
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1547–1554
December 7-11, 2022 ©2022 Association for Computational Linguistics

Unsupervised Syntactically Controlled Paraphrase Generation with
Abstract Meaning Representations

Kuan-Hao Huang∗† Varun Iyer∗⋄ Anoop Kumar‡
Sriram Venkatapathy‡ Kai-Wei Chang†‡ Aram Galstyan‡

†University of California, Los Angeles
⋄Johns Hopkins University, ‡Amazon Alexa AI

{khhuang, kwchang}@cs.ucla.edu, viyer3@jhu.edu
{anooamzn, vesriram, kaiwec, argalsty}@amazon.com

Abstract
Syntactically controlled paraphrase generation
has become an emerging research direction in
recent years. Most existing approaches require
annotated paraphrase pairs for training and are
thus costly to extend to new domains. Un-
supervised approaches, on the other hand, do
not need paraphrase pairs but suffer from rela-
tively poor performance in terms of syntactic
control and quality of generated paraphrases.
In this paper, we demonstrate that leveraging
Abstract Meaning Representations (AMR) can
greatly improve the performance of unsuper-
vised syntactically controlled paraphrase gen-
eration. Our proposed model, AMR-enhanced
Paraphrase Generator (AMRPG), separately
encodes the AMR graph and the constituency
parse of the input sentence into two disentan-
gled semantic and syntactic embeddings. A
decoder is then learned to reconstruct the in-
put sentence from the semantic and syntac-
tic embeddings. Our experiments show that
AMRPG generates more accurate syntactically
controlled paraphrases, both quantitatively and
qualitatively, compared to the existing unsuper-
vised approaches. We also demonstrate that the
paraphrases generated by AMRPG can be used
for data augmentation to improve the robust-
ness of NLP models.

1 Introduction

Syntactically controlled paraphrase generation ap-
proaches aim to control the format of generated
paraphrases by taking into account additional parse
specifications as the inputs, as illustrated by Fig-
ure 1. It has attracted increasing attention in re-
cent years since it can diversify the generated para-
phrases and benefit a wide range of NLP applica-
tions (Iyyer et al., 2018; Huang and Chang, 2021;
Sun et al., 2021), including task-oriented dialog
generation (Gao et al., 2020), creative generation
(Tian et al., 2021), and model robustness (Huang
and Chang, 2021).

∗The authors contribute equally.

Figure 1: An illustration of syntactically controlled para-
phrase generation. Given a source sentence and different
parse specifications, the model generates different para-
phrases following the parse specifications.

Recent works have shown success in train-
ing syntactically controlled paraphrase generators
(Iyyer et al., 2018; Chen et al., 2019; Kumar et al.,
2020; Sun et al., 2021). Although their models
can generate high-quality paraphrases and achieve
good syntactic control ability, the training process
needs a large amount of supervised data, e.g., par-
allel paraphrase pairs. Annotating paraphrase pairs
is usually expensive because it requires intensive
domain knowledge and high-level semantic under-
standing. Due to the difficulty in collecting parallel
data, the ability of supervised approaches are lim-
ited, especially when adapting to new domains.

To reduce the annotation demand, unsupervised
approaches can train syntactically controlled para-
phrase generators without the need for parallel pairs
(Zhang et al., 2019; Bao et al., 2019; Huang and
Chang, 2021). Most of them achieve syntactic con-
trol by learning disentangled embeddings for se-
mantics and syntax separately (Bao et al., 2019;
Huang and Chang, 2021). However, without par-
allel data, it is challenging to learn a good disen-
tanglement and capture semantics well. As we will
show later (Section 4.1), unsupervised approaches
can generate bad paraphrases by mistakenly swap-
ping object and subject of a sentence.

In this work, we propose to use Abstract Mean-
ing Representations (AMR) (Banarescu et al., 2013)
to learn better disentangled semantic embeddings
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Figure 2: The same AMR graph for a pair of para-
phrased sentences “He described her as a genius.” and
“She was a genius, according to his description.”

for unsupervised syntactically controlled para-
phrase generation. AMR is a semantic graph struc-
ture that covers the abstract meaning of a sentence.
As shown in Figure 2, two sentences would have
the same (or similar) AMR graph as long as they
carry the same abstract meaning, even they are ex-
pressed with different syntactic structures. This
property makes AMRs a good resource to capture
sentence semantics.

