR(E(a<i),hE) ∈ Rd, i = 0, · · · , n+ 1,

âi = LogSoftmax(hiD) ∈ R|VA|, i = 0, · · · , n+1,

and in the end, returns â ∈ Rn×|VA|. The training
is conducted as back-propgating l(a∗, â). Note that
a∗0 = BOS and a∗n+1 = EOS encourage the decoder
to learn to begin and end the autoregression.
Non-autoregressive decoder instead provides hid-
den states in one time. It is feasible to apply tech-
niques of non-autoregressive machine translation.
However, one of the primary issues solved by that
is the uncertainty of the target sequence length.
When it comes to state-action prediction, thanks to
the flexibility at the sequence-level, we are allowed
to design actions on purpose to eliminate such un-
certainty. Specifically, we enforce action sequences

to be of fixed length. On this basis, we propose D2
as shown in Figure 3 (b). To address the misalign-
ment of sequence length between state and action,
we insert a fully connected feed-forward network
between the encoder and decoder0.

FFN(hE) = (hT
EW + b)T ∈ Rn×d

where W ∈ Rm×n and b ∈ Rd×n transform the
length dimension from m to n so as to project hE
into hF ∈ Rn×d. The alignment of the sequence
length allows us to trivially pass hF to decoder0.

hD0 = NAR0(hF ,hE) ∈ Rn×d

â0 = LogSoftmax(hD0) ∈ Rn×|VA|

For a clear comparison with the autoregressive de-
coder, we make minimal changes to the structure
and keep modeling the dependence between two
contiguous steps through decoder1. To elaborate,
we shift a0 one position to the right as á0 by ap-
pending a∗0 at the beginning and remove a0n to main-
tain the sequence length. After that, we continue to
feed á0 to decoder1.

hD1 = NAR1(E(á0),hE) ∈ Rn×d

â1 = LogSoftmax(hD1) ∈ Rn×|VA|

At last, we conduct backpropagation with respect
to the loss summation l(a∗, â0) ⊕ l(a∗, â1). Con-
ventional seq2seq architectures are often equipped
with intermediate modules such as a full attention
distribution over the encoded context (Bahdanau
et al., 2015), which is omitted in the above formu-
lation for simplicity. In the implementation, we
always assume to train decoder0 and decoder1 sep-
arately to increase the model capacity, yet weight
sharing is possible.
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2.4 Trajectory augmentation
IL suffers from distribution shift and error accu-
mulation (Ross et al., 2011). An agent’s mistakes
can easily put it into a state that the expert demon-
strations do not involve and the agent has never
seen during training. This also means errors can
add up, so the agent drifts farther and farther away
from the demonstrations. To tackle this issue, we
propose TA that expands the expert demonstrations
and actively exposes shifted states to the agent. We
accomplish this by diverting intermediate states and
consider them as initial states for TG. An example
is offered in Figure 2 (b).

Given expert states s∗t≤T and corresponding ac-
tions a∗t≤T , we utilize the divide-and-conquer tech-
nique to (1) break down the chain of state genera-

tion s∗t
a∗t7−→ s∗t+1 into two by either executing a∗t to

stay on the current path or skipping a∗t to branch
the current path; (2) recursively calling this process
until reaching the goal state s∗T ; (3) merge interme-
diate states from branches and return from bottom
to top in the end. As illustrated in Algorithm 2, we
collect a set of shifted states

S′ = TA(∅, s∗1, s∗t≤T ,a∗t≤T , E),

regard them as initial states paired with the same
goal state to produce extra trajectories

τ ′ = ∪
s∗∈S∗

TG(s∗, s∗T , E ,E),

and finally yield the augmented expert demonstra-
tions T ∗ ∪ T ′ after looping through X .

TA is advantageous because it (i) only exploits
existing expert demonstrations to preserve the i.i.d
assumption; (ii) is universally applicable to our
proposed paradigm without a dependency on the
downstream task; (iii) does not need domain knowl-
edge, labeling work, and further evaluation.

3 Experiments

We adapt recurrent inference to our paradigm and
evaluate them across AE benchmarks.

