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Abstract

A critical bottleneck in supervised machine
learning is the need for large amounts of labeled
data which is expensive and time-consuming
to obtain. Although a small amount of labeled
data cannot be used to train a model, it can be
used effectively for the generation of human-
interpretable labeling functions (LFs). These
LFs, in turn, have been used to generate a large
amount of additional noisy labeled data in a
paradigm that is now commonly referred to as
data programming. Previous methods of gen-
erating LFs do not attempt to use the given la-
beled data further to train a model, thus missing
opportunities for improving performance. Ad-
ditionally, since the LFs are generated automat-
ically, they are likely to be noisy, and naively
aggregating these LFs can lead to suboptimal
results. In this work, we propose an LF-based
bi-level optimization framework WISDOM to
solve these two critical limitations. WISDOM
learns a joint model on the (same) labeled
dataset used for LF induction along with any un-
labeled data in a semi-supervised manner, and
more critically, reweighs each LF according to
its goodness, influencing its contribution to the
semi-supervised loss using a robust bi-level op-
timization algorithm. We show that WISDOM
significantly outperforms prior approaches on
several text classification datasets. The source
code can be found at https://github.com/
ayushbits/robust-aggregate-lfs.

1 Introduction

Supervised machine learning approaches require
large amounts of labeled data to train robust ma-
chine learning models. Human-annotated gold la-
bels have become increasingly important to modern
machine learning systems for tasks such as spam
detection, (movie) genre classification, sequence la-
beling, etc. The creation of labeled data is, however,
a time-consuming and costly process that requires
large amounts of human labor. Together with the
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heavy reliance on labeled data for training models,
this serves as a deterrent to achieving comparable
performance on new tasks. As a result, various
methods such as semi-supervision, distant super-
vision, and crowdsourcing have been proposed to
reduce reliance on human annotation.

In particular, several recent data programming
approaches (Bach et al., 2019; Maheshwari et al.,
2021; Chatterjee et al., 2020; Awasthi et al., 2020)
have proposed the use of human-crafted labeling
functions to weakly associate labels with the train-
ing data. Typically, users encode supervision as
rules/guides/heuristics in the form of labeling func-
tions (LFs) that assign noisy labels to the unlabeled
data, thus reducing dependence on human-labeled
data. The noisy labels were aggregated using La-
bel aggregators, which often employ generative
models, to assign a label to the data instance. Ex-
amples of label aggregators are SNORKEL (Ratner
et al., 2016) and CAGE (Chatterjee et al., 2020).
These models provide consensus on the noisy and
conflicting labels assigned by the discrete LFs
to help determine the correct labels probabilisti-
cally. We could use the obtained labels to train
any supervised model/classifier and evaluate on
a test set. Apart from the cascaded approach de-
scribed above, recently proposed semi-supervised
paradigm (Awasthi et al., 2020; Maheshwari et al.,
2021) learns to aggregate labels using both features
and a very small labeled set in addition to label-
ing functions. Such approaches have been shown
to outperform the completely unsupervised data
programming approaches described above.

Data programming (unsupervised or semisuper-
vised) requires carefully curated LFs, generally
expressed in the form of regular expressions or
conditional statements. Even though creating LFs
can potentially take less time than creating large
amounts of supervised data, it requires domain ex-
perts to spend considerable time identifying and
determining the patterns that should be incorpo-
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Label Generated LFs Weighting
ENTITY what does ↑

DESCRIPTION what is ↓
NUMERIC how long ↑

DESCRIPTION how ↓
HUMAN who ↑

DESCRIPTION what kind ↓
LOCATION city ↑

Table 1: Illustration of induced LFs, including examples
of the issue of conflicting LFs, on the TREC dataset.
Learning importance (weights) of LFs can be used to
reduce the conflicts among LFs.

rated into LFs. In this paper, we circumvent the
requirement of human-curated LFs by instead au-
tomatically generating human-interpretable LFs as
compositions of simple propositions on the data
set by leveraging SNUBA (Varma and Ré, 2018)
which utilizes a small labeled-set to induce LFs
automatically. However, as we will show, SNUBA
suffers from two critical limitations, which keep it
from outperforming even a simple supervised base-
line that is trained on the same labeled-set. First,
SNUBA only uses the labeled-set to generate the
LFs but does not make effective use of it in the
final model training. Secondly, as it naively aggre-
gates these LFs, it is not able to distinguish between
very noisy LFs and more useful ones. This work
addresses both of these limitations.

In Table 1, we present a sample set of induced
LFs and assigned labels for the TREC dataset (Li
and Roth, 2002). The induced LFs are likely to
be less precise compared with those created by hu-
mans, and they are likely to have more mutual con-
flicts. Since the LFs are incomplete and noisy, ex-
isting label aggregators that merely consume their
outputs do not perform well when dealing with
such noisy LFs (c.f. Table 1). For instance, the
sentence How long does a dog sleep ?
will be assigned both DESCRIPTION and NUMERIC
labels due to the LFs how and how long.

As a solution, how should be given less im-
portance due to its noisy and conflicting nature,
whereas how long, associated with the NUMERIC
label, should be given higher importance. In this pa-
per, we present a bi-level optimization framework
for reweighting the induced LFs, which effectively
reduces the weights of noisy labels while simulta-
neously increasing the weights of the more useful
ones.

