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Abstract

Large-scale pre-trained language models have
demonstrated strong knowledge representa-
tion ability. However, recent studies suggest
that even though these giant models contain
rich simple commonsense knowledge (e.g.,
bird can fly and fish can swim.), they often
struggle with complex commonsense knowl-
edge that involves multiple eventualities (verb-
centric phrases, e.g., identifying the relation-
ship between “Jim yells at Bob” and “Bob
is upset”). To address this issue, in this
paper, we propose to help pre-trained lan-
guage models better incorporate complex com-
monsense knowledge. Unlike direct fine-
tuning approaches, we do not focus on a spe-
cific task and instead propose a general lan-
guage model named CoCoLM. Through the
careful training over a large-scale eventual-
ity knowledge graph ASER, we successfully
teach pre-trained language models (i.e., BERT
and RoBERT?3) rich discourse-level common-
sense knowledge among eventualities. Experi-
ments on multiple commonsense tasks that re-
quire the correct understanding of eventuali-
ties demonstrate the effectiveness of CoCoLM.

1 Introduction

Recently, large-scale pre-trained language repre-
sentation models (LMs) (Devlin et al., 2019; Liu
et al., 2019) have demonstrated the strong ability
to discover useful linguistic properties of syntax
and remember an impressive amount of knowledge
with self-supervised training over a large unlabeled
corpus (Petroni et al., 2019; Jiang et al., 2020).
On top of that, with the help of the fine-tuning
step, LMs can learn how to use the memorized
knowledge for different tasks, and thus achieve out-
standing performance on many downstream natural
language processing (NLP) tasks.

As discussed in Verga et al. (2020), while lan-
guage models have already captured rich knowl-
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Query | Answer
Birds can [MASK]. fly

Cars are used for [MASK]. transport
Jim yells at Bob, [MASK] Jim is upset. but

Jim yells at Bob, [MASK] Bob is upset. but

Table 1: Exploring knowledge contained in pre-trained
language models following LAMA (Petroni et al.,
2019). Queries and prediction returned by BERT-large
are presented. Semantically plausible and implausible
prediction are indicated with blue and red colors.

edge, they often only perform well when the se-
mantic unit is a single token while poorly when the
semantic unit is more complex (e.g., a multi-token
named entity or an eventuality, which is a linguis-
tic term for verb-centric phrases covering activities,
states and events (Bach, 1986; Araki and Mitamura,
2018)). For example, as shown in Table 1, if we
follow LAMA (Petroni et al., 2019) to analyze the
knowledge contained in BERT-large (Devlin et al.,
2019) with a token prediction task, we can find out
that BERT can understand that birds can fly, and a
car is used for transportation, but it fails to under-
stand the relation between “Jim yells at Bob” and
relevant eventualities. An important reason behind
this is that current language models heavily rely on
token-level masked language models (MLMs) as
the loss function, which can effectively represent
and memorize token co-occurrence statistics' but
struggle at perceiving multi-token concepts.

To address this problem and equip LMs with
complex and accurate human knowledge, several
recent works attempt to integrate entity representa-
tions from external knowledge graphs. While those
approaches have been proved effective in merg-
ing structured knowledge into the LMs, they still
have two limitations when applying to eventuality
representations: (1) The first line of work (Verga

! Sinha et al. (2021) also explains the success of LMs due

to distributional information. These models pretrained over
sentences with shuffled word order still achieve high accuracy.
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Type | Sequences

Temporal\ I had a dream. Precedence (Before) I met with you yesterday. Succession (After) There were so many matters.

Casual ‘ I go to supermarket. Reason (Because) I have a coupon. Result (So) The price is great.

Others

‘ You can come with me. Alternative (Or) You can stand here. Contrast (But) The situation remains unchanged.