3.1 Setup
Data. Arithmetic Operators Restoration (AOR) is
a short-to-long editing to complete an array into a
true equation. It is also a one-to-many task as an ar-
ray can be completed as multiple true equations dif-
ferently. Arithmetic Equation Simplification (AES)
aims to calculate the parenthesized parts and keep
the equation hold, resulting in a long-to-short and

Algorithm 2 Trajectory Augmentation (TA)
Input: States S, state st, expert states S∗, actions A, and

environment E .
Output: Augmented states S.
1: if |A| > 1 then
2: at ← A.pop(0)
3: st+1 ← E(st,at)
4: S← S ∪ TA(S, st+1,S

∗,A, E) . Execute action
5: A← Update(A, st, st+1)
6: S← S ∪ TA(S, st,S

∗,A, E) . Skip action
7: else if st /∈ S∗ then
8: S← S ∪ [st] . Merge shifted state
9: end if

10: return S

many-to-one editing. Arithmetic Equation Correc-
tion (AEC) targets to correct potential mistakes in
an equation. Diverse errors perturb the equation,
making AEC a mixed many-to-many editing. To
align with the previous work, we follow the same
data settings N , L, and D for data generation, as
well as the same action design for trajectory gen-
eration. The edit metric E for AOR and AEC is
Levenshtein, while E for AES is a self-designed
one (SELF) that instructs to replace tokens between
two parentheses with the target token. Examples
are presented in Table 2. We refer readers to Shi
et al. (2020) for an exhaustive explanation. As
shown in Table 1, the data splits are 7K/1.5K/1.5K
for training, validation, and testing respectively.
Evaluation. Sequence accuracy and equation ac-
curacy are two primary metrics with token accu-
racy for a more fine-grained reference. In contrast
to sequence accuracy for measuring whether an
equation exactly matches the given label, equation
accuracy emphasizes whether an equation holds,
which is the actual goal of AE tasks. It is noted
that there is no hard constraint to guarantee that all
the predicted actions are valid. However, when the
agent makes an inference mistake, the environment
can refuse to execute invalid actions and keep the
current state. This is also one of the beauties of
reformulating text editing as a controllable MDP.
Baselines. Recurrent inference (Recurrence) ex-
hibits advantages over conventional end-to-end
(End2end) and sequence tagging (Tagging) (Shi
et al., 2020) . However, for AES and AEC, it2 al-
lows feeding training samples to a data generator
and exposing more variants to models. These vari-
ants, as source samples paired with corresponding
target samples, are used as the augmented dataset.
This is impractical due to the strong dependency on
domain knowledge. Given an input “1 + (2 + 2) =

2github.com/ShiningLab/Recurrent-Text-Editing
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AOR (N = 10, L = 5, D = 10K) AES (N = 100, L = 5, D = 10K) AEC (N = 10, L = 5, D = 10K)

Train/Valid/Test Train TA Traj. Len. Train/Valid/Test Train TA Traj. Len. Train/Valid/Test Train TA Traj. Len.

7,000/1,500/1,500 145,176 6 7,000/1,500/1,500 65,948 6 7,000/1,500/1,500 19,764 4

Table 1: Data statistics of AE benchmarks.

Term AOR (N = 10, L = 5, D = 10K) AES (N = 100, L = 5, D = 10K) AEC (N = 10, L = 5, D = 10K)

Source x 3 6 2 9 3 65 + ( 25 - 20 ) - ( 64 + 32 ) + ( 83 - 24 ) = ( - 25 + 58 ) - 2 * + 4 10 + 8 / 8 = 8
Target y - 3 - 6 / 2 + 9 = 3 65 + 5 - 96 + 59 = 33 - 2 + 10 * 8 / 8 = 8
State s∗t - 3 - 6 / 2 9 3 65 + 5 - ( 64 + 32 ) + ( 83 - 24 ) = ( - 25 + 58 ) - 2 + 4 10 + 8 / 8 = 8
Action a∗t [POS_6, +] [POS_4, POS_8, 96] [DELETE, POS_3, POS_3]
Next State s∗t+1 - 3 - 6 / 2 + 9 3 65 + 5 - 96 + ( 83 - 24 ) = ( - 25 + 58 ) - 2 + 10 + 8 / 8 = 8
Shifted State s′t - 3 - 6 / 2 9 = 3 65 + 5 - ( 64 + 32 ) + 59 = ( - 25 + 58 ) - 2 + 4 10 * 8 / 8 = 8

Table 2: Examples from AE with specific N for integer size, L for the number of integers, and D for data size.