In Figure 1, we present an overview of our ap-
proach. We leverage semi-supervision in the fea-
ture space for more effective data programming

Figure 1: Pictorial depiction of our WISDOM work-
flow. A small labeled-set is used to automatically induce
LFs. This labeled set is split equally into supervised set
and validation set to be used by our re-weighted semi-
supervised data programming algorithm along with the
unlabeled set.

using the induced (automatically generated) label-
ing functions. To enable this, we split the same
labeled-set (which was used to generate the LFs)
into a supervised set and validation set. The super-
vised set is used for semi-supervised data program-
ming, and validation set is used to tune (reweight)
the LFs. As a basic framework for semi-supervised
data programming, we leverage SPEAR (Mahesh-
wari et al., 2021), which has achieved state-of-the-
art performance. While the semi-supervised data
programming approach helps in using the labeled
data more effectively, it does not solve the prob-
lem of noise associated with the LFs. To address
this, we propose an LF reweighting framework,
WISDOM1, which learns to reweight the labeling
functions, thereby helping differentiate the noisy
LFs from the cleaner and more effective ones.

The reweighting is achieved by framing the prob-
lem in terms of bi-level optimization. We argue that
using a small labeled-set can help improve label
prediction over hitherto unseen test instances when
the labeled-set is bootstrapped for (i) inducing LFs,
(ii) semi-supervision, and (iii) bi-level optimiza-
tion to reweight the LFs. For most of this work,
the LFs are induced automatically by leveraging
part of the approach described in (Varma and Ré,
2018). The LFs are induced on the entire labeled-
set, whereas the semi-supervision and reweighting
are performed on the supervised set and validation
set respectively (which are disjoint partitions of
labeled-set).

Our Contributions are as follows: While lever-
aging SNUBA (Varma and Ré, 2018) only for au-

1Expanded as reWeIghting based Semi-supervised Data
prOgraMming
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Figure 2: A summary plot contrasting the performance
gains obtained using WISDOM on previous state-of-the-
art approaches on YouTube and TREC (using Lemma
features). WISDOM outperforms other learning ap-
proaches with auto-generated LFs.

tomatically generating LFs, we address the im-
portant limitations of SNUBA by (i) effectively us-
ing the labeled set in a semi-supervised manner
using SPEAR (Maheshwari et al., 2021), and (ii)
critically making the labeling function aggregation
more robust via a reweighting framework. We do
the reweighting by using our proposed bi-level opti-
mization algorithm that weighs each LF separately,
giving low importance to noisy LFs and high impor-
tance to relevant LFs. We present evaluations on
six text classification datasets and show that WIS-
DOM demonstrates better performance than current
label aggregation approaches with automatically
(or even human) generated labeling functions.

A summary of the results are presented in Fig-
ure 2. As mentioned, SNUBA performs worse than
a simple supervised baseline that trained only on
the labeled data component. Furthermore, WIS-
DOM outperforms VAT (a state-of-the-art semi-
supervised learning algorithm) and HUM-SPEAR
sometimes (a state-of-the-art semi-supervised data
programming algorithm with human-generated
LFs), demonstrating the benefit of having both
semi-supervision and robust LF reweighting with
the auto-generated LFs. Finally, WISDOM gets
to within 2 - 4% of HUM-SPEAR (using human
crafted-LFs), without having to incur the cost of
generating labeling functions manually, and which
can also require significant domain knowledge.

2 Background

2.1 Notations

Let us denote the feature space by X and the label
space by Y ∈ {1...K} where K is the number of
classes. Let the automatically (or manually) gen-
erated labeling functions be denoted by λ1 to λm

Notation Description
li ∈ {0, 1}m Firings of all the LFs, λ1..λm on an instance xi

τij ∈ [0,K] class kj associated by LF λj , when triggered (lij = 1) on xi
fϕ The feature-based model with parameters ϕ operating on feature

space X and on label space Y ∈ {1...K}
Pθ The label probabilities as per the LF-based aggregation model

with parameters θ
labeled-set (L) The entire labeled dataset: L = {(xi, yi)} where i ∈ {1 · · ·N}.

This is used to induce the LFs
supervised set (S) Subset of L that is used for semi-supervision: S = {(xi, yi)}

where i ∈ {1 · · ·N/2}
validation set (V) Subset of L that is used for reweighting the LFs using a bi-level

optimization formulation: V = {(xi, yi)} where i ∈ {N/2 +
1 · · ·N}

unlabeled-set (U) Unlabeled set: U = {xi} where i ∈ {N + 1 · · ·M} . It is labeled
using the induced LFs

Lce Cross Entropy Loss
H Entropy function
g Label Prediction from the LF-based graphical model
LLs Supervised negative log likelihood over the parameters θ of the

LF aggregation model
LLu Unsupervised negative log likelihood summed over labels
KL KL Divergence between two probability models
R Quality Guide based loss

Lss(θ, ϕ,w) The semi-supervised bi-level optimization objective with addi-
tional weight parameters w over the LFs

Table 2: Summary of notations used in this paper.

where m is the number of labeling functions gener-
ated. Let the vector li = (li1, li2, . . . , lim) denote
the firings of all the LFs on an instance xi. Each lij
can be either 1 or 0; lij = 1 indicates that the LF
λj has fired (i.e., triggered) on the instance xi and
0 indicates it has not. Furthermore, each labeling
function λj is associated with some class kj and
for an input xi, it outputs the label τij = kj when
triggered (i.e., lij = 1) and τij = 0 otherwise.

Let the labeled-set be denoted by L = {(xi, yi)}
where i ∈ {1 · · ·N} and N is the number of
points in labeled-set. Similarly, we have an un-
labeled dataset denoted as U = {xi} where i ∈
{N + 1 · · ·M} and M − N is the number of un-
labeled points. The labeled-set is further split
into two disjoint sets called supervised set and
validation set. Let the supervised set be denoted
by S = {(xi, yi)} where i ∈ {1 · · ·N/2}. Let
V = {(xi, yi)} denote the validation set, where
i ∈ {N/2 + 1 · · ·N}.

