
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1–13
December 7-11, 2022 ©2022 Association for Computational Linguistics

LogicSolver: Towards Interpretable Math Word Problem Solving with
Logical Prompt-enhanced Learning

Zhicheng Yang1,2∗, Jinghui Qin3∗, Jiaqi Chen2,4, Liang Lin2 and Xiaodan Liang1,2†
1Shenzhen Campus of Sun Yat-sen University, 2Sun Yat-sen University,

3Guangdong University of Technology,4Dark Matter AI Inc.
{yangzhch6,qinjingh}@mail2.sysu.edu.cn

linliang@ieee.org, {jadgechen,xdliang328}@gmail.com

Abstract

Recently, deep learning models have made
great progress in MWP solving on answer
accuracy. However, they are uninterpretable
since they mainly rely on shallow heuristics to
achieve high performance without understand-
ing and reasoning the grounded math logic. To
address this issue and make a step towards in-
terpretable MWP solving, we first construct a
high-quality MWP dataset named InterMWP
which consists of 11,495 MWPs and anno-
tates interpretable logical formulas based on
algebraic knowledge as the grounded linguis-
tic logic of each solution equation. Different
from existing MWP datasets, our InterMWP
benchmark asks for a solver to not only out-
put the solution expressions but also predict
the corresponding logical formulas. We fur-
ther propose a novel approach with logical
prompt and interpretation generation, called
LogicSolver. For each MWP, our LogicSolver
first retrieves some highly-correlated algebraic
knowledge and then passes them to the back-
bone model as prompts to improve the seman-
tic representations of MWPs. With these im-
proved semantic representations, our Logic-
Solver generates corresponding solution expres-
sions and interpretable knowledge formulas
in accord with the generated solution expres-
sions, simultaneously. Experimental results
show that our LogicSolver has stronger log-
ical formula-based interpretability than base-
lines while achieving higher answer accuracy
with the help of logical prompts, simultane-
ously. The source code and dataset is available
at https://github.com/yangzhch6/InterMWP.

1 Introduction

Automatically math word problem (MWP) solving
is a challenging task in natural language processing
since it aims to transform a concise narrative rich in
mathematical relationships into a solution equation,

∗Zhicheng Yang and Jinghui Qin are contributed equally
to this work.

†Xiaodan Liang is the corresponding author.

Craftsman Wang made a parallelogram plaque with a bottom of
1.2 meters and a height of 0.5 meters. If the cost per square

meter is 180 dollars, how much will it cost to make this plaque?

logic MWP solver

Cost = price * quantity

0.5 1.2

180
Parallelogram area
= bottom * height

MWP solver

180*0.5*1.2

(a) common MWP solver (b) Logic-enhanced MWP solver

Cost = price * quantity
Parallelogram area
= bottom * height

Speed = distance / time

Logic Set

*

*

Figure 1: Common MWP dataset v.s. InterMWP dataset.
Compared with the common MWP datasets, InterMWP
requires a solver to predict expression tree and the cor-
responding linguistic logic formulas simultaneously for
improving the interpretability of a solver.

as illustrated in Figure 1 (a). Recently, the task
of MWP solving automatically has attracted a lot
of research attention. Several deep-learning-based
approaches (Wang et al., 2017; Huang et al., 2018;
Xie and Sun, 2019; Wang et al., 2019; Qin et al.,
2020, 2021) have been proposed and made great
progress for MWP solving. However, as shown in
Figure 1(a), current models treat MWP as a seq2seq
task, ignoring the interpretability. The grounded
logic in the problem consists of two algebraic
knowledge formulas: cost = quantity × price
and parallelogram area = bottom × height
where quantity is equal to parallelogram area in
this MWP, as shown in Figure 1(b). Without logi-
cal reasoning, it is difficult for an MWP solver to
explain why such an equation should be generated
as the solution. There are two main reasons for the
current dilemma: 1) The lack of relevant and easily
exploitable interpretable MWP datasets. 2) Current
models mainly rely on shallow heuristics to achieve
high performance and lack grounded math logic
reasoning, as shown in Patel et al. (2021).

To overcome this dilemma and make a step
towards interpretable MWP solving, we propose
a novel high-quality interpretable MWP dataset

1

https://github.com/yangzhch6/InterMWP

called InterMWP consisting of 11,495 annotated
samples and 210 different logic formulas based on
algebraic knowledge. In our InterMWP dataset,
each solution equation is annotated with inter-
pretable logic formulas in a tree structure as the
grounded logic of each solution equation. As
shown in Figure 1(b), each inner node is annotated
with an interpretable algebraic knowledge formula
which represents the grounded logic for the subtree
with the current node as the root ancestor. With
these logic annotations, our InterMWP asks for a
solver to not only output the solution equation but
also output the logic formulas simultaneously when
the current predicted node is an inner-node (oper-
ator) during expression reasoning. Therefore, an
MWP solver developed on InterMWP can output
a solution equation while generating a reasonable
formula-based interpretation. We use answer accu-
racy from prior works (Wang et al., 2017; Xie and
Sun, 2019; Zhang et al., 2020b), together with for-
mula accuracy and logic accuracy we proposed in
Section 5.1 to evaluate the model’s solving ability
and interpretability.

To leverage mathematical logic knowledge and
empower an MWP solver with interpretability, we
further present a novel framework named Logic-
Solver which extracts mathematical logic knowl-
edge as logical prompts to improve the semantic
representations of MWPs and enhance the abil-
ity of explanation generation. In our LogicSolver,
we design a logic formula retriever to first ex-
tract logic prompts consisting of logic formulas
highly-correlated with current MWP. Then, the
logic prompts will be concatenated with the prob-
lem text as the input and drive the MWP model
to produce the solution equation. Finally, to ob-
tain the logic formulas-based explanation, we pro-
pose a logic generator to predict logic formulas for
each inner-node of the solution expression tree. Ex-
perimental results show that our LogicSolver has
stronger logical formula-based interpretability than
baselines while achieving higher answer accuracy
with the help of logical prompts, simultaneously.