Table 2: Examples of eventuality sequences with different types of discourse relations (highlighted with pink) and
connectives (bolded). Note there may exist multi-relational eventuality pairs

etal., 2020; Shen et al., 2020; Févry et al., 2020) re-
stricts a fixed set of named entities or concepts to be
linked to KGs while the eventualities are not easily
canonicalized. There are enormous eventualities,
which many of them refer to similar meanings such
as “Tom is upset” and “Alice is upset”. (2) The
second class of methods uses powerful contextu-
alized representations to encode one-hop triplets
from KGs (Bosselut et al., 2019; Yao et al., 2019)
for the task of KG completion. However, it is not
sufficient for tasks that require the understanding of
complex discourse relations in the event sequences
or chains. For example pretrained LMs on the
story ending prediction task (Mostafazadeh et al.,
2016) have gaps with human performance (Li et al.,
2019). Besides that, different types of relations (ca-
sual or temporal) make high-order inference over
eventualities difficult and challenging.

In this paper, to effectively inject eventuality
knowledge into pre-trained language representa-
tion models, we propose a knowledge injection
framework CoCoLM, which requires no concept or
eventuality linking and encodes multi-hop eventual-
ity information as well as their discourse relations.
The starting point is a large-scale eventuality knowl-
edge graph, ASER (Zhang et al., 2020b), where
the edges are discourse relations among eventu-
alities (e.g., “being hungry” can cause “eat food”
and “being hungry” often happens at the same time
as “being tired”). First, we go beyond one-hop
modeling (Yao et al., 2019; Bosselut et al., 2019)
and carefully conduct weighted random walk over
ASER to harvest multi-hop eventuality sequences
connected by discourse relations (§2.1). Individ-
ual eventualities are contextualized by coherent
sequences (examples in Table 2). Second, we fine-
tune pretrained LMs on the sampled sequences
and reformulate the masked language modeling
objective to new eventuality-level masking to per-
ceive the eventualities as independent semantic
units (§ 2.2). In addition, two auxiliary tasks of
discourse relation prediction are proposed to make
implicit commonsense inferences (§ 2.3). For ex-

ample, the new tasks explicitly reinforce the casual
relation prediction between “I have a coupon” and
“The price is great”. By doing so, we successfully
expose and inject fruitful high-order information
between eventualities to pretrained LMs. To un-
derstand the impact of our proposed CoCoLM, we
conduct experiments on three tasks that require the
understanding of temporal, causal, mixed (multi-
ple) relations respectively. The results show that
our method achieves substantial improvements on
the multiple-relation task while competitive perfor-
mance on single-relation tasks. Extensive analyses
are conducted to show the effect and contribution
of all components in CoCoLM. Our main contribu-
tions are as follows:

e We propose CoCoLM, a new contextualized lan-
guage model enhanced by complex common-
sense knowledge from high-order discourse re-
lations. CoCoLM is trained to predict the whole
eventuality among the sequences using a large-
scale eventuality KG.

e We introduce two auxiliary discourse tasks to
help incorporate discourse-related knowledge
into pre-trained language models, which comple-
ment the special eventuality masking strategy.

e CoCoLM achieves stronger performance than
the baseline LMs on multiple datasets that re-
quire the understanding of complex common-
sense knowledge about eventualities.”

2 Methods

The overall framework of CoCoLM is presented
in Figure 1. Given a pre-trained language model,
we inject complex commonsense knowledge about
eventualities by adding one adaptive pre-training
stage (Gururangan et al., 2020). Specifically, we
first generate eventuality sequences based on care-
fully controlled walks over existing eventuality
knowledge graphs and then use the sequences as

2Qur code and models are available at https://
github.com/HKUST-KnowComp/Co2LM.
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Figure 1: The overall framework of CoCoLM. On
top of base pre-trained LMs, complex commonsense
knowledge from the eventuality sequences is injected
by fine-tuning MLMs and auxiliary discourse tasks.

the context to help LMs handle eventualities. Be-
sides the original token-level MLM objective, we
also introduce the eventuality-level masking strat-
egy and several auxiliary tasks to assist the training.
As the training is not task-specific, the resulting
LM can be easily applied to any downstream tasks
via another task-specific fine-tuning stage.