2.2 SNUBA: Automatic LF Generation

Varma and Ré (2018) present SNUBA, a three step
approach that (i) automatically generates candidate
LFs (referred to as heuristics) using a labeled-set,
(ii) filters heuristics based on diversity and accuracy
metrics to select only relevant heuristics, and (iii)
uses the final set of filtered LFs (heuristics) and
a label aggregator to compute class probabilities
for each point in the unlabeled set U . Steps (i) and
(ii) are repeated until the labeled set is exhausted
or a limit on the number of iterations is reached.
Each LF is a basic composition of propositions on
the labeled set. A proposition could be a word,
a phrase, or a lemma (c.f., the second column of
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Table 1), or an abstraction such as a part of speech
tag. The composition is in the form of a classifier
such as a decision stump (1-depth decision tree) or
logistic regression.

Our WISDOM framework utilizes SNUBA for
generating the LFs and thereafter reweigh the LFs
via our reweighting framework while jointly learn-
ing the model parameters and the LF aggregation
in a semi-supervised manner.

2.3 SPEAR: Joint SSL Data Programming

Maheshwari et al. (2021) propose a joint learning
framework called SPEAR that learns the parameters
of a feature-based classification model and of the
label aggregation model (the LF model) in a semi-
supervised manner. SPEAR has a feature-based
classification model fϕ(x) that takes the features
as input and predicts the class label. SPEAR em-
ploys two kinds of models: a logistic regression
and a two-layer neural network model. For the LF
aggregation model, SPEAR uses an LF-based graph-
ical model inspired from CAGE (Chatterjee et al.,
2020). CAGE aggregates the LFs by regularizing
parameters such that learned joint distribution of
y and τj matches the user provided quality guides
over all y.

Pθ(i, y) =
1

Zθ

j=m∏
j=1

ψθ(τij , y) (1)

There are K parameters θj1, θj2...θjK for each
LF λj , where K is the number of classes. The
potential ψθ used in the CAGE model is defined as:

ψθ(τij , y) =

{
exp(θjy) if τij ̸= 0

1 otherwise
(2)

The loss function of SPEAR has six terms. These
include the cross entropy on the labeled set, an
entropy SSL term on the unlabeled dataset, a cross
entropy term to ensure consistency between the
feature model and the LF model, the LF graphical
model terms on the labeled and unlabeled datasets,
a KL divergence again for consistency between the
two models, and finally a regularizer. The objective
function is:∑
i∈L

Lce(fϕ(xi), yi) +
∑
i∈U

H(fϕ(xi))+∑
i∈U

Lce(fϕ(xi), g(li)) + LLs(θ|L) + LLu(θ|U)+∑
i∈U∪L

KL(Pθ(li), fϕ(xi)) +R(θ|{qj}) (3)

where g is the label prediction from the LF-based
graphical model. The second component H()
models semi-supervision (Grandvalet and Bengio,
2005) in the form of minimization of the entropy
of the predictions on the unlabeled dataset U . It
provides some semi-supervision by trying to in-
crease the confidence of the predictions made by
the model on the unlabeled dataset. (Refer Table
2 for notations used in the objective function). In
the objective function above, the LF model param-
eters are θ while the feature model parameters are
ϕ. The learning problem in SPEAR is simply to op-
timize the objective jointly over θ and ϕ. (We refer
readers to Maheshwari et al. (2021) for details.)
CAGE loss formulation: The learning problem
proposed in CAGE (Chatterjee et al., 2020) is a
special case of SPEAR where they just use the fifth
loss term LLu(θ|U) along with the quality guide
R(θ|{qj}). The specific loss formulation of CAGE
is as given below:

LLu(θ|U) +R(θ|{qj}) (4)

3 The WISDOM Workflow

In this section, we present our robust aggregation
framework for automatically generated LFs. We
present the LF generation approach followed by
our reweighting algorithm, which solves a bi-level
optimization problem. In the bi-level optimization,
we learn the LF weights in the outer level, and in
the inner level, we learn the feature-based classi-
fier’s and labeling function aggregator’s parameters
jointly. We describe the main components of the
WISDOM workflow below (see also Figure 1). A
detailed pseudocode of WISDOM is provided in Al-
gorithm 1. We describe the different components
of WISDOM below.
Automatic LF Generation using SNUBA: Our
WISDOM framework utilizes steps (i) and (ii) from
SNUBA (c.f., Section 2.2) for automatically induc-
ing LFs. That is, it initially iterates between i)
candidate LF generation on labeled-set L and ii) fil-
tering them based on diversity and accuracy based
criteria, until a limit on the number of iterations is
reached (or until the labeled set is completely cov-
ered). We refer to these steps as SNUBALFGEN.
Re-Weighting CAGE: To deal with noisy labels
effectively, we associate each LF λj with an ad-
ditional weight parameter wj ∈ [0, 1] that acts as
its reliability measure. The w’s are optimized on
the validation set and have interactions amongst
themselves, unlike θ which is learned on the combi-
nation of unlabeled and training sets. The discrete
potential in CAGE (c.f., eq.(2)) can be modified to
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include weight parameters as follows:

ψθ(τij , y) =

{
exp(wjθjy) if τij ̸= 0

1 otherwise
(5)

We observe that if the weight of the jth LF is
zero (i.e., wj = 0), the corresponding weighted
potential in eq. (5) becomes one, which in turn im-
plies that the jth LF is ignored while maximizing
the log-likelihood during label aggregation. Sim-
ilarly, if all the LFs are associated with a weight
value of one (i.e., wj = 1), the above weighted
potential will degenerate to the discrete potential
used in CAGE. The re-weighted CAGE is implicitly
invoked on lines 12, 13, 17 and 18 of Algorithm 1
where LSS(θ, ϕ,w) is invoked. We compare per-
formance of CAGE with a bi-level variation in Table
5.