5” and output “1 + 4 = 5” in AES, a variant “1 + (1
+ 3) = 5” can be generated based on the knowledge
1 + 3 = 4. Nevertheless, if this knowledge is not
provided in the other training samples, the model
should only know 2 + 2 = 4.
Models. As discussed, since the previously re-
ported experiments are not practical, we re-run Re-
currence source code for a more reasonable base-
line (Recurrence*) that only has access to the fixed
training set. Meanwhile, in our development en-
vironment, we reproduce Recurrence* within the
proposed paradigm according to the compatibility
in between. The encoder-decoder architecture in-
herits the same recurrent network as the backbone
with long short-term memory units (Hochreiter and
Schmidhuber, 1997) and an attention mechanism
(Luong et al., 2015). The dimension of the bidirec-
tional encoder is 256 in each direction and 512 for
both the embedding layer and decoder. We apply
a dropout of 0.5 to the output of each layer (Sri-
vastava et al., 2014). This provides us a standard
autoregressive baseline AR, as well as a more pow-
erful AR* after increasing the number of encoder
layers from 1 to 4. On the one hand, to construct a
non-autoregressive baseline NAR, we replace the
decoder of AR* with a linear layer that directly
maps the context to a probability distribution over
the action vocabulary. In addition, we add two
more encoder layers to maintain a similar amount
of trainable parameters. On the other hand, re-
placing the decoder of AR* with D2 leads to our
model NAR*. We strictly unify the encoder for
a fair comparison regarding the decoder. Model
configurations are shared across AE tasks for a
comprehensive assessment avoiding particular tun-
ing against any of them.
Training. We train on a single NVIDIA Titan RTX
with a batch size of 256. We use the Adam opti-

mizer (Kingma and Ba, 2015) with a learning rate
of 10−3 and an `2 gradient clipping of 5.0 (Pascanu
et al., 2013). A cosine annealing scheduler helps
manage the training process and restarts the learn-
ing every 32 epochs to get it out of a potential local
optimum. We adopt early stopping to wait for a
lower validation loss until there are no updates for
512 epochs (Prechelt, 1998). Teacher forcing with
a rate of 0.5 spurs up the training process (Williams
and Zipser, 1989). In AES and AEC, the adaptive
loss weighting guides the model to adaptively fo-
cus on particular action tokens in accordance with
the training results. Reported metrics attached with
standard deviation are the results of five runs using
random seeds from [0, 1, 2, 3, 4].

3.2 Results
Baselines. As summarized in Table 3, prohibit-
ing the access of Recurrence to domain knowledge
outcomes a fair baseline and significantly weakens
Recurrence* in AES and AEC. We also would like
to point out that, even in the same impractical set-
ting, our NAR* can achieve around 99.33% and
67.49% for AES and AEC with respect to equa-
tion accuracy, which is still much higher than that
(87.73% and 58.27% for AES and AEC) reported
in the previous work. In AOR, a one-to-many edit-
ing, no augmented source sequence is retrieved
from the target side. We confirm that the slight
accuracy drop of Recurrence* in AOR results from
bias through multiple tests. Although AR is our
reproduction of Recurrence*, the overall advance-
ment of AR over Recurrence* proves the goodness
of our framework and implementation. Participa-
tion of added three encoder layers in AR* improves
model capacity and thus contributes to higher accu-
racy. A simple linear header already enables NAR
to parallel the decoding; nevertheless, it dramati-
cally reduces performance, especially in AES.
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Method AOR (N = 10, L = 5, D = 10K) AES (N = 100, L = 5, D = 10K) AEC (N = 10, L = 5, D = 10K)

Tok. Acc. % Seq. Acc. % Eq. Acc. % Tok. Acc. % Eq. Acc. % Tok. Acc. % Seq. Acc. % Eq. Acc. %

End2end − − 29.33 84.60 25.20 88.08 57.27 57.73
Tagging − − 51.40 87.00 36.67 84.46 46.93 47.33
Recurrence − − 58.53 98.63 87.73 83.64 57.47 58.27

