N-gram Is Back: Residual Learning of Neural Text Generation
with n-gram Language Model

Huayang Li* Deng Cai’

*Nara Institute of Science and Technology

Jin Xu® Taro Watanabe®

“The Chinese University of Hong Kong

CInstitute for Interdisciplinary Information Sciences, Tsinghua University
{li.huayang.1lh6, taro}@is.naist.jp thisisjcykcd@gmail.com
xujin21@mails.tsinghua.edu.cn

Abstract

N-gram language models (LM) have been
largely superseded by neural LMs as the latter
exhibits better performance. However, we find
that n-gram models can achieve satisfactory
performance on a large proportion of testing
cases, indicating they have already captured
abundant knowledge of the language with rel-
atively low computational cost. With this ob-
servation, we propose to learn a neural LM that
fits the residual between an n-gram LM and
the real-data distribution. The combination of
n-gram and neural LMs not only allows the neu-
ral part to focus on the deeper understanding of
language but also provides a flexible way to cus-
tomize an LM by switching the underlying n-
gram model without changing the neural model.
Experimental results on three typical language
tasks (i.e., language modeling, machine trans-
lation, and summarization) demonstrate that
our approach attains additional performance
gains over popular standalone neural models
consistently. We also show that our approach al-
lows for effective domain adaptation by simply
switching to a domain-specific n-gram model,
without any extra training. Our code is released
at https://github.com/ghrua/NgramRes.

1 Introduction

N-gram language model (LM) was widely adopted
in a broad range of natural language processing
(NLP) applications, such as input method (Chen
et al., 2019), statistical machine translation (Brown
et al., 1990), and audio speech recognition (Bahl
et al., 1983). However, with the development of
deep learning, neural LMs have gradually taken the
place of n-gram LMs and became the new standard
in recent literature (Merity et al., 2017; Vaswani
et al., 2017; Radford et al., 2019). One critical
reason is the superior performance of neural LMs,
e.g., the GPT-2 model (Radford et al., 2019) can
generate text near the human level, outperforming
n-gram LMs by large margins.

. 5-gram
GPT-2

—
=™

Index of Bins

Figure 1: Sentence-level perplexity (PPL) of 5-gram LM
and GPT-2 LM on the validation dataset of wikitext-103.
We sort sentences in the validation dataset according to
their 5-gram PPL scores, and collect them into 5 bins
with an equal number of sentences. The reported PPL
score of each bin is the average over the sentences in it,
and the y-axis uses a logarithmic scale. Details of the
dataset and LMs are shown in section 5.1.

Despite that neural LMs have surpassed n-gram
models at the macro level, we find that n-gram
LMs are still attractive: they are able to achieve
satisfactory performance on a large proportion of
testing cases at a much lower cost than neural LMs.
As observed in Figure 1, our preliminary experi-
ments show that the performance of 5-gram LM
is close to the GPT-2 model trained from scratch
on 3 out of 5 bins (1, 2, and 5). Moreover, the
performance of 5-gram on the first bin is slightly
better than GPT-2. Because training a neural LM
is much more expensive, spending effort on learn-
ing the knowledge that can be cheaply captured by
n-gram seems a waste.

Inspired by the above observation, we propose to
learn a neural LM that focuses on the information
gap that has not been captured by an n-gram model:
F =G — Q, where G and Q are the real-data dis-
tribution and the n-gram prediction distribution
respectively, which is in a similar spirit to resid-
ual learning (He et al., 2016). More concretely,
we combine the logits (the unnormalized probabil-

1523

Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1523-1533
December 7-11, 2022 ©2022 Association for Computational Linguistics

https://github.com/ghrua/NgramRes

ity scores before softmax layer) of a neural model
and those derived from an n-gram model. The joint
neuro-symbolic system at least brings two appeal-
ing characteristics. First, since the neural model
stands on the shoulders of the shallow n-gram LM,
it can concentrate on deeper understanding. Sec-
ond, the underlying n-gram LM can be purpose-
fully switched without changing the neural model,
which offers great flexibility in tackling scenarios
such as domain adaptation. That is, we can adapt
the model to a specific domain by changing the
underlying n-gram LM in a plug-and-play man-
ner, without changing any parameters of the neural
model.

We conduct extensive experiments to evaluate
the proposed approach. Experiments on the stan-
dard benchmarks of three typical language tasks,
including language modeling, machine translation,
and summarization, show that our approach can
improve the performance of recent state-of-the-
art neural models consistently and considerably.
For example, our approach outperforms popular
baseline models by at least 0.7 PPL scores on the
wikitext-103 dataset for language modeling, 0.65
BLEU scores on average on IWSLT datasets for
machine translation, and 0.36 ROUGE-L scores
on the CNN/DailyMail dataset for summarization.
Moreover, on the language modeling task, when
switching the underlying n-gram LM to a particular
domain-specific one (e.g., I'T, Koran, Law, Medi-
cal, and Subtitles) in a plug-and-play manner, our
model can reduce the PPL by 5.4 points on aver-
age without any domain-specific training of the
neural part. Remarkably, the performance of our
approach is even close to fine-tuning the whole
model on domain-specific corpora.

Our contributions are three-fold:

* We propose a residual learning approach for
two heterogeneous structures, i.e., n-gram and
neural LMs, which forces the neural LM to
approximate the information gap that has not
been captured by n-gram LM.