Algorithm 1: WISDOM

Input: L,S,V,U , Learning rates: α, β
Output: θ, ϕ,w

1 **** Automatic LF generation using SNUBA ****
2 λ1, · · · , λm = SNUBALFGEN(L)
3 Get LFs trigger matrix ls, lu for sets S,U using

λ1, · · · , λm

4 Get LFs output label matrix τs, τu for sets S,U using
λ1, · · · , λm

5 **** The Reweighted Joint SSL ****
6 t = 0;
7 Randomly initialize model parameters θ0, ϕ0 and LF

weights w0;
8 repeat
9 Sample mini-batch s = (xs

i , y
s
i , τ

s
i , l

s
i ),

u = (xu
i , τ

u
i , l

u
i ) of batch size B from

{S, τs, ls}, {U , τu, lu}
10 **** Bi-level Optimization ****
11 **** Inner level ****
12 θ∗t = θt − α∇θLss(θt, ϕt,wt)
13 ϕ∗

t = ϕt − α∇ϕLss(θt, ϕt,wt)
14 **** Outer level ****
15 wt+1 = wt−β∇w

1
|V|

∑
i∈V

Lce(fϕ∗
t
(xi), yi)

16 **** Update net parameters ϕ, θ ****
17 θt+1 = θt+1 − α∇θLss(θt, ϕt,wt+1)
18 ϕt+1 = ϕt+1 − α∇ϕLss(θt, ϕt,wt+1)
19 t = t+ 1
20 until convergence
21 return θt+1, ϕt+1,wt+1

The Reweighted Joint SSL: Since the label ag-
gregator graphical model is now dependent on the
additional LF weight parameters w, the joint semi-
supervised learning objective function is modified
as follows:

Lss(θ, ϕ,w) =
∑
i∈S

Lce(fϕ(xi), yi) +
∑
i∈U

H(fϕ(xi))

+
∑
i∈U

Lce(fϕ(xi), g(li,w)) + LLs(θ,w|S)

+ LLu(θ,w|U) +
∑

i∈U∪S

KL(Pθ,w(li), fϕ(xi))

+R(θ,w|{qj}) (6)

In Section 7, we present the somewhat intuitive
expansions of terms that are dependent on w.

Bi-Level Objective: WISDOM jointly learns the
LF weights and weighted labeling aggregator and
feature classifier parameters for the objective func-
tion defined in Equation (6). The LF weights are
learned by WISDOM by posing a bi-level optimiza-
tion problem for this objective function as defined
in eq. (7) and employing alternating one-step gradi-
ent updates. As evident in eq. (7), WISDOM uses a
validation set (|V|) which is a subset of labeled-set
(|L|) to learn the LF weights. Furthermore, the in-
troduced weight parameters allow filtering of LFs
based on the feature model and a bilevel objec-
tive in the form of a cross-entropy loss of feature
model predictions on the validation set. In essence,
WISDOM tries to learn LF weights that result in
minimum validation loss on the feature model that
is jointly trained with weighted labeling aggregator.

w∗ = argmin
w

1

|V|
∑
i∈V

Lce(fϕ∗(xi), yi)

where ϕ∗,θ∗ = argmin
ϕ,θ

Lss(θ, ϕ,w) (7)

However, determining the optimal solution to the
above Bi-level objective function is computation-
ally intractable. Hence, inspired by MAML (Finn
et al., 2017), WISDOM adopts an iterative alterna-
tive minimizing framework, wherein we optimize
the objective function at each level using a single
gradient descent step. As shown in Algorithm 1,
lines 12 and 13 are the inner level updates where
the parameters θ, ϕ are updated using the current
choice of weight parameters w for one gradient
step, and in line 15, the weight parameter w is up-
dated using the one-step updates from lines 12 and
13. Finally, the net parameters ϕ, θ are updated in
lines 17 and 18. This procedure is continued till
convergence (e.g., no improvement in the outer-
level loss) or for a fixed number of epochs.
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Dataset |S| |V| |U| #LFs #Class

IMDB 71 71 1278 18 2
YouTube 55 55 977 11 2
SMS 463 463 8335 21 2
TREC 273 273 4918 13 6
Twitter 707 707 12019 25 3
SST-5 568 568 9651 25 5

Table 3: Summary statistics of the datasets and the
automatically generated LFs using SNUBA. The test set
contains 500 instances for each dataset.

4 Experiments

We present evaluations across six datasets that we
describe in the following Section 4.1. In Table 3,
we present summary statistics of these datasets,
including the sizes of supervised set, validation set
(with labeled-set being the union of these disjoint
sets) and the number of (auto-generated) LFs used
in the experiments.

4.1 Datasets
We use the following datasets in our exper-
iments: (1) TREC (Li and Roth, 2002): A
question classification dataset with six cate-
gories: Description, Entity, Human,
Abbreviation, Numeric, Location.
(2) YouTube Spam Classification (Alberto
et al., 2015): A spam classification task over
comments on YouTube videos. (3) IMDB Genre
Classification2: A plot summary based movie
genre binary classification dataset. (4) SMS Spam
Classification (Almeida et al., 2011): A binary
spam classification dataset to detect spam in SMS
messages. (5) Twitter Sentiment (Wan and Gao,
2015): This is a 3-class sentiment classification
problem extracted from Twitter feed of popular
airline handles. Each tweet is either labeled as
negative, neutral, and positive labels. (6) Stanford
Sentiment Treebank (SST-5) (Socher et al., 2013)
is a single sentence movie review dataset, with
each sentence labeled as either negative, somewhat
negative, neutral, somewhat positive, or positive.