2.1 Eventuality Sequence Generation

Multi-hop path information have been shown use-
ful and interpretable to provide extra context knowl-
edge by connecting the concepts from Concept-
Net (Speer et al., 2017) for commonsense reasoning
tasks (Lin et al., 2019; Wang et al., 2020a). Simi-
larly, we generate eventuality sequences by leverag-
ing ASER, which uses eventualities as nodes and
the discourse relations as edges. ASER extracts
rich eventuality knowledge from diverse corpus,
such as “being hungry” and “being tired” often
happen together and people often “make a call”
before they go. It contains much larger scale of
discourse relations than DisSent (Nie et al., 2019).
Interestingly, beyond the single edges, higher-order
connections over ASER can also reflect insightful
eventuality knowledge. For example, “sleep” and
“g0” are not likely to happen at the same time be-
cause “sleep” can be caused by “being tired”” and
there exist contrast connections between “being
tired” and “go”. To include higher-order knowl-
edge into the model, we propose to take the whole
graphical structure into consideration rather than
single-hop edges. Motivated by DeepWalk (Per-
ozzi et al., 2014), we randomly sample paths to
simulate the overall graph structure and generate
eventuality-level co-occurrence information.

Given the initial knowledge graph G = (£, R),
where &£ is the eventuality set and R is the
relation set, we conduct the weighted random
walk based on the edge weights over G to sam-
ple eventuality paths. We denote each path as
(Eo,70, E1,71,...,71—1, F}), where E means an
eventuality, r a discourse edge connecting two
eventualities, and [ the numbers of eventualities
along the sequence. To convert the sampled sen-
tence into a token list, we keep all words in each
event as a sentence and use representative con-
nectives for each discourse relation to connect
them (examples in the Table 2; full list in the Ap-
pendix Table 9). As ASER is automatically ex-
tracted from raw corpus, it may contain noise. To
minimize the influence of the noise and improve the
informativeness, the selected paths should fulfill:

1. To filter out rare eventualities, the frequency of
starting eventualities has to be larger than five.

2. Other than the relations that have the transitive
property (e.g., Precedence, Result), each se-
lected path should not contain successive edges
with repeated relations.

3. We manually improve the sampling probabil-
ity of selecting sub-sequence patterns like “FE;
Condition E; Reason FE}”. Since it has been
proven that if-then rules (Sap et al., 2019) and
if-then-because rules (Arabshahi et al., 2020)
are crucial for reasoning.

2.2 [Eventuality-Level Mask

Masking strategy plays a crucial role in the training
of language representation models. Besides the
random token-level masking strategy, many other
masking strategies have been explored by previous
literature such as the-whole-word masking (Devlin
et al., 2019; Cui et al., 2019), entity masking (Sun
et al., 2019; Shen et al., 2020) or text span mask-
ing (Joshi et al., 2020)3. Similarly, to effectively
help the model view each eventuality as an indepen-
dent semantic unit, we propose the following two
masking strategies: (1) Whole Eventuality Mask-
ing: Similar to the whole word masking or entity
masking strategies, the whole eventuality masking
aims to reduce the prior biases of eventuality to-
kens. For example, given an eventuality sequence
“I feel sleepy because I drink a cup of [MASK].”,

3Unlike SpanBERT, we have discourse connectives as
span boundaries and do not need the SBO objective.
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Figure 2: Illustration of CoCoLM-(Complex commonsense pre-training stage). Given an eventuality sequence,
it is either masked by the whole eventuality masking (in blue) or discourse connective masking strategy (in
pink). Besides the regular masked language model, the discourse relation labels are jointly predicted for masked
connective tokens (on x4, xg and x12). Co-occurrence prediction (on x1) is conducted for both masking strategies.

BERT would easily predict “coffee” or “tea” be-
cause of the prior knowledge of “cup of” inside the
eventuality. Instead of that, masking the whole “I
drink a cup of coffee” would encourage the pre-
diction to treat each eventuality as an independent
semantic unit and focus on the relations between
them. For each sampled sequence, we randomly
mask at most one eventuality to fulfill the masking
budget, which is typically 25% of the sequence
token length. (2) Discourse Connective Masking:
Besides masking the eventualities, to effectively
encode the discourse information, we also tried
masking the discourse connectives.

Examples of two masking strategies are shown
in Figure 2. It is worth mentioning that for each se-
quence, we only randomly select one type of mask-
ing strategy to guarantee that enough information is
kept in the left tokens for the prediction. The formal
masking objective is defined as follows. Given a
tokenized sampled sequence X = (1, z2, ..., Tp),
after masking several tokens, we pass it to a trans-
former encoder (Vaswani et al., 2017) and denote
the resulting vector representations as xi, Xg, ...Xp.
The training loss £,,,;,,, can thus be defined as:

£mlm =

Z log P(x;|x3), (1)

’M| €M

where M means the set of masked tokens following
the aforementioned masking strategies.