* Our approach is able to improve the perfor-
mance of recent state-of-the-art neural mod-
els consistently and considerably on language
modeling, machine translation, and summa-
rization.

* Experiments on domain adaptation demon-
strate that our approach can effectively and
cheaply adapt the model to a specific domain

by changing the used n-gram LM in a plug-
and-play manner, without changing any pa-
rameters of the neural model.

2 Related Work

Language Model The n-gram language model
(LM) has been widely used in lots of applications
of natural language processing (NLP) since a long
time ago (Jurafsky, 2000). The emergence of ad-
vanced smoothing technologies makes the n-gram
model able to provide a better estimation of hu-
man languages (Kneser and Ney, 1995; Chen and
Goodman, 1996; Heafield et al., 2013). In statis-
tical machine translation (Brown et al., 1990) and
automatic speech recognition (Bahl et al., 1983),
the decoder-side n-gram model is critical to esti-
mate the quality of generated candidates. In recent
literature on input methods, the n-gram LM is still
the most popular choice for providing word sug-
gestions (Huang et al., 2015; Chen et al., 2019),
because of its low cost and low latency.

However, with the development of deep neural
networks, the macro-level performance of neural
LM has surpassed that of n-gram LM by a large
margin. Comparing with the n-gram LM, one
big advantage of the neural LM basing on recur-
rent neural network (Hochreiter and Schmidhuber,
1997; Chung et al., 2014) and attention neural net-
work (Vaswani et al., 2017; Radford et al., 2019) is
their ability to modeling long-distance dependen-
cies (Grave et al., 2017). The success of neural
LM can also be observed in the big improvement
achieved in lots of downstream tasks, e.g., text gen-
eration (Holtzman et al., 2020; Welleck et al., 2020;
Su et al., 2022; Xu et al., 2022; Li et al., 2022; Cai
et al., 2022), machine translation (Bahdanau et al.,
2015; Luong and Manning, 2015; Vaswani et al.,
2017; Cai et al., 2021) and summarization (Li et al.,
2017; See et al., 2017; Bi et al., 2020).

Although neural LM has outperformed n-gram
LM at the macro level, we find that n-gram LM can
achieve satisfactory performance on a large portion
of testing cases. Since the training cost of neural
LM is much more expensive and the model capacity
is fixed, we hypothesize that it is not necessary to
train the neural LM to learn the knowledge that can
be captured by n-gram LM at a much lower cost.
Therefore, we propose a residual learning method
to let the neural LM learn the gap of knowledge
that has not been captured by n-gram LM.

1524

Residual Learning Residual learning is a useful
technique for lots of neural networks in computer
vision (CV) and natural language processing (NLP).
He et al. (2016) propose deep residual learning to
alleviate the training difficulties of deep models,
which has been the backbone of lots of tasks in
CV. In NLP, Wang and Tian (2016) and Prakash
et al. (2016) use the residual learning technique to
train deep recurrent neural networks for text gener-
ation. Different from previous works that conduct
residual learning over different layers, Werlen et al.
(2018) propose to aggregate the information of his-
torical predictions using residual learning. In He
et al. (2021), they use the residual learning to prop-
agate attention scores across different layers of the
Transformer-based model.

Most of these works conduct residual learning
over homogeneous model structures, e.g., stacked
identical layers of the same model. In our work,
we use residual learning to combine the neural and
symbolic models, i.e., learn a neural LM that ap-
proximates the information that has not been cap-
tured by the n-gram model.

3 Background

Models that estimate the probabilities of sequences
of words are called language models (LM) (Juraf-
sky, 2000). Let x = {z1, z2, ..., 21} be a sequence
of words with length L. The probability of P(x)
can be formalized according to the chain rule of
probability:

P(x) = P(z1)P(a2)ar) ... P(zp|ar™)
L
H (zglay ™),)
where :1:]1“*1 is called the prefix or context of zy. In

this section we will briefly introduce two kinds of
language models, the n-gram and neural language
models, to compute the probability in Eq. (1).

3.1 N-gram Language Model

Among lots of variants of n-gram LMs, the n-gram
LM with modified Kneser-Ney smoothing is widely
adopted in lots of related tasks, because of its low
perplexity and efficiency (Kneser and Ney, 1995;
Chen and Goodman, 1996; Heafield et al., 2013).
Like most n-gram LMs, the Kneser-Ney approxi-
mates the entire context x]f_l in Eq. (1) by the last

n — 1 words in the context:

P(apley™") ~ Pra(agleiZ)). ()

In Kneser-Ney algorithm, the estimation of
PNg(xk\wllj:; 1) is defined according to a recur-
sive equation:

kf
U(ak|ey_ 711+1)+

b(wk n-‘,—l)PNG(xk‘mk; n+2)7

PNG(xk|$]]z:711+1) =

3)
Uaiat) = o) 7
Th|Tp 1) = k—1
" S cl@y) qw)
where w indicates a word appears after 33],2:711 115

b(+) is the backoff value for lower-order estimation,
¢(+) is the adjusted counts, d is the discounts for
smoothing (Jurafsky, 2000; Heafield et al., 2013).
According to Eq. (3), Kneser-Ney allows us to
assign probabilities for unseen n-grams (e.g., 5-
grams), using the lower-order information (e.g., 4-,
3-, or even uni-grams).