4.2 Baselines
In Table 4, we compare our approach against the
following baselines:
Snuba (Varma and Ré, 2018): Recall from Sec-
tion 2.2 that SNUBA iteratively induces LFs from
the count-based raw features of the dataset in the
steps (i) and (ii). For the step (iii), as in (Varma
and Ré, 2018), we employ a generative model to as-
sign probabilistic labels to the unlabeled set. These

2www.imdb.com/datasets

probabilistic labels are obtained by training a 2-
layered NN model.
Supervised (SUP): This is the model obtained by
training the classifier Pθ(y|x) only on labeled-set.
This baseline does not use the unlabeled set.
Learning to Reweight (L2R) (Ren et al., 2018):
This method trains the classifier using a meta-
learning algorithm over the noisy labels in the un-
labeled set obtained using the automatically gen-
erated labeling functions and aggregated using
SNORKEL. It uses an online algorithm that assigns
importance to examples based on the gradient.
Posterior Regularization (PR) (Hu et al., 2016):
This is a method for joint learning of a rule and fea-
ture network in a teacher-student setup. Similarly
to L2R, it uses the noisy labels in the unlabeled set
obtained using the automatically generated label-
ing functions.
Imply Loss (IL) (Awasthi et al., 2020): This
method leverages both rules and labeled data by
associating each rule with exemplars of correct fir-
ings (i.e., instantiations) of that rule. Their joint
training algorithms de-noise over-generalized rules
and train a classification model. This is also run on
the automatically generated LFs.
SPEAR (Maheshwari et al., 2021): This method
employs a semi-supervised framework combined
with a graphical model for consensus amongst the
LFs to train the model. We compare against two
versions of SPEAR. The first that (just like L2R,
PR, IL, and VAT) uses auto-generated LFs (which
we call AUTO-SPEAR), and the second, viz., HUM-
SPEAR, which uses the human LFs.
VAT: Virtual Adversarial Training (Miyato et al.,
2018) is a semi-supervised approach that uses the
virtual adversarial loss on the unlabeled points,
thereby ensuring robustness of the conditional label
distribution on the unlabeled points.

4.3 Experimental Setting
To train our model on the supervised set, we use a
neural network architecture with two hidden layers
(512 units) and ReLU activation function as our
feature-based model fϕ. We choose our classifica-
tion network to be the same as SPEAR (Maheshwari
et al., 2021). We consider two types of features: a)
raw words and b) lemmatizations, as an input to our
supervised model (lemmatization is a technique to
reduce a word, e.g., ‘walking,’ into its root form,
’walk’). Additionally, these features are used as
basic propositions over which composite LFs are
built.

Each experimental run involves training WIS-
DOM for 100 epochs with early stopping based on
validation set. Our model is optimized using mini-
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batch gradient descent with the Adam optimizer.
We tuned the hyperparameters on the validation
set, and the optimal configuration was found to
have a dropout probability of 0.80 and a batch size
of 32. Further, the optimal configuration learning
rates for the classifier and LF aggregation models
were 0.0003 and 0.01, respectively. Performance
numbers for each experiment are obtained by av-
eraging over five independent runs, each having a
different random initialization. For evaluation on
the test set, the model with the best performance
on the validation set was chosen. On all datasets,
macro-F1 is employed as the evaluation criterion.
We implement all our models in PyTorch3 (Paszke
et al., 2019). We run all our experiments on Nvidia
RTX 2080 Ti GPUs with 12 GB RAM set within
Intel Xeon Gold 5120 CPU having 56 cores and
256 GB RAM. Model training times range from 15
mins (YouTube) to 100 mins (TREC).

4.4 Results

In Table 4, we compare the performance of WIS-
DOM against different baselines (all using auto-
generated labeling functions except VAT), for both
raw and lemmatized count features (c.f. Sec-
tion 2.2) across multiple datasets. We observe
that SNUBA performs worse than the Supervised
baseline on all datasets, exhibiting high variance
over different runs (surprisingly, Varma and Ré
(2018) did not compare the performance of SNUBA
against the supervised baseline). Learning to
Reweight (L2R) performs worse than Supervised
on all datasets except YouTube. Posterior regu-
larization, imply loss and SPEAR show gains over
Supervised on a few datasets, but not consistently
across all datasets and settings. Finally, VAT ob-
tains competitive results in some settings (e.g.,
TREC dataset) but performs much worse on oth-
ers (e.g., IMDB and SST-5). In contrast, WIS-
DOM achieves consistent gains over Supervised and
the other baselines in almost all datasets (except
TREC with raw features where VAT does slightly
better than WISDOM). Additionally, WISDOM
yields smaller variance over different runs com-
pared to other semi-supervised approaches. Recall
that the main difference between WISDOM and
Auto-SPEAR is that the former reweighs the LFs
in both the label aggregator as well as in the semi-
supervised loss, as against Auto-SPEAR which does
not reweigh the LFs at all. Consequently, the afore-
mentioned empirical gains illustrate the robustness
of the bi-level optimisation algorithm. Note that
these numbers are all reported using only 10% la-

3https://pytorch.org/

beled data, and hence, results for some datasets
(starting with Supervised) might appear lower than
those reported in the literature. Note that, we com-
pare WISDOM (using automatically induced LFs)
against the HUM-SPEAR which uses the human
crafted LFs in conjunction with the state-of-the-art
SPEAR approach (Maheshwari et al., 2021). Al-
though WISDOM uses auto-generated LFs, it some-
times performs better than HUM-SPEAR, which
utilizes human-curated LFs. On careful analysis
(presented in Section 8 of the supplementary), we
observe that the human curated LFs tend to be more
generic abstractions of possible patterns without
assessing how precise they are for the end task.
Consequently, these abstract human-LFs tend to
have not only higher collective coverage but also
high mutual conflicts and lower average individ-
ual precision values than the automatically induced
LFs. Given the individual strengths of both human-
lfs and auto-lfs, it might be interesting to consider
using them in conjunction with each other in order
to improve performance as future work. An abla-
tion test in Figure 3 reveals that WISDOM performs
well even for small-sized labeled-set unlike other
baselines, demonstrating its robustness in scenarios
with only few labeled examples.