In this work, our contributions can be summa-
rized in the following three folds:

• We construct a high-quality interpretable MWP
dataset InterMWP for interpretable MWP solv-
ing. In our InterMWP, there are 11,495 MWPs
and each solution equation is annotated with in-
terpretable logical formulas.

• We propose a powerful framework named Logic-

Solver to incorporate mathematical logic knowl-
edge through logical prompt-enhanced learning
for enhancing problem understanding while em-
powering models with interpretability. To the
best of our knowledge, this is the first work to
study prompt-enhanced learning in MWPs.

• We achieved 2.1%, 2.9%, and 9.5% improve-
ment on answer accuracy, formula accuracy, and
logic accuracy respectively. Experimental re-
sults on InterMWP show that our LogicSolver
has strong logical formula-based interpretability
which achieves higher answer accuracy simulta-
neously.

2 Related Work

2.1 Math Word Problem Solving

In recent years, deep learning-based models (Wang
et al., 2017; Huang et al., 2018; Wang et al., 2018b,
2019; Xie and Sun, 2019; Chiang and Chen, 2019;
Zhang et al., 2020a,b; Qin et al., 2020, 2021) have
shown impressive performance in solving MWPs
by automatically learning to directly translate a
problem text into an expression without any hand-
crafted feature design. Wang et al. (2017) make
the first attempt to apply a vanilla sequence to the
sequence (seq2seq) model. Huang et al. (2018) im-
proved their work by introducing a copy and atten-
tion mechanism. Xie and Sun (2019) propose a tree-
structure decoder to decode expressions in prefix
order. Furthermore, Zhang et al. (2020b) improved
problem representation by fusing a graph encoder.
Hong et al. (2021) propose a situation model for
algebra story problems. Qin et al. (2021) propose
auxiliary tasks to improve problem representation
and the ability to predict common-sense constants.
Wu et al. (2021) achieved better performance by
incorporating numerical values into a sequence-to-
tree network and applying a numerical properties
prediction mechanism. Yang et al. (2022) propose
an unbiased dataset and a dynamic target selec-
tion (DTS) strategy to eliminate the solving bias.
However, all these models lack grounded math
logic reasoning and interpretability so they can not
give a reasonable explanation corresponding to the
generated expression. To overcome these issues,
we build a novel high-quality interpretable MWP
dataset and propose a linguistic logic-enhanced
framework for generating expression trees and their
corresponding formula-based interpretations.

2

2.2 Prompt-enhanced Learning

Prompting PLMs for few-shot learning has become
a popular learning paradigm. PET (Schick and
Schütze, 2020a,b) transfer text classification prob-
lems to cloze-style problems while using manually
defined prompts to provide additional task guid-
ance. Gao et al. (2021) propose a pipeline for au-
tomating prompt generation to facilitate prompt
discovery. Jiang et al. (2020) extract prompt from
the training corpus. Besides that, Chen et al. (2021)
injects latent knowledge contained in relation la-
bels into the prompt for relation extraction. Hu
et al. (2021) also incorporate external knowledge
into a verbalizer to improve and stabilize prompt-
tuning for text classification. Although Chen et al.
(2021); Hu et al. (2021) incorporate knowledge
into PLMs, they mainly focus on the shallow rep-
resentation. Unlike these works, we train a model
to select prompt automatically from a manually
designed prompt set which summarizes the mathe-
matical knowledge needed to solve the math word
problems.

2.3 Interpretability of MWP Solvers

Although the prior statistical models with hand-
crafted features can be thought of as interpretable
due to the clear alignments between inputs and out-
puts, recently proposed deep learning approaches
present new challenges to model interpretability
of MWP solvers (Huang et al., 2016). Liang et al.
(2018) used pattern matching to increase the robust-
ness and interpretability of MWP solvers. Amini
et al. (2019) propose operation-based formalisms
to improve the interpretability. Cobbe et al. (2021)
propose an MWP dataset called GSM8K which
annotates the explanation for each step. But they
do not summarize the mathematical knowledge in
explanation. Besides, Roy and Roth (2018) also
propose declarative rules which govern the transla-
tion of natural language to math expressions and
presents a framework that learns to select the rel-
evant declarative knowledge for each operation of
the expression. Different from these works, we
propose to predict linguistic math logic involving
real-world knowledge along with expression con-
struction so that an MWP solver can explain the
grounded reason about the expression generation
with linguistic logic formulas.

Problem A: A rope is 2 decimeters
long, just enough to make 2 circles
around the table, what is the
perimeter of the table in decimeters?
Nums_map: {N0 : 2, N1 : 2}
Equation: x = 2 / 2
Equation(ours): x = N0 / N1
Model Output(wrong): x = N0 / 2

Problem B: Xiaozhen walks to school
at a speed of 3.6km/h. She arrives at
school 0.25 hours after leaving home.
How far is her home from school?
Nums_map: {N0 : 3.6, N1 : 0.25}
Equation: x = 3.6 * 0.25
Equation(ours): x = [N0 * N1, N1* N0]
Model Output(right): x = N1 * N0

Figure 2: Some example comparisons between former
MWP benchmarks and InterMWP benchmarks.

3 InterMWP

3.1 Data Collection

Most existing datasets for math word problem solv-
ing mainly consist of 4 attributes: problem id, prob-
lem text, solution equation, and final answer, such
as Math23K (Wang et al., 2017), MaWPS (Koncel-
Kedziorski et al., 2016), HMWP (Qin et al., 2020),
and CM17K (Qin et al., 2021). Since there is no
annotated explanation for solving equations, an
MWP solver is incapable to produce an explana-
tion grounded in the generated equation. To make
a step towards interpretable MWP solving, we con-
struct a high-quality interpretable MWP dataset
called InterMWP to empower an MWP solver with
the ability of interpretation to reason out solution
equations and produce corresponding explanations
for the generated equations. Excepting from the
attributes mentioned above, we add the extra inter-
pretable formula-based tree-structure annotation
into the dataset so that we can force an MWP
solver to not only output solution equation but also
give out grounded logic formulas on the operators,
thus endowing the MWP solver with certain inter-
pretability.