3.2 Neural Language Model

An neural LM typically estimates the probability
of x; based on the whole context :131 . The pa-
rameter 6 of a neural LM is optimized through the
following MLE loss:

L

Lyu =YY log Pyu(axlai™0) @)

x€D k=1

where D is the training dataset. The probability of
Pyy (x| is computed by:

Py (zg|xh~1; 0) = softmax(¢p(hy))[zr], (5)
where hj, is the hidden vector output by the last
layer of an neural LM, e.g., the GPT-2 model (Rad-
ford et al., 2019) or LSTM model (Grave et al.,
2017). The [xg] is defined as taking the component
regarding to x in a vector, i.e., the probabilistic
distribution got from softmax in this equation. The
¢(+) is a linear layer that transforms the hidden vec-
tor hy, to a vector in the vocabulary space, which is
also called the logits.

"More details about adjusting counts and computing the
backoff values and discounts are shown in Jurafsky (2000)
and Heafield et al. (2013).

1525

4 Methodology
4.1 Motivation

The main idea of our work is to use the neural
LM to approximate a residual function. Given the
context :Blf_l in the language modeling task, let us
consider G(x¥ 1) as the golden-truth distribution
of the next word, and

Q™) = Pna(X|zh~!) (6)

as the prediction distribution of the n-gram LM,
where X is the random variable and the proba-
bility Pya(X = xgzf} 41) is calculated ac-
cording to Eq. (3). Since the n-gram distribu-
tion Q(z%~!) has captured abundant information
of the language as we discussed in the introduc-
tion, one interesting question is: can we use a
neural LM to approximate the residual function
F(zb 1) := G(ab1) — Q(«h1)? This is similar
to the residual learning in He et al. (2016). If it is
possible, we can release the burden of neural LMs
on learning the information that has been captured
by n-gram LMs, e.g., short-distance dependencies,
and provide a flexible way to customize an LM by
switching the underlying n-gram model without
changing the neural model.

4.2 Learning Objective

Ideally, to train a neural LM that approximates
the residual function, one way is to re-define the
Pny(zgl|-) in Eq. (5) as follows:

Py (ailay ™' 0) = F(ai ™) o]+
Pne(zplel =), 1),

where F(+) is parameterized by the neural model
0, and Pyg(xg|-) is defined in Eq. (3). Then we
can optimize the MLE loss in Eq. (4) based on
the new Pyy (zg|-), which is equivalent to approx-
imate real-data distribution G by F 4+ Q. How-
ever, directly optimizing this objective may have
some problems. If F(-) is unbounded, Py de-
fined in this equation may not be guaranteed as a
valid probabilistic distribution. In contrast, if F(-)
is bounded as a valid distribution, this objective
would become the ensemble of a neural LM and
n-gram LM. Since n-gram is a weaker model, the
ensemble of them is more likely to achieve worse
performance than the vanilla neural LM, as shown
in the experimental results of section 5.1.

To address these issues, we propose to define
residual approximation at the logits level. In the

language modeling task, we can map the proba-
bilistic distribution back to its logits and conduct
residual learning as follows:

F' (251 . = softmax ! (Q’(:I:lffl))—
softmax " (Q(z} ™)) (7)
softmax™!(p) = logp + C, 8)

where F'(-) is the residual function at the log-
its level, softmax ! (p) is the reverse function of
softmax that maps the probabilistic distribution p
to its logits, and C'is a constant. One reason that we
conduct residual learning at the logits level is that
logits are highly correlated to the final distribution.
Moreover, since the value of logits is in the real
number space, training the neural LM becomes
more tractable by making sure that its logits are
close to F'(z¥~1). Therefore, the final Py (zy|-)
defined in our work is:

Pyy (wg|zhi™t;0) = softmax(]—"’(ac]f_l) + ax

softmax ! (Q(:n’f_l))) (]
©)

where « is a hyper-parameter to control the smooth-
ness of the logits of the n-gram distribution
Q(z¥~1), and F'(-) is approximated by the log-
its ¢(hy) of a neural LM. We can use the definition
in Eq. (9) to optimize the MLE loss in Eq. (4).
4.3 Relation to Re-weighting

To better understand our approach, we can dive into
the details of Eq. (9). For simplicity, let us omit
the condition ¥~ in this section:

Pny(zg|-) = softmax ((f)(hk) + ax

(log Png(X|) + C))L’Ek]

(10)
(ec) « (elog PNg(l‘k|-))ae¢(hk)[zk]
(11)

We apply the Eq. (6) and (8) to get the explicit form
of logits of the n-gram LM in Eq.(10), and the def-
inition of ¢(hy) is the same as that in Eq. (5). In
Eq. (11), we expand the softmax function, where
Z is the normalization term. The numerator of Eq.
(11) has three terms. The first term (e)® is a con-
stant for all the logit values, which does not affect
the distribution. The middle term (elo& Pva (@) ya

1526

actually equals to Pyg(zk|-)®, which makes it be
like the weight of the the logits of neural LM, i.e.,
the last term e?("*)[#x] in Eq. (11). When compar-
ing with the vanilla neural LM, the golden-truth
words are not equally important in the learning pro-
cess of our approach. For golden-truth words that
are well estimated by the n-gram LM, our approach
would get high probabilities after softmax, leading
to a small loss value for the neural module. As
a result, the neural model can spend more effort
on difficult cases, such as predictions relying on
long-distance dependencies, which are hard to be
estimated by the n-gram LM.