Based on this, we design an AMR-enhanced
Paraphrase Generator (AMRPG), which separately
learns (1) semantic embeddings with the AMR
garphs extracted from the input sentence and (2)
syntactic embeddings from the constituency parse
of the input sentence. Then, AMRPG trains a
decoder to reconstruct the input sentence from
the semantic and syntactic embeddings. The
reconstruction objective and the design of the
disentanglement of semantics and the syntax makes
AMRPG learn to generate syntactically controlled
paraphrases without using parallel pairs. Our exper-
iments show that AMRPG performs better syntactic
control than existing unsupervised approaches. Ad-
ditionally, we demonstrate that the generated para-
phrases of AMRPG can be used for data augmen-
tation to improve the robustness of NLP models.

2 Related Work

Paraphrase generation. Traditional paraphrase
generators are usually based on hand-crafted rules
(Barzilay and Lee, 2003) or seq2seq models (Cao
et al., 2017; Gupta et al., 2018; Fu et al., 2019). To
generate diverse paraphrases, different techniques
are proposed, including random pattern embed-
dings (Kumar et al., 2019), latent space perturba-
tion (Roy and Grangier, 2019; Zhang et al., 2019;
Cao and Wan, 2020), multi-round generation (Lin
and Wan, 2021), reinforcement learning (Liu et al.,
2020), prompt-tuning (Chowdhury et al., 2022),
order control (Goyal and Durrett, 2020), and syn-
tactic control (Iyyer et al., 2018; Kumar et al., 2020;
Huang and Chang, 2021; Sun et al., 2021).

Abstract meaning representation (AMR).
Since AMR (Banarescu et al., 2013) captures
high-level semantics, it has been applied for
various NLP tasks, including summarization
(Sachan and Xing, 2016), dialogue modeling
(Bai et al., 2021), information extraction (Zhang
et al., 2021). Some works also focus on training
high-quality AMR parsers with graph encoders
(Cai and Lam, 2020), seq2seq models (Konstas
et al., 2017; Zhou et al., 2020), and decoder-only
models (Bevilacqua et al., 2021).

3 Unsupervised Syntactically Controlled
Paraphrase Generation

3.1 Problem Formulation

We follow previous works (Iyyer et al., 2018;
Huang and Chang, 2021) and consider constituency
parses (without terminals) as the control signals.
Given a source sentence s and a target parse p, the
goal of the syntactically controlled paraphrase gen-
erator is to generate a target sentence t which has
similar semantics to the source sentence s and has
syntax following the parse p. In the unsupervised
setting, the paraphrase generator cannot access
any target sentences and target parses but only the
source sentences and source parses during training.

3.2 Proposed Method: AMRPG

Motivated by previous approaches (Bao et al.,
2019; Huang and Chang, 2021), we design AM-
RPG to learn separate embeddings for semantics
and syntax, as illustrated by Figure 3. Then, AM-
RPG learns a decoder with the objective to recon-
struct the source sentence. The challenge here is
how to learn embeddings such that the semantic em-
bedding contains only semantic information while
the syntactic embedding contains only syntactic
information. We introduce the details as follows.

Semantic embedding. Given a source sentence,
we first use a pre-trained AMR parser1 to get its
AMR graph. Next, we use a semantic encoder
to encode the AMR graph into the semantic em-
bedding esem. Specifically, the semantic encoder
consists of two parts: a fixed pre-trained AMR
encoder (Ribeiro et al., 2021) followed by a learn-
able Transformer encoder. We additionally perform
node masking when training the semantic encoder.
Specifically, every node in the AMR graph has a

1https://github.com/bjascob/amrlib-models
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Figure 3: AMRPG’s framwork. It separately encodes the AMR graph and the constituency parse of the input
sentence into two disentangled semantic and syntactic embeddings. A decoder is then learned to reconstruct the
input sentence from the semantic and syntactic embeddings.

probability to be masked out during training. This
can improve the robustness of AMRPG.