To collect InterMWP, we sampled 8260 exam-
ples randomly from Math23K and crawled another
3,235 examples from a web bank1 to increase
data diversity. In total, there are 11,495 exam-
ples collected in InterMWP. For each example, we
first transferred the sequence solution equations
to tree equations following the method in Xie and
Sun (2019). The annotation procedure can be re-
ferred to Appendix B in our supplemental mate-
rials. During annotating, we mainly focus on
the logic formulas which involve real-world knowl-
edge such as cost = quantity ∗ price, speed =
distance/time, etc. For the basic and simple
mathematical logic knowledge described in Roy
and Roth (2018), we use common-sense step as
the logical formula. The logic formulas involv-
ing real-world knowledge are grouped into four

1https://damolx.com/

3

R
etriever

A

Pretrained Language Model Tree Decoder

Step 1

Step 2 Step 3

Step 4
Step 5

N2

N0 N1

Cost = price * quantity

Parallelogram area
= bottom * height

Speed = distance / time

Logic Set

Logic promptProblem text L
ogic G

enerator

Encoder-Decoder Model

Figure 3: The design of our proposed LogicSolver. First, we train a logic retriever to extract highly-correlated
logical formulas as prompts to solve the MWPs. The retriever takes the problem text and the logic formulas as
input and outputs the matching score for each logic formula. Second, we select the top K related logic formulas
as prompts and concatenate them with problem text as the input of the encoder while the decoder output solution
expression in prefix order. Finally, a logic generator is deployed to select the logic formulas for each operator in the
solution expression.

main categories: Common-sense, Geometry, Phys-
ical, and Finance as shown in Table 5. In total,
there are 210 formulas summarized in InterMWP.
Some examples are illustrated in Table 1 in our
supplemental material. It is worth noting that each
token in the annotated logic formula can represent
the logic semantic of the corresponding node in
the tree expression. Taking the logical formula
cost = price∗quantity of the root node in Figure
1 as an example, cost is the logical meaning of the
root node ("how much will it cost") while price
and quantity can represent the logic semantics of
its left and right nodes, respectively.

3.2 The other superiorities of our InterMWP

Except for the explainable logic formulas, the other
superiorities of our InterMWP can be mainly sum-
marized in the following two points:
a) Formula variables disambiguation: As the
prior MWP datasets such as Math23K (Wang
et al., 2017), Alg514 (Kushman et al., 2014) and
MAWPS (Koncel-Kedziorski et al., 2016) only pro-
vide a numeric expression for each problem, the
reference to the variables in the formula may be am-
biguous. A data example of such formula ambigu-
ous is problem A shown in Figure 2, the original
method in Wang et al. (2017) cannot map the two
numbers ‘2’ in the equation to different positions
in the problem. We overcome this shortcoming
by mapping between numbers in the problem and
numbers in the solution equation manually during
the procedure of annotating logic formulas.
b) The complete solution set for each MWP in

the test set: The former metrics to evaluate the
accuracy of an MWP solver mainly rely on the
answer accuracy, but an MWP solver may output
a right answer by generating a wrong formula. As
shown in Figure 2, for problem A, an MWP solver
can obtain the correct answer by generating an
error constant number ‘2’. Besides, for problem B,
the generated equation does not match the original
equation although they are essentially the same. To
overcome this shortcoming, we generate equivalent
solution equations as many as possible for each
MWP in the test set so that we can measure the
ability of an MWP solver better.

4 LogicSolver

4.1 Overview

As shown in Figure 3, there are three main collab-
orative components in our proposed LogicSolver
to solve an MWP and give out the corresponding
logic formula-based explanation simultaneously.
For each MWP, we first deploy a logic formula re-
triever to select the top-K highly-correlated logic
formulas as logic prompts for prompt-enhanced
solving. Then, the logic prompts will be concate-
nated with the problem text as the input and drive
the MWP model to produce a solution equation.
Finally, to obtain the logic formulas-based explana-
tion, we deploy a logic generator to predict logic
formulas for each inner-node (operator) of the so-
lution expression tree.

4

4.2 Logic Formulas Retrieval
It should be helpful for MWP solving if we can
inject the semantics of the logic formulas grounded
in MWPs into an MWP solver since the logic for-
mulas grounded in MWPs denote the grounded
math relationships. Therefore, to inject logic for-
mulas into an MWP solver to improve the ability
of semantic representation and reasoning, we train
a retriever to match the logic knowledge in our In-
terMWP. Our retriever takes a problem text and the
210 logic formulas we summarized as the input and
outputs the matching score for each logic formula.

BERT (Devlin et al., 2019) is an efficient pre-
trained language model for text encoding, so we
employ a Chinese BERT pre-trained with whole
word masking (Cui et al., 2020) as our encoder,
denoted as BERTR, for learning the semantic rep-
resentations of text. To encode the problem text P
and logic formula set F = [F1, F2, · · · , FT] where
T is the size of the logic set, we pass them to the
retriever BERTR and average the feature outputs
from the last hidden layer to obtain the correspond-
ing semantic embeddings as follows:

p = mean(BERTR(P))

fi = mean(BERTR(Fi))
(1)

Then, a scoring module ScoreR is deployed to
rate each logic formula Fi as follows:

ScoreR(p, fi) = vTs tanh(Ws[p, fi])

si = ScoreR(p, fi)
(2)

where vs and Ws are trainable parameters.
Given the dataset D, for each data sample

(P,Lf) ∈ D, where Lf = [lf0 , lf1 , · · · , lfT] is
a 0-1 vector, and lfi indicate whether the logic for-
mula Fi is used in solving the problem P , and T
is the size of logic set, we minimize the following
loss function for training the retriever:

Lr = log(1+
∑

lfi=1

esi)+log(1+
∑

lfj=0

e−sj) (3)

For the positive logic formulas, we expect a
higher score, and for the negative logic formulas,
the opposite is true.