4.4 Discussion

In this section, we propose a method to conduct
residual learning between the neural and symbolic
models, i.e., neural LM and n-gram LM. One of
our expectations about the joint neuro-symbolic
system is its better understanding of language. To
evaluate this hypothesis, we can test our approach
on standard language tasks, such as language mod-
eling, machine translation, and summarization. The
other expectation is the plug-and-lay property of
our approach. For instance, if the testing data come
from different domains, we can change the Q in Eq.
(9) by simply switching the used n-gram model.

5 Experiments

In our work, we consider three kinds of natural
language generation tasks: language modeling, ma-
chine translation, and summarization. For the lan-
guage modeling task, we first evaluate the perfor-
mance of our approach on the standard setting of
the language modeling task. Then we turn to a
domain adaptation setting.

5.1 Language Modeling

Setup We use the wikitext-103 benchmark” to
evaluate the performance of our approach in the
standard setting. The training set contains around
101M tokens. Following Merity et al. (2017), to-
kens with a frequency lower than 3 have been
replaced by the special token <unk> in the train-
ing datasets, and the number of remaining unique
words is around 260k. For wikitext-103, we
will train models at both word and subword lev-
els. The subword-level data is preprocessed using

’Dataset provided by fairseq: https://s3.
amazonaws.com/research.metamind.io/wikitext/
wikitext-103-v1.zip

subword-nmt3 (Sennrich et al., 2016), where the
number of merge operation is set to 32k.

We use fairseqg® (Ott et al., 2019) as the code
base of our neural modules. We implement our
approach on two popular neural language mod-
els, GPT-2 base (Radford et al., 2019) and Adap-
tive Input (ADP) (Baevski and Auli, 2019). For
the ADP model, we follow the original hyper-
parameters and use the code released by Baevski
and Auli (2019) in fairseq® to train the model on
word-level data. Since the vocabulary size of the
word-level data is too large, we train the GPT-2
base model on the subword-level data. For those
neural models, we mostly use their default hyper-
parameters reported in their paper (Baevski and
Auli, 2019; Radford et al., 2019) and train those
models from random initialization. Regarding to
the n-gram model, we use the KenLM® (Heafield,
2011) to train n-gram models on both the word-
level and subword-level data of wikitext-103. The
n is set to 5 in our work. To make the perplexities
of different models comparable, we report all the
perplexity scores at the word level. For subword-
level data, the word-level probability is the product
of its subword tokens, following Baevski and Auli
(2019).

When training our approach NGRAMRES, we
will hybrid the KENLM-5GRAM model and the
neural model, i.e., GPT-2 and ADP, using the
residual learning method discussed in section 4.
The hyper-parameter « in Eq. (9) is tuned accord-
ing to the performance on the validation dataset.

Results As shown in Table 2, we evaluate our ap-
proach on the wikitext-103 benchmark. Although
the macro performance of KENLM-5GRAM (Line
6) on the test set is poor, it is still able to promote
the performance of our approach. When comparing
our approach (Line 8 and 11) with the vanilla neural
models (Line 7 and 9), our approach steadily out-
performs ADP-FAIRSEQ’ and GPT-2 by 0.7 and
0.9 PPL scores, respectively. According to these
results, NGRAMRES is able to improve the model
performance without changing the architecture and
the number of parameters.

3https://github.com/rsennrich/subword—nmt

*https://github.com/facebookresearch/fairseq

Shttps://github.com/facebookresearch/fairseq/
blob/main/examples/language_model/README.
adaptive_inputs.md

6https://github.com/kpu/kenlm

"This is the result by running the officially released code
of ADP

1527

https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip
https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip
https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip
https://github.com/rsennrich/subword-nmt
https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/fairseq/blob/main/examples/language_model/README.adaptive_inputs.md
https://github.com/facebookresearch/fairseq/blob/main/examples/language_model/README.adaptive_inputs.md
https://github.com/facebookresearch/fairseq/blob/main/examples/language_model/README.adaptive_inputs.md
https://github.com/kpu/kenlm

IT Koran Law Medical Subtitles | AVG.
1 | #SENT 222,927 17,982 467,309 248,099 500,000 -

2 | #WORD 2,585,965 4,512,266 15,348,052 4,512,266 5,125,239 -

3 | KENLM-5GRAM 95.89 35.51 15.74 24.00 101.99 54.63
4 | GPT-2 66.49 35.34 9.93 15.18 77.34 40.86
5| + FINETUNE 53.69 26.77 943 12.96 69.33 34.44
6 | + NGRAMRES 54.29 28.08 8.93 13.29 71.80 35.28

Table 1: Test perplexity of five domains. Results in lines 1-2 are the statistical information of each domain. Results
in lines 3-6 are the perplexity scores of different approaches when testing on the five domains. The GPT-2 and
NGRAMRES (Line 4 and 6) approaches only train unified models for five domains, while the FINETUNE method

(Line 5) trains a domain-specific model for each domain.

| Model #Param PPL
1 | (Graveetal., 2017) - LSTM - 40.8
2 | (Dauphin et al., 2017) - GCNN-8 229M 37.2
3 | (Merity etal., 2018) - QRNN 151M 33.0
4 | (Raeetal., 2018) - HEBBIAN + CACHE - 29.2
5 | (Baevski and Auli, 2019) - ADP 247TM 18.7
6 | KENLM-5GRAM - 116.4
7 | ADP-FAIRSEQ 247M 18.9
8 + NGRAMRES 247M 18.2
9 | GPT-2 (BPE) 185M 22.2
10 | + PROB-INTER 185M 60.2
11 + NGRAMRES 185M 21.3

Table 2: Test perplexity on wikitext-103. Results in
lines 1-5 are reported in previous works, and results
in lines 6-11 are run by us. The NGRAMRES is our
approach discussed in section 4.