4.5 Importance of the Bi-Level formulation
A label aggregation approach, such as CAGE,
SNORKEL, may improve the consensus labeling
across LFs, but not necessarily their agreement
with the ground truth. Further, when LFs are noisy
(or induced automatically), the performance of the
CAGE model can suffer. However, the bi-level
framework of CAGE can alleviate these problems
since it implicitly reduces the noise in LFs. In order
to demonstrate effectiveness of the bi-level formu-
lation, we compare CAGE(Eq (4)) with two variants
(i) CAGEval

4 that considers validation set feedback
in the loss formulation for promoting LF agree-
ment with ground-truth label and (ii) CAGEBi-level
with the proposed bi-level formulation that tries to
do the same5. We present our results in Table 5.
The performance of our CAGEBi-level is clearly su-
perior to the original CAGE model, as well as to
the CAGEval model. Thus, the bi-level formula-
tion more effectively incorporates validation set
feedback than other formulations as demonstrated
by application of bi-level on both SPEAR as well
as on CAGE. In Table 1, we had presented some
illustrative examples (from the TREC dataset) of

4CAGEval - equivalent to using only LLs(θ|L) +
LLu (θ,w|U) +R (θ,w|{qj}) in Eq (3)

5In other words, CAGEBi-level is equivalent to using only
LLu (θ,w|U) +R (θ,w|{qj}) in Eq (6)
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Methods
Dataset Supervised SNUBA L2R VAT PR IL AUTO-SPEAR WISDOM HUM-SPEAR

IMDB
Raw 68.8 (0.2) -5.9 (2) -6.6 (1.6) -12.3 (1) +2.7 (15.6) +2.4 (1.7) +2.4 (1.6) +3.4 (0.1) NA

Lemma 72.4 (1.3) -14.4 (5.7) -3.7 (14.7) -19.3 (0.1) -11.7 (4.1) -6.4 (8.2) -2.4 (1.6) +3.6 (1.4) NA

YouTube
Raw 90.8 (0.3) -33.2 (1.8) +0.5 (0.5) +0.5 (0) -4.7 (0.4) +0.2 (0.3) +0.8 (0.5) +1.4 (0.0) +3.8 (0.2)

Lemma 86 (0.3) -28.7 (2.9) -2.2 (0.7) -3.8 (0.2) -7.5 (0.5) -2.6 (0.3) -7.9 (3.7) +4.4 (0.2) +6.9(0.7)

SMS
Raw 92.3 (0.5) -16.7 (9.8) -5.6 (0.4) +1.1 (0.1) +0.3 (0.1) 0 (0.3) 0.4 (0.8) +1.5 (0.1) +0.1 (0.5)

Lemma 91.4 (0.5) -16.1 (5.3) -5.9 (0.5) +1.6 (0.5) +0.6 (0.3) +1.5 (0.3) -1.5 (1.8) +2 (0.5) 0 (0.1)

TREC
Raw 58.3 (3.1) -6.8 (4.1) -11.8 (0.8) +3.7 (0.5) -2.2 (0.6) -0.3 (0.8) -0.9 (0.5) +3.4 (0.5) +5 (0.5)

Lemma 56.3 (0.3) -5.8 (5.1) -5.5 (0.6) +3.0 (0.5) +0.4 (0.4) +0.8 (0.8) +2.7 (0.1) +3.9 (0.5) +4.7(0.3)

Twitter
Raw 52.61 (0.12) -7 (4.1) -5 (2.3) +0.41 (3.5) -4.49 (3.6) -0.85 (0.6) -4.24 (0.4) +1.04 (0.8) NA

Lemma 61.24 (0.52) -9.28 (5.1) -18.03 (1.5) -10.8 (5.3) -8.12 (2.1) -3.79 (0.1) +1.9 (0.1) +3.97 (0.7) NA

SST-5
Raw 27.54 (0.12) -9 (2.2) -7.98 (0.2) -6.12 (0.12) -5.59 (0.2) -2.11 (0.1) -4.12 (0.1) +0.97 (0.3) NA

Lemma 27.52 (0.52) -8.31 (3.1) -8.1 (8.1) -7.89 (1.6) -7 (4.7) -3.4 (0.16) -3.13 (2.1) +0.79 (0.3) NA

Table 4: Performance of different approaches on six datasets, viz., IMDB, YouTube, SMS, TREC, Twitter, and
SST-5. Results are shown for both ’Raw’ or ’Lemmatized’ features. The numbers reported are macro-F1 scores over
the test set averaged over 5 runs, and for all methods after the double-line are reported as gains over the baseline
(Supervised). L2R, PR, IL, AUTO-SPEAR, and WISDOM all use the automatically generated LFs; Supervised and
VAT do not use LFs; and HUM-SPEAR uses the human generated LFs. ’NA’ in HUM-SPEAR column is when human
LFs are not available. Numbers in brackets ‘()’ represents standard deviation of the original scores and not of the
gains.
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Figure 3: Ablation study with different labeled-set sizes
on the YouTube dataset.

Youtube SMS TREC
CAGE 62.45 18.1 14.1
CAGEval 84.62 39.61 37.99
CAGEBi-level 87.11 43.22 39.34

Table 5: Comparison of CAGE model with two variants.
CAGEval includes validation set feedback in the original
CAGE loss function and CAGEBi-level is bi-level formula-
tion of CAGE objective using Eq 5.

automatically induced LFs whose weights are rel-
atively higher based on the bi-level formulation
along with those that are down-weighted owing
to their conflicting signals. We present additional
examples as well as further qualitative analysis in
Section 9 of the supplementary.