2.3 Auxiliary Tasks

A limitation of the MLLM loss is that the predic-
tion is over the entire vocabulary, and as a result,
the model could not effectively learn the connec-
tion between eventualities and connective words.

To remedy this and force the model to learn the
discourse knowledge, we propose to add an ad-
ditional classification layer after the last layer of
transformer encoder and it feeds the output vector
x; of connective token x; into a softmax layer over
the set of discourse relation labels as follows.

P(l;]x;) = softmax(x;W + b), (2)

> log P(li =lixi), (3

i€EMp

rel—_

where My is the index set of masked discourse
connective tokens (e.g., because, and, so) in Fig-
ure %, l; is the predicted discourse relation label,
and /; the label provided by ASER (10 relations in
Table 9). W and b are trainable parameters.
Besides the aforementioned discourse relations,
ASER also provides the Co-occurrence relations
between eventualities, which mean that two even-
tualities appear in the same sentence, but there are
no explicit discourse markers between them. Co-
occurrence information has been used for narrative
event prediction (Chambers and Jurafsky, 2008)
Though Co-occurrence relations are less informa-
tive, high frequency pairs still reflect rich knowl-
edge about eventualities. Motivated by this, we
propose another auxiliary task to help the model to
learn such knowledge. Specially, given an eventual-
ity sequence S = (Ey, ro, E1,71,...,71—1, E]) and
an eventuality ., we format the input* as “[CLS]
S [SEP] E. [SEP]”. We set 50% of the time E, to

*The special tokens are based on the base model, i.e., we
add “[CLS]” and “[SEP]” for BERT models and add “<s>"
and “</s>” for RoOBERTa models. All notations in the rest of
this paragraph are based on BERT.
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be the positive co-occurred eventuality with one of
the eventualities in the sequence while 50% of the
time E. is randomly sampled negative in ASER.
Similar to the next sentence prediction in the orig-
inal BERT, on top of the vector representation of
token [CLS], i.e., X5, we add another classifica-
tion layer to predict whether the Co-occurrence
relations hold or not. The training objective Lccur
for binary classification is similar to L,..;:
£occur = - IOgP(l'L = lia ‘Xcls)a (4)

where E is the true co-occurrence label (positive or
negative) for the sequence.

Merging all three losses together, we can then
define the overall loss function L as:

L= ﬁmlm + Erel + Eoccur- (5)

3 Experiments

3.1 Implementation Details

In this work, we use the released ASER-core ver-
sion’ extracted from multi-domain corpora, which
contains over 27.6 million eventualities and 8.8
million relations. We follow the heuristic rules in
Sec. 2.1 to sample eventuality sequences for pre-
training. Overall we generated 4,041,572 eventu-
ality sequences (sentences), ranging from one to
five hops and the one-hop sequence means the di-
rect (first-order) edge in the ASER. We also down-
sample eventuality nodes with extremely high fre-
quency such as I see. Sequence examples are listed
in Table 2 and more examples as well as sequence
distribution over different lengths are appended in
the Appendix.

We select base and large version of BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) as
the base LM. For the continual complex common-
sense pre-training phase, we use the Adam opti-
mizer for 10 epochs with batch size 128, learning
rate le-5 and weight decay 0.01. Considering the
relative longer span of masked eventualities, we
enlarge the masking proportion from 15% to 25%,
which averagely add 1.7 more masked tokens in the
sequences. We implemented the pretraining with
Huggingface library (Wolf et al., 2020) and running
CoCoLM pretraining on eight Nvidia V100 32GB
GPUs took four days. Pretraining introduces two
classification layers with thousands of parameters.

Shttps://github.com/HKUST-KnowComp/
ASER

Dataset | Type | # Train | # Dev | # Test

ROCStories | Narrative | 1,771 100 1,871
(Multiple)

MATRES | Temporal | 2317 25 20

COPA Causal 400 100 500

Table 3: The statistics of evaluation datasets (See exam-
ples in A.1). The tasks are binary or multiple classifica-
tion problems. Note the dataset of MATRES is split at
the article level following Ballesteros et al. (2020).