Moreover, we also compare our method with
a straightforward baseline PROB-INTER, as dis-
cussed in section 4. The PROB-INTER baseline
directly interpolates the probabilistic distribution
of KENLM-5GRAM and GPT-2. The performance
of PROB-INTER is better than the KENLM-5GRAM
but worse than the vanilla GPT-2, making it like
the ensemble of the two models, as we discussed
in the section 4.

5.2 Language Modeling: Multi-Domain

In this setting, we will evaluate the performance
of adapting our approach to a specific domain by
changing the used n-gram model.

Setup In the multi-domain setting, we use the
English side of a bilingual dataset with 5 domains
(Aharoni and Goldberg, 2020), i.e., IT, Koran, Law,
Medical, and Subtitles. The statistical informa-
tion of this dataset is shown in Table 1. we apply
subword-nmt on the joint training data of five do-
mains, and the number of the merge operation is
also 32k.

Following the standard setting of the language

modeling task, we use GPT-2 base (Radford et al.,
2019) as the neural model. We train and select
GPT-2 model on the mixed data from five domains,
and report the word-level perplexity on the test
data of each domain independently. The GPT-2
+ FINETUNE method will adapt the parameters of
GPT-2 model on the corresponding domain before
testing. For our approach NGRAMRES, we train a
5-gram LM for each specific domain and switch the
used 5-gram model to the corresponding domain
during training and testing. It is worth noting that
the neural parameters of NGRAMRES are fixed
when testing.

Results The experimental results are shown in
Table 1. For GPT-2 and NGRAMRES (Line 4 and
6), we train unified neural models on mixed data
of five domains and evaluate their performances on
the test data of five domains one by one. Results
show that our approach can outperform the vanilla
neural model GPT-2 by a large margin. Since
the NGRAMRES approach stores a lot of domain-
specific information in the 5-gram LM, we hypoth-
esize that the neural module is able to learn use-
ful and complementary knowledge during training,
leading to the performance gain.

In the line of + FINETUNE, we also report the
results of fine-tuning the GPT-2 model on each test-
ing domain. It surprised us that the performances
of our approach are very close to those of the FINE-
TUNE method. The NGRAMRES even outperforms
FINETUNE slightly on the Law domain. Moreover,
compared with the FINETUNE, one advantage of
our approach is its low cost of adapting our model
to the testing domain, since we only need to replace
the used 5-gram model in a plug-and-play manner.

1528

Model En=Fr En=Es En=YVi En= De | AVG.
TRANSFORMER 39.96 36.99 28.55 27.79 33.32
+ NGRAMRES 40.27 37.27 29.60 28.05 33.79
+ NGRAMRES-ANNEAL 40.49 37.07 29.92 28.41 33.97

Table 3: BLEU scores on IWSLT. The TRANSFORMER model is the baseline, and NGRAMRES and NGRAMRES-
ANNEAL are two variants of our approach. Comparing with NGRAMRES, the NGRAMRES-ANNEAL decreases the
value of « in Eq. (9) linearly in the first 10k steps of model training.

Model | ROUGE-1 ROUGE-2 ROUGE-L
Pointer-generator + Coverage (See et al., 2017) 39.53 17.28 36.38
Mask Attention Network (Fan et al., 2021) 40.98 18.29 37.88
BertSum (Liu and Lapata, 2019) 42.13 19.60 39.18
UniLM (Dong et al., 2019) 43.08 20.43 40.34
UniLM V2 (Bao et al., 2020) 43.16 20.42 40.14
ERNIE-GEN-large (Xiao et al., 2021) 44.02 21.17 41.26
PEGASUS (Zhang et al., 2020) 4417 21.47 41.11
ProphetNet (Qi et al., 2020) 44.20 21.17 41.30
PALM (Bi et al., 2020) 44.30 21.12 41.14
BART-LARGE (Lewis et al., 2020) 44.11 21.21 40.83
+ NGRAMRES 44.41 21.36 41.19

Table 4: ROUGE scores on the test set of CNN/DailyMail dataset.

5.3 Machine Translation

Next, we evaluate our approach on a popular
sequence-to-sequence task, namely, machine trans-
lation. Note that we only integrate our approach
into the decoder side of the encoder-decoder model.

Setup We conduct the experiments of machine
translation on IWSLT14 (En = Fr, Es, De) and
IWSLT15 (En = Vi). The IWSLT14 datasets® of
three language pairs are preprocessed following the
script provided by fairseq”, where the evaluation
data is sampled from the whole dataset and the
test data is the concatenation of dev2011, tst2012,
tst2012. There is no overlap between train, valida-
tion, and test sets. For IWSLT15, we use the train,
evaluation, and test data preprocessed and released
by Stanford'® (Luong and Manning, 2015). The
results are reported using tokenized SacreBLEU!!
(Post, 2018).