As mentioned above, two semantically similar
sentences would have similar AMR graphs regard-
less of their syntax. This property encourages
AMRPG to capture only semantic information in
semantic embeddings. Compared with previous
work (Huang and Chang, 2021), which uses bag-
of-words to learn the semantic embeddings, using
AMR can capture semantics better and lead to bet-
ter performance, as shown in Section 4.

Syntactic embedding. Given a source sentence,
we use the Stanford CoreNLP toolkit (Manning
et al., 2014) to get its constituency parse. Then, we
remove all the terminals in the parse and learns a
Transformer encoder to encode the parse into the
syntactic embedding esyn. Since we remove the
terminals, the syntactic embedding contains only
the syntactic information of the source sentence.

Decoder. We train a Transformer decoder that
takes the semantic embedding esem and the syntac-
tic embedding esyn as the input, and reconstructs
the source sentence with a cross-entropy loss. The
reconstruction objective makes AMRPG not re-
quire parallel paraphrase pairs for training.

Inference. Given a source sentence s and a target
parse p, we use the semantic encoder to encode the
AMR graph of s into the semantic embedding, use
the syntactic encoder to encode p into the syntactic
embedding, and use the decoder to generate the
target sentence t.

4 Experiments

4.1 Syntactically Controlled Paraphrase
Generation

Datasets. We consider ParaNMT (Wieting and
Gimpel, 2018) for training and testing. We use only
the source sentences in ParaNMT to train AMRPG
and other unsupervised baselines, and use both the
source sentences and target sentences to train super-
vised baselines. To further test the model’s ability
to generalize to new domains, we directly use the
models trained with ParaNMT to test on Quora
(Iyer et al., 2017), MRPC (Dolan et al., 2004), and
PAN (Madnani et al., 2012)

Evaluation metrics. Following the previous
work (Huang and Chang, 2021), we consider the
BLEU score to measure the similarity between the
gold target sentences and the predicted target sen-
tences, and consider the template matching accu-
racy2 (TMA) to evaluate the goodness of syntactic
control. More details about the evaluation can be
found in Appendix B.2.

Baselines. We consider the following unsuper-
vised models: SIVAE (Zhang et al., 2019), SynPG
(Huang and Chang, 2021), AMRPG, and T5-
Baseline, which replaces the AMR encoder with a
T5-encoder. We also consider SCPN (Iyyer et al.,
2018) as the supervised baseline.

Results. Table 1 shows the results of syntactically
controlled paraphrase generation. AMRPG per-
forms the best among the unsupervised approaches.
Specifically, AMRPG outperforms SynPG, the

2Template matching accuracy is defined as the exact match-
ing accuracy of top-2 levels of parse trees.
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Model ParaNMT Quora PAN MRPC

TMA BLEU TMA BLEU TMA BLEU TMA BLEU

Unsupervised Approaches (without using parallel pairs)

SIVAE (Zhang et al., 2019) 30.0 12.8 48.3 13.1 26.6 11.8 21.5 5.1
SynPG (Huang and Chang, 2021) 71.0 32.2 82.6 33.2 66.3 26.4 74.0 26.2
T5-Baseline 57.1 22.8 66.1 22.2 55.3 21.0 66.2 18.8
AMRPG 74.3 39.1 84.8 33.9 65.6 31.0 71.9 34.8

Unsupervised Approaches (using target domain source sentences)

SynPG (Huang and Chang, 2021) - - 86.3 44.4 66.4 34.2 80.7 44.6
AMRPG - - 86.5 45.4 67.5 37.6 76.8 45.9

Supervised Approaches (using additional parallel pairs in ParaNMT; not compariable to ours)

SCPN (Iyyer et al., 2018) 83.9 58.3 87.1 41.0 72.3 37.6 80.1 41.8

Table 1: Results of syntactically controlled paraphrase generation. AMRPG performs the best among all unsuper-
vised approaches and can outperform supervised approaches when considering the target domain source sentences.