3.2 Datasets and Evaluations

In this section, we introduce evaluation datasets
and settings as follows:

ROCStories (Mostafazadeh et al., 2016) is widely
used for story comprehension tasks such as Story
Cloze Test. It contains 98,162 five-sentence coher-
ent stories as the unlabeled training dataset, 1,872
four-sentence story contexts along with two candi-
date ending sentences in the dev and test datasets.
The dataset split for the story ending prediction
task is the same as Li et al. (2019).

MATRES (Ning et al., 2018b) is a pairwise event
temporal ordering dataset, where each event pair
in one document is annotated with a temporal re-
lation (Before, After, Equal, Vague). It contains
13,577 event pairs extracted from 256 documents
for training (25 left for dev) and 20 for testing.
COPA (Gordon et al., 2012) is a binary-choice
commonsense causal reasoning task, which re-
quires models to predict which the candidate hy-
pothesis is the plausible effect/cause of the given
premise. We follow the training/dev/test split in
SuperGLUE (Wang et al., 2019).

The statistics of the three selected datasets are
presented in Table 3. For fine-tuning experiments,
we select the learning rate from {2e-5, le-5, Se-
6}, and maximize the sequence length and batch
size such that they can fit into GPU memory. Fine-
tuning was much faster due to fewer new parame-
ters from classification layers.

Different from MATRES and COPA, solving the
story ending tasks of ROCStories requires multi-
type relation inferences including causal, tempo-
ral etc. Moreover, as mentioned in Sharma et al.
(2018), there is a strong bias about the human-
created negative endings such that the model can
distinguish the positive and negative endings with-
out seeing the first four events. Even though
Sharma et al. (2018) tried to filter the annotations,
the bias still cannot be fully relieved. As a re-
sult, to clearly show the effect of adding complex
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| ROCStories | MATRES | COPA
Model || Accuracy  Accuracy (D) | Accuracy F1 | Accuracy
BERT-base 52.9 459 71.5 77.2 69.8
CoCoLM (BERT-base) 84.2 65.2 72.8 77.8 73.8
BERT-large 88.9 69.1 73.5 78.9 70.6
CoCoLM (BERT-large) 91.9 71.2 73.9 79.2 75.8
RoBERTa-base 93.3 73.2 74.0 79.2 85.4
CoCoLM (RoBERTa-base) 94.1 75.2 74.2 79.8 86.2
RoBERTa-large 97.4 88.1 75.2 81.0 90.6
CoCoLM (RoBERTa-large) 97.9 89.4 75.5 81.6 91.3

Table 4: Evaluation results on three commonsense task (top scores in boldface). We report the accuracy of
ROCStories dataset under normal supervised setting and debiased (D) setting mentioned in the §3.2.

knowledge about events into the LM, besides the
most widely used supervised setting, we also report
the performance of a debiased setting, where the
model randomly selects events from other stories
as the negative ending during the training. The
debiased setting is indicated with “D”. Following
previous works, we report accuracy for the ROC-
Stories, MATRES and COPA tasks. For MATRES,
we also report F1 scores by considering the task as
general relation extraction and treating the label of
vague as no relation (Ning et al., 2019). All models
are trained until convergence and the best model
on the dev set is selected to be evaluated.

4 Experimental Results

The results are presented in Table 4, from which
we can see that CoCoLM consistently outperforms
all the baselines on all three commonsense tasks,
especially on the debiased setting of ROCStories.
Besides that, we can make the following obser-
vations. First, the improvement of our model is
more significant on ROCStories than COPA and
MATRES, which is mainly because multiple re-
lation combinations in the eventuality sequences
bring high-order information and thus help com-
plex reasoning. Second, CoCoLM achieves signifi-
cant improvement on lower-capacity LMs trained
on small corpora. For example, CoCoLM brings
up to 59.2% improvement over BERT-base on the
ROCStories dataset. Third, compared with the orig-
inal supervised setting, the debiased setting is more
challenging for all models, which helps verify our
assumptions that previous models might benefit
from the bias. Here the debiased setting should be
more fair for comparison. When we dig into the
MATRES dataset, event pairs (typically verb pairs)
are associated with the context, which some of