Recurrence* 60.30± 1.30 27.31± 1.33 56.73± 1.33 79.82± 0.37 22.28± 0.52 82.32± 0.56 41.72± 0.74 42.13± 0.75
AR 61.85± 0.51 28.83± 1.14 59.09± 0.95 88.12± 2.37 37.05± 6.57 82.61± 0.53 45.81± 0.36 46.31± 0.31
AR* 62.51± 0.62 30.85± 0.41 61.35± 0.33 99.27± 0.32 93.57± 2.91 82.29± 0.39 45.99± 0.49 46.35± 0.52
NAR 59.72± 0.70 24.16± 1.16 51.64± 1.97 83.87± 1.60 29.49± 2.51 80.28± 0.76 44.91± 1.71 45.40± 1.78
NAR* 62.81± 0.89 30.13± 1.31 61.45± 1.61 99.51± 0.13 95.67± 0.93 81.82± 0.68 45.97± 1.07 46.43± 1.10

AR +TA 62.35± 0.61 32.28± 0.67 63.56± 1.06 88.05± 1.20 38.39± 3.45 83.94± 0.42∗ 49.36± 1.23 49.83± 1.21
AR* +TA 62.58± 0.63 33.01± 1.31 65.73± 1.38 99.44± 0.27 95.24± 2.38 83.39± 0.74 48.95± 0.65 49.47± 0.73
NAR +TA 61.30± 0.86 32.04± 1.99 63.75± 2.08 90.38± 2.21 47.91± 8.18 81.36± 0.40 48.01± 1.07 48.47± 1.15
NAR* +TA 63.48± 0.38∗ 34.23± 0.92∗ 67.13± 0.99∗ 99.58± 0.15∗ 96.44± 1.29∗ 82.70± 0.42 49.64± 0.59∗ 50.15± 0.55∗

Table 3: Evaluation results on AOR, AES, and AEC with specific N , L, and D. The token and sequence accuracy
for AOR were not reported, thus we leave these positions blank here. With or without TA, our proposed NAR*
achieves the best performance in terms of equation accuracy across the board.
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Figure 4: The learning curve of AR* (left column) and
NAR* (right column) across AE tasks (rows). The red
and blue lines represent the training on actions w.r.t se-
quence accuracy. The orange line stands for the vali-
dation on returned states w.r.t equation accuracy. The
dashed line in green marks the earlier stop epoch of
NAR* than that of AR* during training.

Non-autoregressive. What stands out is the dom-
inance of NAR*, achieving 61.45%, 95.67%, and
46.43% in terms of equation accuracy for AOR,
AES, and AEC, separately. Particularly in AES, its
better performance over AR* by more than 2.1%
equation accuracy underlines the success of NAR*
in capturing the interdependencies among target
tokens. Its superiority with respect to equation
accuracy boosting by around 66.18% over NAR
highlights the contributions of D2 again.
Trajectory augmentation. As expected, the incor-
poration of TA consistently promotes the accuracy

1 64 128 256

5

10

15

20

25

In
fe

re
nc

e 
Ti

m
e 

(m
s)

Action

1 64 128 256

30

60

90

120

150
State

Batch Size

AOR-AR*
AOR-NAR*

AES-AR*
AES-NAR*

AEC-AR*
AEC-NAR*

Figure 5: Inference time of AR* and NAR* to predict
action (left) and return state (right) across AE tasks.

of all models in our learning regime throughout AE
tasks. Taking NAR as an example, training with
TA brings it a substantial equation accuracy gain,
remarkably up to 18.42% in AES. Even more, it
pushes the gap between NAR* and the other base-
lines. The most notable advance comes from AOR,
where NAR* outperforms AR* by a substantial
margin of 5.68% equation accuracy. It appears that
TA is more effective for non-autoregressive models
than autoregressive ones.

4 Analysis

We conduct extensive sensitivity analyses to better
illustrate and understand our methods.

4.1 Efficiency

From the learning curve (Figure 4) and inference
time (Figure 5) of AR* and NAR* in AE, in ad-
dition to a higher accuracy, we find NAR* needs
less number of training epochs to converge and
trigger the early stopping. The periodic fluctuation
of the learning curve is the consequence of using
a scheduler. When it comes to inference, NAR*
saves much time for every step of action determi-
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Design Action Sequence Method Tok. Acc. % Eq. Acc. %

#1 [Pos.L, Pos.R, Tok.]