4.3 Logical Prompt-enhanced MWP Solving
To solve an MWP, we follow the encoder-decoder
structure. For the encoder, we choose the Chi-
nese BERT pre-trained with whole word masking
(Cui et al., 2020), denoted as BERTE , for learning

the MWP representation. For decoder, we employ
the goal-driven tree-structure decoder, denoted as
GTS, following the previous work (Xie and Sun,
2019) to generate solution expression in prefix or-
der, as shown in Figure 3.

To conduct logical prompt-enhanced learning
with highly-correlated logic formulas, for a prob-
lem P , we first select the top-K logic formulas
based on their matching scores {s0, s1, · · · , sT }
as prompts. Then we concatenate the selected K
logic formulas with P and pass it into the encoder:

c, qroot = BERTE([P, FΩK
]) (4)

where c is the encoder’s last hidden layer of all
tokens, and qroot which will be used as the root
node’s goal vector is the [CLS] token embedding
of the last hidden layer.

For each node in the expression tree, the goal-
driven tree-structure decoder GTS takes the goal
vector q and the token-level embedding c as the
input. The decoder GTS first uses q to predict to-
ken ŷ of the current node. If the predicted token is
a mathematical operator, the goal will be decom-
posed into two sub-goals which will be passed to
the corresponding sub-trees. Otherwise, the goal
will be simply realized by the predicted numeric
value or constant quantity. The final output of GTS
is the node tokens Ŷ ={ŷ1, ŷ2, · · · , ŷn} of the solu-
tion expression in prefix order and the correspond-
ing goal vector of each node Q={q1, q2, · · · , qn},
n is the solution expression length.

Ŷ , Q = GTS(c, qroot) (5)

Given the dataset D={(Y0, P0), (Y1, P1), · · · ,
(YN , PN)}, we minimize the following loss func-
tion during training the encoder-decoder model:

Ld(Ŷi|Pi) = −
Ei∑

t=1

log(prob(yt|qt, Pi)) (6)

where Ŷi is the predicted expression for Pi, Ei is
the number of tokens of the solution expression
of problem Pi, and prob(yt|qt, Pi) is computed by
distribution computation function in GTS.

4.4 Explanation Generation
To empower the MWP solver’s interpretability, we
propose a logic generator to take the operator’s
hidden embedding q, problem text P , and the logic
set F as the input and predict which linguistic logic
formula can explain the decision on the current

5

operator. We deploy a BERT model denoted as
BERTL to encode each logic formula and problem
text.

pL = BERTL(P)

fL
i = mean(BERTL(Fi)), Fi ∈ F

(7)

where pL and fL
i denote the problem’s token em-

bedding for P and the logic formula embedding
for Fi in the logic generator respectively.

To choose a reasonable explanation for the de-
cision on expression generation, we leverage the
attention-based scoring mechanism to select an ap-
propriate logic formula as the explanation. Given
an operator’s embedding q, a context vector cL is
obtained by attending q with problem token embed-
ding pL with the help of the attention mechanism
(Bahdanau et al., 2015):

cL = Attention(q, pL) (8)

Then, a scoring module denoted as sL is deployed
to output the unnormalized log probability:

sL(Fi|q, cL) = vTL tanh(WL[q, c
L, fi]) (9)

where vL and WL are trainable parameters.
Finally, the normalized probability

prob(Fi|q, cL, F) over logic formula set F
is computed with the softmax function:

prob(Fi|q, cL, F) =
exp(sL(Fi|q, cL, F))∑
j exp(sL(Fj |q, cL, F))

(10)
Our logic generator selects the logic formula yF

with the highest probability as the explanation for
the decision on operator generation:

yF = argmax prob(Fi|q, cL, F) (11)

The training objective of the logic generator is
as follows:

LL(Ŷ
F
i |Pi) = −

EF
i∑

t=1

log(prob(yFi |qt, cLt , Pi))

(12)
where Ŷ F

i is the predicted expression for Pi, EF
i is

the number of operators of the solution expression
of the problem Pi.

5 Experiments

5.1 Experimental Setup
Datasets. We conduct experiments on our In-
terMWP and Math23K (Wang et al., 2017) in the

train-valid-test setting. For Math23K, we train the
logic retriever on our InterMWP and then use the
pre-trained logic retriever to extract logic prompts
for the MWPs in the Math23K.

Baselines. We compare our LogicSolver with
the following state-of-the-art models: Math-
EN (Wang et al., 2018a): a seq2seq model with
equation normalization for reducing target space.
GROUPATT (Li et al., 2019): a math word prob-
lem solver borrowing the idea of multi-head at-
tention from Transformer (Vaswani et al., 2017).
GTS (Xie and Sun, 2019): a tree-structured neural
network in a goal-driven manner to generate expres-
sion trees. Graph2Tree (Zhang et al., 2020b): an
enhanced GTS with quantity graph. GTS(BERT):
a strong baseline we constructed by replacing RNN
encoder with BERTEncoder(Devlin et al., 2019) in
GTS.

Evaluation Metric. We use three metrics to mea-
sure the problem solving ability and interpretability
of the models.

• Following prior works (Wang et al., 2017; Xie
and Sun, 2019; Zhang et al., 2020b), we use an-
swer accuracy as one of the evaluation metrics:
if the calculated value of the predicted expres-
sion tree equals the true answer, it is thought as
correct.

• However, answer accuracy will overestimate the
ability of reasonable expression generation of
an MWP solver, so we also introduce formula
accuracy to evaluate whether the generated ex-
pression is one of a set of reasonable expressions
that we annotate an MWP by listing all possible
and reasonable solution equations manually in
the test set.