We use fairseq as our code base. We use the

8https://wit3.fbk.eu/2014-01

*https://github.com/facebookresearch/fairseq/
blob/main/examples/translation/prepare-iwslt14.
sh

10https ://nlp.stanford.edu/projects/nmt/

llhttps ://github.com/mjpost/sacrebleu

Transformer model as our architecture'? for all the
translation models. The Transformer model has
6 encoder layers and 6 decoder layers. Since the
IWSLT datasets are small, the hidden size of FFN
sublayers is set to 1024, the number of attention
heads is set to 4, the dropout rate is set to 0.3, and
the weight decay rate is set to 0.001. We set other
hyper-parameters according to the default setting
of Vaswani et al. (2017). All the translation models
are trained for 30 epochs from random initializa-
tion.

The implementation details of the n-gram model
and our approach are similar to that in the language
modeling task. For the translation task, we only
use the target data, i.e., the X side of En=-X data,
to train the KENLM-5GRAM LM.

Results The results of machine translation are
shown in Table 3. We implement two vari-
ants of our approaches, namely, NGRAMRES and
NGRAMRES-ANNEAL. The system of NGRAM-
RES only uses the 5-gram information on the de-
coder side, as we discussed in section 4. The dif-
ference between NGRAMRES and NGRAMRES-

>The wused architecture

transformer_iwslt_de_en

code in fairseq is

1529

https://wit3.fbk.eu/2014-01
https://github.com/facebookresearch/fairseq/blob/main/examples/translation/prepare-iwslt14.sh
https://github.com/facebookresearch/fairseq/blob/main/examples/translation/prepare-iwslt14.sh
https://github.com/facebookresearch/fairseq/blob/main/examples/translation/prepare-iwslt14.sh
https://nlp.stanford.edu/projects/nmt/
https://github.com/mjpost/sacrebleu

ANNEAL system is that the latter decreases the
value of « linearly after each update . The alpha
value becomes zero after 10k steps.

We find that both the two variants of our ap-
proaches outperform the TRANSFORMER model.
The NGRAMRES-ANNEAL achieves the best re-
sults on each language pair, which means that the
n-gram model is more critical for the beginning
phase and may hurt the translation performance af-
ter that phase. According to Voita et al. (2021), the
training of neural machine translation (NMT) sys-
tems undergoes three stages: target-side language
modeling, learning the word-by-word translation,
and learning to reorder. Therefore, we hypothesize
that the use of the n-gram model in the whole train-
ing procedure may over-emphasize the importance
of target-side language modeling in NMT, having
a negative impact on the next two stages.

5.4 Abstractive Summarization

Lastly, we evaluate our approach on another popu-
lar sequence-to-sequence task, namely, abstractive
summarization. Like machine translation, our ap-
proach is applied to the decoder side of the encoder-
decoder model.

Setup For the abstractive summarization task, we
preprocess the CNN/DailyMail dataset following
the script provided by fairseq'. The evaluation
metrics of the summarization task are ROUGE
scores, i.e., ROUGE-1, ROUGE-2, and ROUGE-L
(Lin, 2004)'4.

We follow the setting of previous works and fine-
tune the pre-trained BART-LARGE model (Lewis
et al., 2020) on the CNN/DailyMail dataset for 20k
updates. We train the KENLM-5GRAM LM on the
joint data of its source and summarization text.

Results The summarization task is also a
sequence-to-sequence task, where the source text
and summarization are in the same language and
share similar semantics. As shown in Table 4, in
this task, our approach is still able to improve the
performance of the strong baseline model BART-
LARGE, without any change in the model architec-
ture.

Different from the machine translation task, we
find that using a fixed « value achieves better per-
formance than annealing it. The reason may be that
the target-side language modeling plays a more

13https://github.com/facebookresearch/fairseq/

blob/main/examples/bart/README. summarization.md
14https://github.com/pltrdy/filesZrouge

important role in the summarization task because
summarization is more like monolingual text gen-
eration in a constrained context.

6 Conclusion and Future Work

This work aims to learn a neural LM that approx-
imates the information that has not been captured
by n-gram LM. To achieve this goal, we propose
a residual learning approach to force the two neu-
ral and symbolic models, i.e., the neural LM and
n-gram LM, to learn complementary information.
We conduct extensive experiments to evaluate the
performance of the proposed approach. In our ex-
periments, we find that our neuro-symbolic system
can not only improve the performance of recent
state-of-the-art neural models consistently and con-
siderable on three typical language tasks (including
language modeling, machine translation, and sum-
marization) but also exhibits a good plug-and-play
property on the multi-domain language modeling
task.

The n-gram LM has lots of attractive proper-
ties that we have not explored in this work. First,
the n-gram model has good interpretability. The
behavior of n-gram LM is easier to understand
than the weights of neurons from the perspective
of humans. In the future, we want to leverage the
property of the n-gram model to better understand
the decision-making process of the neural LM. Sec-
ond, controlling the system predictions through the
n-gram model may have a big potential. As ob-
served in our multi-domain experiments, we are
able to customize an LM by switching the under-
lying n-gram model without changing the neural
part. It is also interesting to explore how to control
the model output at a fine-grained level using the
n-gram LM.