AR* 99.27± 0.32 93.57± 2.91
NAR* 99.51± 0.13 95.67± 0.93

AR* +TA 99.44± 0.27 95.24± 2.38
NAR* +TA 99.58± 0.15∗ 96.44± 1.29∗

#2 [Pos.L, Tok., Pos.R]

AR* 99.08± 0.93 92.35± 7.21
NAR* 99.50± 0.27 95.55± 2.28

AR* +TA 99.52± 0.29 95.68± 2.49
NAR* +TA 99.54± 0.20∗ 95.97± 1.64∗

#3 [Tok., Pos.L, Pos.R]

AR* 98.06± 0.79 83.79± 6.25
NAR* 99.53± 0.14 95.99± 0.81

AR* +TA 98.43± 0.49 87.29± 3.70
NAR* +TA 99.61± 0.06∗ 96.55± 0.46∗

Table 4: Evaluation of AR* and NAR* in AES
across three action designs that vary from each other
by token order. They directs to the same operation
with Pos.L/Pos.R/Tok. denoting left parenthesis/right
parenthesis/target token.

nation and ends up returning the edited state faster.
As AR* and NAR* share exactly the same encoder
structure, we conclude that D2 contributes to the
advanced efficiency.

4.2 Action design
Due to the liberty of sequence generation, the same
operation can be represented as different action
sequences. In AES, the operation, instructing to
substitute tokens between left and right parentheses
with the required token, can fit the three action
designs in Table 4, where Pos.L, Pos.R, and Tok.
denote the positions of two parentheses and the
target token. Design #1 is the default one. A simple
swap of action tokens offers designs #2 and #3.

AR* severely suffers such perturbation, causing
an equation accuracy decline by 9.78% in #3. Con-
trastly, NAR* holds around its results and even
slightly improves to 95.99% in #3. Despite the
joining of TA, AR* still goes down from 95.24%
in #1 to 87.29% in #3, while NAR* stays nearly
consistent across three designs. It is reasonable that
AR* is sensitive to the order of action tokens be-
cause the position information helps the inference
of the target token. This also reflects that NAR*
can catch the position information but with little
dependence on token order. Such robustness allows
greater freedom of action design.

4.3 Trajectory optimization
A better edit metric E often means a smaller action
vocabulary space |VA|, shorter trajectory length
Tmax, and, therefore, an easier IL. Taking AES
as an instance, a SELF-action, replacing tokens
enclosed in parentheses with the target one, actually
is the compression of several Levenshtein-actions

Edit Metric E Tmax Method Tok. Acc. % Eq. Acc. %

SELF 6
AR* 99.27± 0.32 93.57± 2.91
NAR* 99.51± 0.13 95.67± 0.93

Levenshtein 31
AR* 69.53± 2.29 18.37± 0.70
NAR* 67.58± 0.87 17.93± 0.07

Table 5: Evaluation of AR* and NAR* trained with edit
metrics SELF and Levenshtein in AES. Tmax refers to
the maximum length of expert trajectories.
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Figure 6: Evaluation of NAR* trained with edit met-
rics LCS and Levenshtein in AEC. Results are grouped
by two trajectory lengths caused by whether the policy
involves REPLACE.

including multiple deletions and one substitution.
Although either can serve as an expert policy, SELF
causes a much shorter Tmax as indicated in Table
5. The change from SELF to Levenshtein brings
on a longer Tmax and consequently a significant
performance gap of 75.2% and 77.74% for AR*
and NAR* in terms of equation accuracy. Doing
one edit in 31 steps rather than 6 undoubtedly raises
the difficulty of the imitation game.

As one more exploration, we introduce Longest
Common Subsequence (LCS) as an alternative E
to AEC. Token replacement is not allowed in LCS
but in Levenshtein. A replacement action has to
be decomposed as one deletion and one insertion
in LCS. From this, LCS has a small |VA|, while
Levenshtein has a shorter Tmax. We train NAR*
with these two and report in Figure 6. For a clear
comparison, the test set is divided into two groups.
In w/o REPLACE, both yield the same Tmax, but,
in w/ REPLACE, Levenshtein takes a shorter Tmax.
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Decoder AOR (N = 10, L = 5, D = 10K) AES (N = 100, L = 5, D = 10K) AEC (N = 10, L = 5, D = 10K)

Tok. Acc. % Seq. Acc. % Eq. Acc. % Tok. Acc. % Eq. Acc. % Tok. Acc. % Seq. Acc. % Eq. Acc. %