• Moreover, to measure the effectiveness of the
output linguistic logic, we introduce logic ac-
curacy: Given the dataset D={(Y0, Y F

0 , P0),
(Y1, Y

F
1 , P1), · · · , (YN , Y F

N , PN)} where Yi de-
notes solution expression, Y F

i denotes the target
linguistic logic formulas, and Pi is the problem
text. For an MWP, if the predicted solution ex-
pression Ŷi is correct and the whole predicted
linguistic logic Ŷ F

i is equivalent to the target
linguistic logic, we consider this logic formula-
based explanation is correct. The formula for
computing logic accuracy is as following below:

logic acc =
1

N

N∑

i=1

(Ŷi = Yi)(Ŷ F
i = Y F

i) (13)

6

Implementation Details. We use Pytorch2 to im-
plement our model on Linux with an NVIDIA
RTX3090 GPU card. We add the [NUM] token
to BERT’s vocab and convert all numbers in prob-
lem text to the [NUM] token. For the training of
the logic generator in LogicSolver, we only select
the MWPs which can be fitted in the train set of our
InterMWP as the training data. We use goal vec-
tors in GTS-decoder models (Xie and Sun, 2019;
Zhang et al., 2020b) as the embedding for solution
expression tokens in the logic generator, and se-
lect RNN’s hidden states in RNN-decoder models
(Wang et al., 2017; Li et al., 2019) as solution ex-
pression tokens embedding. More details can be
referred to Appendix C.

5.2 Main Result

Model answer acc formula acc logic acc

Math-EN(Wang et al., 2018a) 63.9 60.2 43.2
Group-Attn(Li et al., 2019) 64.2 60.8 44.5
GTS(Xie and Sun, 2019) 70.5 66.1 57.2
Graph2Tree(Zhang et al., 2020b) 71.0 66.7 57.9
NS-Solver(Qin et al., 2021) 71.2 66.8 57.6
GTS(BERT) 80.3 76.8 66.5
LogicSolver(ours) 82.4 79.7 76.0

Table 1: The answer acc, formula acc, and logic acc on
our InterMWP.

The Performance on InterMWP. The results
on our InterMWP are shown in Table 1. With
the logic prompt-enhanced, the answer accuracy
can be improved from 80.3% [GTS(BERT)] to
82.4% [LogicSolver(Ours)]. Similarly, the for-
mula accuracy and the logic accuracy also are im-
proved from 76.8% [GTS(BERT)] to 79.7% [Log-
icSolver(Ours)] and 66.5%[GTS(BERT)] to 76.0%
[LogicSolver(Ours)] respectively. This shows the
effectiveness of our proposed prompt-enhanced
learning for MWP solving. We also evaluate the
performance on the samples contain top-10 logic
formulas, the results are shown in Table 8 of Ap-
pendix D.

GTS(BERT) GTS(BERT)+Logical Prompts

answer acc 82.8 83.4

Table 2: Experimental results on math23K. The
GTS(BERT)+Logical Prompts denotes the GTS(Bert)
model enhanced with logical prompts.

The Performance on Math23K. We also conduct
the experiment on Math23K. We apply the pre-
trained logic retriever on InterMWP to retrieve

2http://pytorch.org

logic formulas for Math23K, and then conduct log-
ical prompt-enhanced learning for GTS(Bert). The
results are shown in Table 2. The performance of
answer accuracy increases from 82.8% to 83.4%.
This improvement shows the strong generalization
of our proposed logical prompt-enhanced learning
on other MWP datasets even with the logic prompts
based on the InterMWP.

5.3 The Performance of the Logic Retriever
We use Recall, Precision, and F-10 to quantify
the performance of the logic retriever on our In-
terMWP under selecting top 1-4 logic formulas,
as shown in Table 3. Corrected logic prompts are
very important for improving the MWP solver. To
retrieve as many correct logic prompts as possi-
ble and decrease the effect of error logic prompts,
the recall rate is more important than the precision
for logic retrieve. Therefore, we use F-10 score,
rather than F-1 score, to measure the balanced per-
formance of the logic retriever. From Table 3, we
can observe that selecting top-3 logic formulas as
prompts can achieve a better trade-off between Re-
call and Precision.

Indicators
Selection top 1 top 2 top 3 top 4

Recall 0.642 0.948 0.985 0.991
Precision 0.557 0.411 0.284 0.215

F-10 0.641 0.935 0.962 0.956

Table 3: Performance of retriever on InterMWP.

5.4 Logical Prompts Design
We study the effects of different prompt designs
and the effects placement position of logic prompts
in the input by conducting three experiments:

1. Random Selection: the logic prompts are
choosen randomly.

2. Retrieve+Ahead: the logic retriever is de-
ployed for logic prompts retrieving and the
logic prompts are put in front of the MWP.

3. Retrieve+Behind: the logic retriever is de-
ployed for logic prompts retrieving and the
logic prompts are put behind the MWP.

The results are shown in Table 4. From the results,
we can know that the best result is obtained under
the Retrieve+Behind setting by retrieving top-3
logic prompts.

5.5 Performance of Interpretability
We use the proposed Logic Generator to achieve
interpretability and use logic accuracy to evaluate

7

Problem Equation GTS(Bert) InterSolver

A ribbon is cut every 1.4 decimetres
to make 1 bow. A total of 27 bows are
made. There is 1.2 decimetres left.
How many decimetres is this ribbon
originally?

N0 * N2 + N3,
N2 * N0 + N3,
N3 + N0 * N2,
N3 + N2 * N0

N0 * N1 + N3

N0 N2

N3

Common-sense step
Total = average
number of units

Trees were planted on one side of a 30
meter long road. A total of 4 trees
were planted from beginning to end
(planting at both ends). What is the
distance between two adjacent trees in
meters?

N0 / (N1 - 1)

N0 / (N1 - 1) 1

N1 1

N0

Average=total /
number of units

Segment number =
interval points
including both ends-1

The Changsha-Guangzhou railway is
728km long, and a truck runs 71km
per hour from Guangzhou to
Changsha. A train of passenger cars
drove from Changsha to Guangzhou
at the same time, and the two cars
met in 4 hours. What was the speed
of this train?