Limitations

We believe there are two limitations in our ap-
proach. First, since the estimation of the prediction
distribution of n-gram models relies on CPU, the
estimation speed by n-gram models may be slow
when using a big batch size (>> 8192x8). Second,
the performance gain of our current approach on
high-resource datasets is not big. For instance, we
also evaluate the performance of TRANSFORMER
+ NGRAMRES on WMT14 En-De (Vaswani et al.,
2017), but the improvement is only 0.15 BLEU
score. These limitations urge us to propose more
efficient and effective approaches in future works.

1530

https://github.com/facebookresearch/fairseq/blob/main/examples/bart/README.summarization.md
https://github.com/facebookresearch/fairseq/blob/main/examples/bart/README.summarization.md
https://github.com/pltrdy/files2rouge

Acknowledgement

We are particularly grateful for the help from Xi-
aojiang Liu, because this project would never have
been conceived and completed without his gener-
ous and selfless support. We also want to thank
the insightful discussions with Yixuan Su and the
valuable comments from our anonymous reviewers,
area chairs, and senior area chairs.

References

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised
domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747—
7763, Online. Association for Computational Lin-
guistics.

Alexei Baevski and Michael Auli. 2019. Adaptive input
representations for neural language modeling. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer.
1983. A maximum likelihood approach to continuous
speech recognition. IEEE Trans. Pattern Anal. Mach.
Intell., 5(2):179-190.

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan
Yang, Xiaodong Liu, Yu Wang, Jianfeng Gao, Song-
hao Piao, Ming Zhou, et al. 2020. Unilmv2: Pseudo-
masked language models for unified language model

pre-training. In International Conference on Ma-
chine Learning, pages 642—-652. PMLR.

Bin Bi, Chenliang Li, Chen Wu, Ming Yan, Wei Wang,
Songfang Huang, Fei Huang, and Luo Si. 2020.
Palm: Pre-training an autoencoding&autoregressive
language model for context-conditioned generation.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8681-8691.

Peter F. Brown, John Cocke, Stephen Della Pietra, Vin-
cent J. Della Pietra, Frederick Jelinek, John D. Laf-
ferty, Robert L. Mercer, and Paul S. Roossin. 1990. A
statistical approach to machine translation. Comput.
Linguistics, 16(2):79-85.

Deng Cai, Yan Wang, Huayang Li, Wai Lam, and
Lemao Liu. 2021. Neural machine translation with
monolingual translation memory. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International

Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7307-7318.

Deng Cai, Yan Wang, Lemao Liu, and Shuming Shi.
2022. Recent advances in retrieval-augmented text
generation. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 3417-3419.

Mingqging Chen, Ananda Theertha Suresh, Rajiv Math-
ews, Adeline Wong, Cyril Allauzen, Francoise Bea-
ufays, and Michael Riley. 2019. Federated learn-
ing of n-gram language models. In Proceedings
of the 23rd Conference on Computational Natural
Language Learning (CoNLL), pages 121-130, Hong
Kong, China. Association for Computational Linguis-
tics.

Stanley F. Chen and Joshua Goodman. 1996. An empir-
ical study of smoothing techniques for language mod-
eling. In 34th Annual Meeting of the Association for
Computational Linguistics, 24-27 June 1996, Univer-
sity of California, Santa Cruz, California, USA, Pro-
ceedings, pages 310-318. Morgan Kaufmann Pub-
lishers / ACL.

Junyoung Chung, Caglar Giil¢ehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR, abs/1412.3555.

Yann N. Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In Proceedings of the 34th In-
ternational Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Re-
search, pages 933-941. PMLR.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. Advances in Neural Information Process-
ing Systems, 32.

Zhihao Fan, Yeyun Gong, Dayiheng Liu, Zhongyu Wei,
Siyuan Wang, Jian Jiao, Nan Duan, Ruofei Zhang,
and Xuan-Jing Huang. 2021. Mask attention net-
works: Rethinking and strengthen transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

pages 1692-1701.

Edouard Grave, Armand Joulin, and Nicolas Usunier.
2017. Improving neural language models with a
continuous cache. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision

1531

https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.1109/TPAMI.1983.4767370
https://doi.org/10.1109/TPAMI.1983.4767370
https://doi.org/10.18653/v1/K19-1012
https://doi.org/10.18653/v1/K19-1012
https://doi.org/10.3115/981863.981904
https://doi.org/10.3115/981863.981904
https://doi.org/10.3115/981863.981904
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://proceedings.mlr.press/v70/dauphin17a.html
http://proceedings.mlr.press/v70/dauphin17a.html
https://openreview.net/forum?id=B184E5qee
https://openreview.net/forum?id=B184E5qee
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pages 770-778. IEEE
Computer Society.

Ruining He, Anirudh Ravula, Bhargav Kanagal, and
Joshua Ainslie. 2021. Realformer: Transformer likes
residual attention. In Findings of the Association for
Computational Linguistics: ACL/IJCNLP 2021, On-
line Event, August 1-6, 2021, volume ACL/IJCNLP
2021 of Findings of ACL, pages 929-943. Associa-
tion for Computational Linguistics.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187-197, Edinburgh, Scotland. Association for Com-
putational Linguistics.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark,
and Philipp Koehn. 2013. Scalable modified Kneser-
Ney language model estimation. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 690-696, Sofia, Bulgaria. Association for Com-
putational Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735-
1780.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Guoping Huang, Jiajun Zhang, Yu Zhou, and Chengqing
Zong. 2015. A new input method for human transla-
tors: Integrating machine translation effectively and
imperceptibly. In Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015, pages 1163—-1169. AAAI Press.