Input The dog chased the cat on the street.
Parse template (S(NP(DT)(NN))(VP(VBN)(PP))(.))
Target The cat was chased by the dog on the street.
SynPG The dog was chased by the cat on the street.
AMRPG The cat was chased by a dog in the street.
Input John will send a gift to Tom when Christmas comes.
Parse template (S(SBAR (WHADVP)(S))(,)(NP(NNP))(VP(MD)(VP))(.))
Target When Christmas comes, John will send a gift to Tom.
SynPG When Tom comes, John will send a gift to Christmas.
AMRPG When Christmas comes, John will send a gift to Tom.

Table 2: Paraphrase examples generated by SynPG and AMRPG. AMRPG captures semantics better and generates
higher quality of paraphrases than SynPG.

state-of-the-art unsupervised model, with a large
gap in terms of BLEU score. This justifies that us-
ing AMR can learn better disentangled embeddings
and capture semantics better.

We observe that there is indeed a performance
gap between AMRPG and SCPN (supervised base-
line). However, since AMRPG is an unsupervised
model, it is possible to use the source sentences
from the target domains to further fine-tune AM-
RPG without additional annotation cost. As shown
in the table, AMRPG with further fine-tuning can
achieve even better performance than SCPN when
considering domain adaptation (Quora, MRPC, and
PAN). This demonstrates the flexibility and the po-
tential of unsupervised paraphrase models.

Qualitative examples. Table 2 lists some para-
phrases generated by SynPG and AMRPG. As we
mentioned in Section 3, SynPG uses bag-of-words
to learn semantic embeddings and therefore SynPG
is easy to get confused about the relations between
entities or mistake the subject for the object. In
contrast, AMRPG can preserve more semantics.

4.2 Improving Robustness of NLP Models

We demonstrate that the paraphrases generated by
AMRPG can improve the robustness of NLP mod-
els by data augmentation. Following the setting
of previous work (Huang and Chang, 2021), we
consider three classification tasks in GLUE (Wang
et al., 2019): MRPC, RTE, and SST-2. We com-
pare three baselines: (1) the classifier trained with
original training data, (2) the classifier trained with
original training data and augmented data gener-
ated by SynPG, and (3) the classifier trained with
original training data and augmented data gener-
ated by AMRPG. Specifically, for every instance
in the original training data, we generate four para-
phrases as the augmented examples by considering
four common syntactic templates. More details can
be found in Appendix C.1.

Table 3 shows the clean accuracy and the broken
rate (the percentage of examples being attacked)
after attacked by the syntactically adversarial ex-
amples3 generated with SCPN (Iyyer et al., 2018).
Although the classifiers trained with data augmen-

3Appendix C.2 has more details of the adversarial attack.
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Model MRPC RTE SST-2

Acc. Brok. Acc. Brok. Acc. Brok.

Base 83.3 52.9 62.1 58.1 92.2 38.8

+ SynPG 80.6 42.2 61.7 40.3 91.5 38.5
+ AMRPG 80.6 38.3 58.8 39.3 91.6 36.7

Table 3: Augmenting paraphrases generated by AM-
RPG improves the robustness of NLP models. Acc
denotes the clean accuracy (the higher is the better).
Brok denotes the percentage of examples being success-
fully attacked (the lower is the better).

tation have slightly worse clean accuracy, they have
significantly lower broken rates, which implies that
data augmentation improves the model robustness.
Also, data augmentation with AMRPG performs
better than data augmentation with SynPG in terms
of the broken rate. We attribute this to the better
quality of paraphrase generation of AMRPG.

5 Conclusion

We propose AMRPG that utilizes AMR to learn
a better disentanglement of semantics and syntax
without using any parallel data. This enables AM-
RPG to captures semantics better and generate
more accurate syntactically controlled paraphrases
than existing unsupervised approaches. We also
demonstrate that how to apply AMRPG to improve
the robustness of NLP models.