N0 / N2 N1
(N0 N1 * N2) / N2
(N0 N2 * N1) / N2

N0 / N2

N0 N2

N1

Speed =
opposite speed -
speed

Speed =
distance / time

Retrieved Logic

Total = average
number of units

Average=total /
number of units

Speed =
distance / time

Average=total /
number of units

Speed =
distance / time

Speed =
opposite speed -
speed

Figure 4: Case study on GTS(BERT) and LogicSolver on InterMWP test set. Equation denotes the annotated
complete solution set. (Note that the results are represented as infix traversal of expression trees which is more
readable than prefix traversal.)

Retriever
Selection

top 1 top 2 top 3 top 4

Random Selection 81.1 80.4 81.5 80.6
Retrieve+Ahead 81.9 82.0 80.9 81.2
Retrieve+Behind 81.3 81.8 82.4 81.2

Table 4: Answer accuracy of different logical prompt
designs for LogicSolver (Random-Score denotes the
strategy of randomly scoring each logic formula, Ahead
and Behind denote the position of prompt).

the performance. As shown in Table 1, our Log-
icSolver achieves 76.0% on logic accuracy which
is superior to all the other baselines. Notably, our
LogicSolver can outperform GTS(BERT) which
has the same backbone network by nearly 10% ben-
efiting from our logical prompt-enhanced learning,
which helps the solver leverage logical knowledge
better and makes inner-node (operator) representa-
tions more suitable for explanation generation.

5.6 Analysis on Different Expression Tree Size

We further evaluate the answer accuracy, formula
accuracy, and logic accuracy on different problem
expression tree sizes, as shown in Figure 5. We
also show the corresponding data distribution. On
the whole, the answer accuracy of problem solving
decreases as the expression tree becomes longer,
but the accuracy on tree size of 5 is higher than the
tree size of 3 since the data proportion of tree size
of 5 is obviously larger. In general, the longer the
expression tree, the more difficult it is to be solved
for both models and humans.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

3 5 7 9 >=11

F
re

qu
en

cy
/A

cc
ur

ac
y(

%
)

Expression Tree Size

proportion 24.40% 52.30% 17.90% 3.60% 1.80%

answer 83.20% 88.34% 72.07% 55.56% 55.56%

formula 82.79% 86.42% 65.36% 47.22% 50%

logic 80.74% 82.60% 60.89% 38.89% 44.44%

Figure 5: Accuracy over different expression tree sizes.
(proportion, answer, formula, and logic denote data pro-
portion, answer accuracy, formula accuracy, and logic
accuracy over different expression tree sizes on the In-
terMWP test set.)

5.7 Case Study

Finally, we conduct a case analysis and provide
three cases in Figure 4. Benefiting from our logical
prompt-enhanced learning on our InterMWP, our
LogicSolver not only is more accurate in predict-
ing operations, constants, and number words, but
also can extract and generate correct logic reason-
ing procedures while GTS(BERT) is more likely to
predict error expressions. In summary, our Logic-
Solver has gained a certain degree of interpretabil-
ity while improving the accuracy of math word
problem solving, showing the superiority of our
InterMWP and LogicSolver.

6 Conclusion

In this paper, to take a step towards interpretable
MWP solving, we construct an interpretable math

8

word problem dataset called InterMWP which con-
sists of 11,495 MWP data and annotates inter-
pretable logical formulas based on algebraic knowl-
edge as the grounded linguistic logic of each so-
lution equation. Different from existing MWP
datasets, our InterMWP benchmark asks for a
solver to not only output the solution expressions
but also predict the corresponding logical formulas.
We further propose LogicSolver which is enhanced
by logical prompts and is able to generate corre-
sponding solution expressions and interpretable
knowledge formulas in accord with the generated
solution expressions, simultaneously. Experimen-
tal results show that our LogicSolver has stronger
logical formula-based interpretability than base-
lines while achieving higher answer accuracy with
the help of logical prompts, simultaneously.

7 Limitations

In this work, we make a step towards interpretable
MWP solving by constructing a new MWP dataset
called InterMWP and proposing a novel Logic-
Solver enhanced by logical prompts to infer out so-
lution expressions and logical formula-based inter-
pretability, simultaneously. However, there are still
some limitations in our work. First, although our
InterMWP is annotated with logical interpretabil-
ity, the number of logical formulas are limited and
needed to be extended for covering more cases
when applying in real-world application. Second,
even though our solver has better reasoning abil-
ity than current state-of-the-art methods on MWPs
Solving and interpretation, it still needs more ef-
fort to design a more effective symbolic generation
mechanism to enable a solver to handle more com-
plex cases, such as more difficult problems with
lager equations.

Acknowledgements

This work was supported in part by National
Key R&D Program of China under Grant
No. 2020AAA0109700, National Natural
Science Foundation of China (NSFC) under
Grant No.61976233 and Grant No.62206314,
Guangdong Province Basic and Applied Basic
Research (Regional Joint Fund-Key) Grant
No.2019B1515120039, Guangdong Outstanding
Youth Fund (Grant No. 2021B1515020061),
GuangDong Basic and Applied Basic Research
Foundation under Grant No.2022A1515011835,
China Postdoctoral Science Foundation under

Grant No.2021M703687, Shenzhen Fun-
damental Research Program (Project No.
JCYJ20190807154211365), CAAI-Huawei
MindSpore Open Fund, and The Open Project
of Anhui Provincial Key Laboratory of Multi-
modal Cognitive Computation, Anhui University,
No.MMC202107. We thank MindSpore for the
partial support of this work, which is a new deep
learning computing framwork3.