5 Related Work

In this section, we describe some additional related
work that was not covered in Section 2.
Automatic Rule Generation: The programming
by examples paradigm produces a program from
a given set of input-output pairs (Gulwani, 2012;

Singh and Gulwani, 2012). It synthesises those
programs that satisfy all input-output pairs. Ru-
leNN (Sen et al., 2020) learns interpretable first-
order logic rules as composition of semantic role
attributes. Many of these approaches, however,
learn more involved rules (using e.g., a neural net-
work) which may not work in the realistic setting
of very small labeled data. In contrast, SNUBA and
WISDOM use more interpretable models (Rudin,
2019) like logistic regression and decision trees for
rule induction.

Semi-supervised Learning (SSL): The goal of
SSL is to effectively use unlabeled data while train-
ing. Early SSL algorithms used regularization-
based approaches like margin regularization, and
laplacian regularization (Chapelle et al., 2010).
Most recent SSL approaches like Mean Teacher
(Tarvainen and Valpola, 2017), VAT (Miyato et al.,
2018), UDA (Xie et al., 2020), MixMatch (Berth-
elot et al., 2019) and FixMatch (Sohn et al., 2020)
introduced various kinds of perturbations and aug-
mentations that can be used along with consistency
loss. Even though the current SSL approaches per-
form well even with minimal labels, they are com-
putationally intensive and cannot be easily imple-
mented in low-resource scenarios. Furthermore, it
is tough to explain the discriminative behavior of
the semi-supervised models.

Bi-level Optimization: The concept of bi-level
optimization has been discussed in (von Stackel-
berg et al., 1952; Bracken and McGill, 1973; Bard,
2006). Since then, the framework of bi-level opti-
mization has been used in various machine learning
applications like hyperparameter tuning (Mackay
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et al., 2019; Franceschi et al., 2018; Sinha et al.,
2020), robust learning (Ren et al., 2018; Guo et al.,
2020), meta-learning (Finn et al., 2017), efficient
learning (Killamsetty et al., 2021) and continual
learning (Borsos et al., 2020). Previous applica-
tions of the bi-level optimization framework for
robust learning have been limited to supervised and
semi-supervised learning settings. To the best of
our knowledge, WISDOM is the first framework
that uses a bi-level optimization approach for ro-
bust aggregation of labeling functions.

6 Conclusion

While induction of labeling functions (LFs) for
data-programming has been attempted in the past
by Varma and Ré (2018), we observe in our exper-
iments that the resulting model in itself does not
perform well on text classification tasks, and turns
out to be even worse than the supervised baseline.
A more recent semi-supervised data programming
approach called SPEAR (Maheshwari et al., 2021),
when used in conjunction with the induced LFs,
performs better, though it fails to consistently out-
perform the supervised baseline. In this paper, we
introduce WISDOM, a bi-level optimization for-
mulation for reweighting the LFs, which injects
robustness into the semi-supervised data program-
ming approach, thus allowing it to perform well
in the presence of noisy LFs. On a reasonably
wide variety of text classification datasets, we show
that WISDOM consistently outperforms all other
approaches, while also coming close to the skyline
of SPEAR using human-generated LFs.
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Appendix
7 Explanation of loss terms

First Component (L1): The first component (L1) of the loss LCE

(
P f
ϕ (y|xi), yi

)
=

− log
(
P f
ϕ (y = yi|xi)

)
is the standard cross-entropy loss on the labelled dataset L for the model P f

ϕ .
Second Component (L2): The second component L2 is the semi-supervised loss on the unlabelled data
U . In our framework, we can use any unsupervised loss function.
Third Component (L3): The third component LCE

(
P f
ϕ (y|xi), g(li), w

)
is the cross entropy of the

classification model using the hypothesised labels from CAGE (Chatterjee et al., 2020) on U . Given that
li is the output vector of all labelling functions for any xi ∈ U , we specify the predicted label for xi using
the LF-based graphical model Pθ(li, y) as: g(li) = argmax

y
Pθ,w(li, y)

Fourth Component (L4): The fourth component LLs(θ|L) is the (supervised) negative log likelihood

loss on the labelled dataset L: LLs(θ, w|L) = −
N∑
i=1

logPθ,w(li, yi)

Fifth Component (L5): The fifth component LLu(θ, w|U) is the negative log likelihood loss for the
unlabelled dataset U . Since the true label information is not available, the probabilities need to be summed

over y: LLu(θ, w|U) = −
M∑

i=N+1

log
∑
y∈Y

Pθ,w(li, y)

Sixth Component (L6): The sixth component KL(P f
ϕ,w(y|xi), Pθ(y|li)) is the Kullback-Leibler (KL)

divergence between the predictions of both the models, viz., feature-based model fϕ and the LF-based
graphical model Pθ summed over every example xi ∈ U ∪ L. Through this term, we try and make the
models agree in their predictions over the union of the labelled and unlabelled datasets.

Quality Guides (QG): As a last component in our objective, we use quality guides R(θ, w|{qj}) on
LFs which have been shown (Chatterjee et al., 2020) to stabilise the unsupervised likelihood training
while using labelling functions. Let qj be the fraction of cases where λj correctly triggered. And let qtj be
the user’s belief on the fraction of examples xi where yi and lij agree. If user’s beliefs weren’t available,
we consider precision of LFs on validation set as the user’s beliefs. Except SMS dataset, we take precision
of LFs on validations set as quality guides. If Pθ,w(yi = kj |lij = 1) is the model-based precision over the

LFs, the quality guide based loss can be expressed as R(θ, w|{qtj}) = −
(∑

j q
t
j logPθ,w(yi = kj |lij =

1) + (1− qtj) log(1− Pθ,w(yi = kj |lij = 1))

)
.