Limitations

Our goal is to demonstrate the potential of AMR
for syntactically controlled paraphrase generation.
The current experimental setting follows previous
works (Iyyer et al., 2018; Huang and Chang, 2021),
which considers the full constituency parses as the
control signals. In real applications, getting full
constituency parses before the paraphrase gener-
ation process might take additional efforts. One
potential solution is to consider relatively noisy or
simplified parse specifications (Sun et al., 2021).
In addition, some parse specifications can be in-
appropriate for certain source sentences (e.g., the
source sentence is long but the target parse is short).
How to score and reject some of the given parse
specifications is still an open research question. Fi-
nally, although training AMRPG does not require
any parallel paraphrase pairs, it does require a pre-
trained AMR parser, which can be a potential cost
for training AMRPG.

Broader Impacts

Our proposed method focuses on improving syn-
tactically controlled paraphrase generation. It is
intended to be used to improve the robustness of
models and facilitate language generation for appli-
cations with positive social impacts. All the experi-
ments are conducted on open benchmark datasets.
However, it is known that the models trained with
a large text corpus could capture the bias reflect-
ing the training data. It is possible for our model
to potentially generate offensive or biased content
learned from the data. We suggest to carefully ex-
amining the potential bias before deploying models
in any real-world applications.
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A Implementation Details

We use around 20 millions of examples4 in
ParaNMT (Wieting and Gimpel, 2018) to train AM-
RPG and all baselines. The semantic encoder and
the syntactic decoder are trained from scratch, with
the default architecture and the default parameters
of torch.nn.Transformer. The max length
for input sentences, the linearized constituency
parses, and the linearized AMR graph are set to
40, 160, and 250, respectively. The word dropout
rate is 0.4 while the node masking rate is 0.6. We
consider Adam optimizer with the learning rate be-
ing 10−4 and the weight decay being 10−5. The
total number of epochs is set to 10. When gener-
ating the outputs, we use random sampling with
temperature being 0.5. The model is trained with 4
NVIDIA V100 GPUs with 16 GB memory each. It
takes around 7 days to finish the training process.

B Experimental Settings of Syntactically
Controlled Paraphrase Generation

B.1 Datasets

Following previous work (Huang and Chang,
2021), our test data is: (1) 6,400 examples of
ParaNMT (Wieting and Gimpel, 2018), (2) 6,400
examples of Quora (Iyer et al., 2017), (3) 2,048
examples of PAN (Madnani et al., 2012), and (4)
1,920 examples of MRPC (Dolan et al., 2004).

B.2 Evaluation

Following previous work (Huang and Chang,
2021), we consider paraphrase pairs to evaluate
the performance. Given a paraphrase pairs (s1, s2),
we use the Standford CoreNLP constituency parser
(Manning et al., 2014) to get their parses (p1, p2).
The input of all baselines would be (s1, p2) and the
ground truth would be s2.

Assuming the generated paraphrase is g, We use
BLEU score to measure the similarity between the
generated paraphrase g and the ground truth s2.
We also calculate the template matching accuracy
(TMA) by computing the exact matching accuracy
of the top-2 levels of pg and p2 (pg is the con-
stituency parse of g).

4https://github.com/uclanlp/synpg

C Experimental Settings of Model
Robustness

C.1 Training Details
We use the pre-trained SynPG parse generator to
generate the full parse for each instance with the
following parse templates: “(S(NP)(VP)(.))”,
“(S(VP)(.))”, “(NP(NP)(.))”, and
“(FRAG(SBAR)(.))”. Then, we use the
generated full parses as the parse specifications to
generate paraphrases for data augmentation. When
training classifiers with data augmentation, the
original instances have four times of weights as
the augmented instances when computing the loss.
We use the scripts from Huggingface5 with default
values to train the classifiers.

C.2 Generating Adversarial Examples
We use the official script6 of SCPN (Iyyer et al.,
2018) to generate syntactically adversarial exam-
ples. Specifically, we consider the first five parse
templates for RTE and SST-2 and first three parse
templates for MRPC to generate the adversarial
examples. As long as one of the adversarial exam-
ples makes the classifier change the prediction, we
count it as a successful attack on this instance.

5https://github.com/huggingface/
transformers/blob/main/examples/pytorch/
text-classification/run_glue.py

6https://github.com/miyyer/scpn
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