References
Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik

Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. ArXiv, abs/1905.13319.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015
; Conference date: 07-05-2015 Through 09-05-2015.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin
Deng, Yunzhi Yao, Chuanqi Tan, Fei Huang,
Luo Si, and Huajun Chen. 2021. Knowprompt:
Knowledge-aware prompt-tuning with synergistic
optimization for relation extraction. arXiv preprint
arXiv:2104.07650.

Ting-Rui Chiang and Yun-Nung Chen. 2019.
Semantically-aligned equation generation for
solving and reasoning math word problems. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2656–2668.
Association for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. ArXiv, abs/2110.14168.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for Chinese natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
pages 657–668, Online. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages

3https://www.mindspore.cn/

9

https://www.aclweb.org/anthology/2020.findings-emnlp.58
https://www.aclweb.org/anthology/2020.findings-emnlp.58
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Yining Hong, Qing Li, Ran Gong, Daniel Ciao, Siyuan
Huang, and Song-Chun. Zhu. 2021. Smart: A situa-
tion model for algebra story problems via attributed
grammar. In The Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI-21.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan
Liu, Juanzi Li, and Maosong Sun. 2021. Knowl-
edgeable prompt-tuning: Incorporating knowledge
into prompt verbalizer for text classification. arXiv
preprint arXiv:2108.02035.

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian Yin.
2018. Neural math word problem solver with re-
inforcement learning. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 213–223. Association for Computational
Linguistics.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do computers
solve math word problems? large-scale dataset con-
struction and evaluation. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 887–896.
Association for Computational Linguistics.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In international
conference on learning representations.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152–1157, San
Diego, California. Association for Computational
Linguistics.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
271–281. Association for Computational Linguistics.

Jierui Li, Lei Wang, Jipeng Zhang, Yan Wang, Bing Tian
Dai, and Dongxiang Zhang. 2019. Modeling intra-
relation in math word problems with different func-
tional multi-head attentions. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6162–6167, Florence, Italy.
Association for Computational Linguistics.

Chao-Chun Liang, Yu-Shiang Wong, Yi-Chung Lin, and
Keh-Yih Su. 2018. A meaning-based statistical En-
glish math word problem solver. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 652–662, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Jinghui Qin, Xiaodan Liang, Yining Hong, Jianheng
Tang, and Liang Lin. 2021. Neural-symbolic solver
for math word problems with auxiliary tasks. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5870–
5881, Online. Association for Computational Lin-
guistics.

Jinghui Qin, Lihui Lin, Xiaodan Liang, Rumin Zhang,
and Liang Lin. 2020. Semantically-aligned universal
tree-structured solver for math word problems. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3780–3789, Online. Association for Computa-
tional Linguistics.

Subhro Roy and Dan Roth. 2018. Mapping to declara-
tive knowledge for word problem solving. Transac-
tions of the Association for Computational Linguis-
tics, 6:159–172.

Timo Schick and Hinrich Schütze. 2020a. Exploiting
cloze questions for few-shot text classification and
natural language inference. Computing Research
Repository, arXiv:2001.07676.

Timo Schick and Hinrich Schütze. 2020b. It’s not just
size that matters: Small language models are also
few-shot learners. Computing Research Repository,
arXiv:2009.07118.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

10

https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/N18-1060
https://doi.org/10.18653/v1/N18-1060
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.acl-long.456
https://doi.org/10.18653/v1/2021.acl-long.456
https://doi.org/10.18653/v1/2020.emnlp-main.309
https://doi.org/10.18653/v1/2020.emnlp-main.309
https://doi.org/10.1162/tacl_a_00012
https://doi.org/10.1162/tacl_a_00012
http://arxiv.org/abs/2001.07676
http://arxiv.org/abs/2001.07676
http://arxiv.org/abs/2001.07676
http://arxiv.org/abs/2009.07118
http://arxiv.org/abs/2009.07118
http://arxiv.org/abs/2009.07118
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018a. Translating a math word
problem to a expression tree. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1064–1069. Association
for Computational Linguistics.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan
Song, Long Guo, and Heng Tao Shen. 2018b. Math-
dqn: Solving arithmetic word problems via deep re-
inforcement learning. In Thirty-Second AAAI Con-
ference on Artificial Intelligence, pages 5545–5552.

Lei Wang, Dongxiang Zhang, Zhang Jipeng, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen. 2019.
Template-based math word problem solvers with re-
cursive neural networks. In Thirty-Third AAAI Con-
ference on Artificial Intelligence, pages 7144–7151.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–854.
Association for Computational Linguistics.

Qinzhuo Wu, Qi Zhang, Zhongyu Wei, and Xuanjing
Huang. 2021. Math word problem solving with ex-
plicit numerical values. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5859–5869, Online. Association
for Computational Linguistics.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word problems.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19,
pages 5299–5305. International Joint Conferences on
Artificial Intelligence Organization.

ZhiCheng Yang, Jinghui Qin, Jiaqi Chen, and Xiaodan
Liang. 2022. Unbiased math word problems bench-
mark for mitigating solving bias. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 1401–1408, Seattle, United States. Asso-
ciation for Computational Linguistics.

Jipeng Zhang, Roy Ka-Wei Lee, Ee-Peng Lim, Wei Qin,
Lei Wang, Jie Shao, and Qianru Sun. 2020a. Teacher-
student networks with multiple decoders for solving
math word problem. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pages 4011–4017. Interna-
tional Joint Conferences on Artificial Intelligence
Organization. Main track.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020b. Graph-
to-tree learning for solving math word problems. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3928–
3937.

A Dataset Statistics

The InterMWP dataset consists of 11,495 problems
and is divided into three parts randomly: 9495 train-
ing data, 1000 validation data, and 1000 test data.
Table 5 shows the statistics and some samples of
four logic categories in InterMWP dataset. The
contents in parentheses indicate the number of oc-
currences of the logical formulas of the category in
the InterWMP dataset.