8 LF Analysis

We compare statistics of automatically induced LFs and human-curated LFs in Table 6. While developing
LFs, humans generally tend to design LFs based on generalizibility of the pattern without worrying
much about the conflicts among the patterns. Whereas the LF induction in WISDOM focuses on inducing
individually precise LFs without necessarily focusing on the overall coverage. Except in the case of the
SMS dataset, collective coverage of human designed LFs is much higher than that of the automatically
induced LFs. We also observe in Table 6 that higher coverage leads to higher conflicts. Whereas, on an
average, the precision is higher for each of the automatically induced LFs in the case of every dataset.

9 Qualitative Analysis of Automatically Induced LFs

For the six datasets used for experimentation, we automatically induce LFs using Snuba (Varma and Ré,
2018). We show the automatically induced LFs and their respective weights assigned by WISDOM for
three datasets TREC, IMDB, and SMS below.

In Table 7, we present LFs produced by the Snuba for the TREC dataset sorted in descending order of
weights for each class along with the weights assigned by WISDOM to each of the LFs. From analysis,
we observe that WISDOM does a good job of reweighting LFs. For instance, how many was given
higher weightage than how and many for class Numeric; this sounds logical as well since sentences
containing the keyword how many are more likely to belong to class Numeric than sentences containing
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Auto LFs Human LFs
#LFs Precision Conflict Cover (%) #LFs Precision Conflict Cover(%)

YouTube 11 94.3 8.1 63.4 10 79.8 28.7 88.0
SMS 25 94.9 3.2 47.9 73 92.3 1.0 33.3
TREC 13 70.1 2.3 62.3 68 59.9 22.3 95.1

Table 6: Comparison of automatically generated LFs with human-curated LFs. Coverage is fraction of instances in
U covered by at least one rule. Precision refers to micro precision of rules. Conflict denotes the fraction of instances
covered by conflicting rules among all the covered instances.

Class LF Weights
NUM how many 1
NUM how 1
NUM many 0.62
DESC what kind 1
DESC what was 0.54
LOC city 1
LOC country 0.84
LOC where 0.05
ENTY what does 1
ENTY def 1
ENTY why 0.8
ENTY what is 0.65
HUM who 0.00012

Table 7: Automatically induced LFs by Snuba (Varma and Ré, 2018) for the TREC dataset sorted in descending
order of weights per class assigned by WISDOM. Column 1 refers to the class associated with the induced LF. No
LFs were induced for class Abbreviation.

the keyword how or many. Another example is among LFs associated with Location class, LFs city and
country were given higher weightage than where. However, WISDOM does a poor job by assigning a
very small weight value to the single LF who associated with the Human class.

In Table 8, we present LFs produced by the Snuba for the IMDB dataset sorted in descending order of
weights for each class along with the weights assigned by WISDOM to each of the LFs. For the IMDB
dataset as well, we can see that WISDOM does a good job of reweighting LFs. For instance,among
the LFs associated with the class ROMANCE, wife and love were given higher weightage than
other LFS like friendship, wealthy, town; this sounds logical as well since ROMANCE is often
associated with the sentences containing the keywords wife, love than sentences containing the
keyword friendship, town, wealthy. One more key observation is that apart from LFs wife
and love, all other LFs associated with the class ROMANCE are given weights of 0(equivalent to
ignoring them). However, assigning 0 weights is controversial for LFs like boyfriend since there is a
possibility of ROMANCE associated with the sentence containing keyword boyfriend. Similarly for
LFs associated with Action class, LFs government, agent, and plan were given higher weightage
than race, and team.

In Table 9, we present LFs produced by the Snuba for the SMS dataset sorted in descending order of
weights for each class along with the weights assigned by WISDOM to each of the LFs. For the SMS
dataset, we can see that WISDOM did not do as good a job of reweighting as done on other datasets.
For instance,among the LFs associated with the class SPAM, ur, video and cam were given higher
weightage while completely ignoring(i.e., assigned a weight of zero) to other important LFS like free,
claim, won. Whereas for LFs associated with the class NOT SPAM, WISDOM did a good job. One
possible reason for the poor job of WISDOM for reweighting LFs associated with the class SPAM is that
class imbalance present in the unlabeled set, where the sample count of samples of the class SPAM is
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Class LF Weights
ROMANCE wife 0.412
ROMANCE love 0.042
ROMANCE boyfriend 0
ROMANCE friendship 0
ROMANCE wealthy 0
ROMANCE story 0
ROMANCE town 0
ROMANCE friend 0
ACTION government 1
ACTION plan 0.985
ACTION agent 0.913
ACTION team 0.753
ACTION race 0.685

Table 8: Automatically induced LFs by Snuba (Varma and Ré, 2018) for the IMDB dataset sorted in descending
order of weights per class assigned by WISDOM. Column 1 refers to the class associated with the induced LF.

Class LF Weights
SPAM ur 1
SPAM video 1
SPAM com 1
SPAM contact 0.2213
SPAM holiday 0.1593
SPAM free 0
SPAM claim 0
SPAM stop 0
SPAM won 0
SPAM win 0
SPAM uk 0
SPAM text 0
SPAM urgent 0
NOTSPAM come 1
NOTSPAM ok 1
NOTSPAM got 1
NOTSPAM like 1
NOTSPAM sorry 0.03731254

Table 9: Automatically induced LFs by Snuba (Varma and Ré, 2018) for the SMS dataset sorted in descending order
of weights per class assigned by WISDOM. Column 1 refers to the class associated with the induced LF.
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eight times smaller than the sample count of the class SPAM. From our LF analysis results across the
three datasets, we observe that WISDOM tries to up weigh LFs that are more specific and precise and
downweigh LFs that are abstract and less precise.
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