Linear 61.84± 0.94 28.55± 1.57 57.72± 1.55 99.41± 0.26 95.01± 2.01 81.35± 0.92 42.47± 1.85 42.81± 1.87
Decoder0 61.78± 0.83 28.20± 1.57 58.36± 1.58 99.24± 0.23 93.49± 2.03 80.84± 0.66 43.97± 1.82 44.32± 1.82
Shared D2 61.74± 0.71 28.68± 0.94 58.05± 1.01 99.28± 0.24 93.85± 2.14 81.38± 1.04 43.64± 2.03 44.09± 2.02
D2 (NAR*) 62.81± 0.89 30.13± 1.31 61.45± 1.61 99.51± 0.13 95.67± 0.93 81.82± 0.68 45.97± 1.07 46.43± 1.10

Linear +TA 61.41± 0.28 31.75± 0.93 63.15± 0.96 99.42± 0.17 95.08± 1.47 81.54± 0.66 46.79± 2.26 47.33± 2.30
Decoder0 +TA 62.50± 1.24 32.48± 1.87 64.47± 1.88 99.47± 0.13 95.33± 1.13 82.02± 0.40 46.80± 2.04 47.32± 1.91
Shared D2 +TA 61.64± 0.87 31.21± 0.34 62.77± 0.85 99.53± 0.12 95.91± 1.25 81.80± 0.47 47.23± 1.07 47.61± 1.14
D2 (NAR*) +TA 63.48± 0.38∗ 34.23± 0.92∗ 67.13± 0.99∗ 99.58± 0.15∗ 96.44± 1.29∗ 82.70± 0.42∗ 49.64± 0.59∗ 50.15± 0.55∗

Table 6: Evaluation of agents equipped with same encoders but different decoders on AE benchmarks.

In the former, LCS exceeds Levenshtein with or
without TA. In the latter, the opposite is true, where
Levenshtein outperforms LCS under the same con-
dition. This support our assumption at the begin-
ning that an appropriate E, leading to a small |VA|
and a short Tmax, is conducive to IL, suggesting
trajectory optimization an interesting future work.

4.4 Dual decoders

As an ablation study, we freeze the encoder of
NAR* and vary its decoder to reveal the contri-
butions of each component in D2. As listed in
Table 6, replacing the decoder with a linear layer
leads to Linear and removing the second decoder
from NAR* results in Decoder0. Moreover, shar-
ing the parameters between two decoders of NAR*
gives the Shared D2. All of them can parallel the
decoding process. We then borrow the setup of
Section 3 and test them on AE.

Among four decoders, NAR* dominates three
imitation games. The performance decrease caused
by shared parameters is more significant than ex-
pected. Besides the reason that saved parameters
limit the model capacity, another potential one is
the input mismatch of two decoders. The input of
decoder0 is the projected context from the linear
layer after the encoder, yet that of decoder1 is the
embedded prediction from the embedding layer.
When incorporating TA, we find the same trend
persists. The gap between NAR* and the others
is even more apparent. Since they share the same
encoder, such a gap clarifies the benefits of D2.

5 Conclusion

We reformulate text editing as an imitation game
defined by an MDP to allow action design at
the sequence-level. We propose D2, a non-
autoregressive decoder for state-action learning,
coupled with TG for data translation and TA for
distribution shift alleviation. Achievements on
AE benchmarks evidence the advantages of our

methods in performance, efficiency, and robustness.
Sequence-level actions are arguably more control-
lable, interpretable, and similar to human behavior.
Turning tasks into games that agents feel more com-
fortable with sheds light on future studies in the
direction of reinforcement learning in the applica-
tion of text editing. The involvement of a reward
function, the optimization of the trajectories, the
design of sequence-level actions, and their appli-
cations in more practical tasks, to name a few, are
interesting for future work. Suggesting text editing
as a new testbed, we hope our findings will shed
light on future studies in reinforcement learning
applying to natural language processing.

Limitations

Each time the state is updated, the agent can get im-
mediate feedback on the previous action and thus
a dynamic context representation during the edit-
ing. This also means that the encoder (e.g., a heavy
pretrained language model) will be called multiple
times to refresh the context matrix. Consequently,
as the trajectory grows, the whole task becomes
slow even though we have paralleled the decod-
ing process. Meanwhile, applying our methods in
more realistic editing tasks (e.g., grammatical er-
ror correction) remains a concern and needs to be
explored in the near future.
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