Geometric Logics (988)
parallelogram area = bottom× height

rectangular area = length× width

square of the radius = radius× radius

circle area = PI × square of the radius

cuboid volume = bottom area× height

Physical Logics (4016)
speed = distance÷ time

distance = speed× time

time = distance÷ speed

workload = time× work speed

concentration = solute weight÷ solution weight

Financial Logics (1570)
expenses = price× quantity

insurance cost = insurance amount× insurance rate

sales income = cost+ profit

income after taxes = income before taxes− taxes

taxes = tax payable× tax rate

Commonsense Logics (3852)
average = total ÷ number of units

total = average× number of units

number of units = total ÷ average

segment number = interval points excluding both ends+ 1

segment number = interval points including both ends− 1

Table 5: Example logic formulas of different skills.

The basic statistics of our InterMWP dataset are
shown in Table 6. Figure 6 illustrates the distribu-
tion information about word-level question length,
char-level question length, and expression tree
length. For those problems with multi solutions,
we take the shortest solution expression to count.
From Figure 6, we can observe that the lengths of
most of the questions are adequate, which are not
too long to understand for an MWP Solver. Be-
sides, most expression tree contains less than 3
operators, which suggests that the questions should
not very difficult to reason. However, the long tail
in the distribution requires the MWP solvers to un-
derstand the complex mathematical relationships
in the textual content.

Total Train Val Test
Questions 11,495 9,485 1,000 1,000
Sentences 16,308 13,456 1,408 1,444

Words 316,620 261,700 27,048 27,872

Table 6: Basic statistics of our InterMWP dataset.

There are 210 algebraic knowledge formulas en-

11

https://doi.org/10.18653/v1/2021.acl-long.455
https://doi.org/10.18653/v1/2021.acl-long.455
https://doi.org/10.18653/v1/2022.findings-naacl.104
https://doi.org/10.18653/v1/2022.findings-naacl.104
https://doi.org/10.24963/ijcai.2020/555
https://doi.org/10.24963/ijcai.2020/555
https://doi.org/10.24963/ijcai.2020/555

tailed in InterMWP. We list the most and least fre-
quent knowledge formulas with a frequency greater
than 5 in Table 7. It is shown that the distribution
of formulas is not balanced but it is consistent with
the real-world scene.

(a) Problem length distribution

(b) Expression tree length distribution

(c) Number of used logic formulas distribution

Figure 6: Dataset Statistics. We show the statistical
characteristics of InterMWP (train+valid+test) for intu-
itive observation. We can observe that out InterMWP
has moderate question length and expression size for
MWP solving.

B Annotation Procedure

Eighteen well-trained annotators with undergradu-
ate degrees manually annotated solution equations
with grounded algebraic knowledge formulas in the
tree structure. Meanwhile, another annotator was
required to summarize the algebraic knowledge for-
mulas with the same meaning to eliminate logic

formulas %
Common-sense step 56.35

average per unit = total number / number per unit 4.75
total number = average number per unit × number of units 4.75
number per unit = total number / average number per unit 2.83

...
increased price rate = 1 + price increment ratio 0.06

increased price = original price / increased price rate 0.04

Table 7: Formulas statistics of our InterMWP dataset.

redundancies. Finally, two annotators were asked
to check the correctness of the annotated data from
other annotators by conducting statistical sampling.
When labeling the full solution to the test set, we
use three operations to ensure the coverage of the
full solution as far as possible: 1) The left and right
sides of the symmetric operators (+,*) are recur-
sively exchanged to generate new expressions; 2)
Using sympy to obtain the simplified expressions
and then operation 1 will be carried out; 3) New
expressions are manually marked and then opera-
tion 1 and 2 are conducted. If the correctness of an
annotator’s data is less than 96% accurate, the data
will be discarded.

C Implementation Details

In our LogicSolver, the size of word embeddings
and all hidden states for other layers are all set as
768, following the configuration of BERT-base (De-
vlin et al., 2019). In each epoch, all training data is
shuffled randomly and then cut into mini-batches.
BERT models in LogicSolver are initialized by
pre-trained BERT-wwm (Cui et al., 2020) for Chi-
nese. Our LogicSolver is optimized by ADAM
optimizor (Kingma and Ba, 2015) with β1 = 0.9,
β2 =0.999, and ϵ = 1e−8. The mini-batch size is set
as 32, 32, and 32 for the retriever, encoder-decoder,
and logic generator respectively. The initial fine-
tuning learning rate is set as 1e−5 and 1e−4 for
pre-trained BERT models and tree-decoder and
then decreases to half every 25 epochs. To pre-
vent overfitting, we set the dropout rate as 0.5 and
weight decay as 1e−5. The training epochs are set
as 20, 100, and 100 for retriever, encoder-decoder,
and logic generator respectively. During solution
expression generation, we use the beam search al-
gorithm to generate expression trees and predict
logic formulas.

D Experiments on logic formulas

We also evaluate the formula accuracy and logic
accuracy on the samples contain top-10 logic for-
mulas in the test split of InterMWP dataset. The

12

results are shown in Table 8. The performance
gap of our LogicSolver relative to GTS(Bert) is
significant on most logic formulas.

Logics formula acc logic acc

total number = average number per unit
× number of units 77.9/78.6 53.6/68.6

total number = number of units
× average number per unit 77.3/78.7 53.9/68.8

average number per unit = total number
÷ number of units 76.2/78.6 54.8/76.2

expenses = quantity × price 74.5/76.5 47.1/66.7

number of unit = total number
÷ average number per unit 76.8/78.3 62.3/71.0

expenses = price × quantity 74.0/76.0 48.0/68.0

Working speed = workload ÷ time 71.4/76.2 42.9/71.4

distance = speed × time 74.1/71.6 66.4/65.2

speed = distance ÷ time 76.7/74.4 67.4/67.4

Rectangle area = length × width 56.4/56.4 41.0/46.2

Table 8: Formula accuracy and logic accuracy on the
samples contain top-10 logic formulas with the most
occurrences in the test split. (To the left of the semicolon
‘/’ is the result of GTS(Bert), and to the right is the result
of LogicSolver.)

13