Dan Jurafsky. 2000. Speech & language processing.
Pearson Education India.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In 7995
International Conference on Acoustics, Speech, and
Signal Processing, ICASSP ’95, Detroit, Michigan,
USA, May 08-12, 1995, pages 181-184. IEEE Com-
puter Society.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and
Lemao Liu. 2022. A survey on retrieval-augmented
text generation. arXiv preprint arXiv:2202.01110.

Piji Li, Wai Lam, Lidong Bing, and Zihao Wang. 2017.
Deep recurrent generative decoder for abstractive text
summarization. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 2091-2100, Copenhagen, Denmark.
Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 7481, Barcelona, Spain.
Association for Computational Linguistics.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3730-3740.

Minh-Thang Luong and Christopher D. Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domain. In International Workshop on
Spoken Language Translation, Da Nang, Vietnam.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. An analysis of neural language model-
ing at multiple scales. CoRR, abs/1803.08240.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Aaditya Prakash, Sadid A. Hasan, Kathy Lee, Vivek V.
Datla, Ashequl Qadir, Joey Liu, and Oladimeji Farri.
2016. Neural paraphrase generation with stacked
residual LSTM networks. In COLING 2016, 26th
International Conference on Computational Linguis-
tics, Proceedings of the Conference: Technical Pa-
pers, December 11-16, 2016, Osaka, Japan, pages
2923-2934. ACL.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan
Duan, Jiusheng Chen, Ruofei Zhang, and Ming Zhou.
2020. Prophetnet: Predicting future n-gram for
sequence-to-sequencepre-training. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 2401-2410.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

1532

https://doi.org/10.18653/v1/2021.findings-acl.81
https://doi.org/10.18653/v1/2021.findings-acl.81
https://www.aclweb.org/anthology/W11-2123
https://www.aclweb.org/anthology/W11-2123
https://www.aclweb.org/anthology/P13-2121
https://www.aclweb.org/anthology/P13-2121
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
http://ijcai.org/Abstract/15/168
http://ijcai.org/Abstract/15/168
http://ijcai.org/Abstract/15/168
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D17-1222
https://doi.org/10.18653/v1/D17-1222
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/1803.08240
http://arxiv.org/abs/1803.08240
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://aclanthology.org/C16-1275/
https://aclanthology.org/C16-1275/

Jack W. Rae, Chris Dyer, Peter Dayan, and Timothy P.
Lillicrap. 2018. Fast parametric learning with acti-
vation memorization. In Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML
2018, Stockholmsmdssan, Stockholm, Sweden, July
10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 4225-4234. PMLR.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Ling-
peng Kong, and Nigel Collier. 2022. A contrastive
framework for neural text generation. arXiv preprint
arXiv:2202.06417.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998—-6008.

Elena Voita, Rico Sennrich, and Ivan Titov. 2021. Lan-
guage modeling, lexical translation, reordering: The
training process of NMT through the lens of classi-
cal SMT. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 8478-8491, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Yiren Wang and Fei Tian. 2016. Recurrent residual
learning for sequence classification. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 938-943.
The Association for Computational Linguistics.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2020. Neu-
ral text generation with unlikelihood training. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Lesly Miculicich Werlen, Nikolaos Pappas, Dhananjay
Ram, and Andrei Popescu-Belis. 2018. Self-attentive
residual decoder for neural machine translation. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

NAACL-HLT 2018, New Orleans, Louisiana, USA,
June 1-6, 2018, Volume 1 (Long Papers), pages 1366—
1379. Association for Computational Linguistics.

Dongling Xiao, Han Zhang, Yukun Li, Yu Sun, Hao
Tian, Hua Wu, and Haifeng Wang. 2021. Ernie-gen:
an enhanced multi-flow pre-training and fine-tuning
framework for natural language generation. In Pro-
ceedings of the Twenty-Ninth International Confer-
ence on International Joint Conferences on Artificial
Intelligence, pages 3997-4003.

Jin Xu, Xiaojiang Liu, Jianhao Yan, Deng Cai, Huayang
Li, and Jian Li. 2022. Learning to break the loop:
Analyzing and mitigating repetitions for neural text
generation. CoRR, abs/2206.02369.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328-11339. PMLR.

1533

http://proceedings.mlr.press/v80/rae18a.html
http://proceedings.mlr.press/v80/rae18a.html
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2021.emnlp-main.667
https://doi.org/10.18653/v1/2021.emnlp-main.667
https://doi.org/10.18653/v1/2021.emnlp-main.667
https://doi.org/10.18653/v1/2021.emnlp-main.667
https://doi.org/10.18653/v1/d16-1093
https://doi.org/10.18653/v1/d16-1093
https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=SJeYe0NtvH
https://doi.org/10.18653/v1/n18-1124
https://doi.org/10.18653/v1/n18-1124
https://doi.org/10.48550/arXiv.2206.02369
https://doi.org/10.48550/arXiv.2206.02369
https://doi.org/10.48550/arXiv.2206.02369