Method ||[Accuracy A |Accuracy (D) A (D)
CoCoLM || 91.9 - 71.2 -
w/o occur loss 91.3 -0.6 70.4 -0.8
w/o eventuality mask 91.1 -0.8 70.2 -1.0
w/o rel loss 90.5 -14 69.6 -1.6
w/o occur & rel losses 90.3 -1.6 69.3 -1.9
w token-level mim only|| 89.2 -2.7| 69.2 -2.0

Table 5: Ablation study on ROCStories test set by re-
moving different model components. occur and rel are
discourse relation and co-occurrence loss respectively.

could be easily inferred from the local context with
obvious clues (Ballesteros et al., 2020) while the
others may need external commonsense knowledge
that can be memorized by the language models. As
a comparison, both the ROCStories and COPA do
not have any extra context, and thus require the
pre-trained LMs to know the essential knowledge
to solve those problems.

In the rest of this section, we conduct extensive
experiments and case studies to demonstrate the
contribution of different components. In all follow-
ing analysis experiments, we use BERT-large
as the base language model and ROCStories as
the evaluation dataset.

4.1 Ablation Study

We conduct an ablation study in Table 5 via LM
pretraining with different settings and then fine-
tuning. We can see that all components con-
tribute to the final success of our model, especially
the Relation loss. This result again verified that
discourse connective prediction is a much more
challenging pretraining task as shown in Malmi
et al. (2018). CoCoLM is optimized to memo-
rize high-order discourse knowledge that strongly
correlates with downstream tasks and thus brings
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Resource  ||Accuracy A |Accuracy (D) A (D)
ASER (M) H 91.9 - 71.2 -
ASER (S) 854 -6.5 67.5 -3.7
ATOMIC (S) 882 -3.7 68.2 -3.0

Table 6: Effect of different event knowledge resources.
“M” and “S” pertain to “multi-hop” and “single-hop”.

more performance boost. Besides, when replacing
the whole eventuality masking with random token
masking, we can observe 0.8% (1.0%) accuracy
drop, which indicates the usefulness of eventuality-
level masking. The relative better improvement
of Co-occurrence loss suggests our previous as-
sumption that even though compared with other
discourse relations (e.g., Before and Cause), the
Co-occurrence relations have relatively weaker se-
mantic, it still can help models to better understand
events due to its large scale.

To further verify the effectiveness of proposed
methods, we compare with the baseline that the
BERT-large models are fine-tuned with only
token-level MLM objective on syntactic eventu-
ality sequences. The performance dropped close
to finetuning over original BERT-1arge, which
shows that the gains of COCOLM are not simply
from the MLM objective and the new proposed ob-
jectives as well as masking strategies contributed
largely.

4.2 Effect of Different Knowledge Resources

To access the effect of high-order ASER com-
monsense knowledge, we compare with the per-
formance of directly integrating single-hop edges
from ASER. We decompose the multi-hop se-
quences into single-hop edges and keep the com-
parable size of single-hop edges with multi-hop
ones. The results are shown in Table 6, from which
we can see that there is still a notable gap between
multi-hop and single-hop knowledge injection at
the comparable size. Hence multi-hop knowledge
is crucial for LMs to understand eventualities. Be-
sides ASER, another important event knowledge
resource is ATOMIC (Sap et al., 2019), which is a
crowdsourced commonsense knowledge graph that
contains nine types of if-then casual relations be-
tween social-centric events. However, it is a bipar-
tite graph, which symbolically random walk over
ATOMIC is impossible like normal graphs. Never-
theless, we are interested in the differences of in-
jecting human-annotated and auto-extracted triplets

into LMs. Though relation types and triplet size®
may vary from other other, Fang et al. (2021) suc-
cessfully converts discourse knowledge in ASER
to if-then knowledge in ATOMIC and shows the
former might roughly cover the latter. When inject-
ing into LMs, we can see in Table 6 that ATOMIC
can outperform the single-hop version of ASER
since ATOMIC is cleaner with human annotations.
We leave how to combine ASER and other event
knowledge resources (Mostafazadeh et al., 2020;
Hwang et al., 2020) to get more high-quality multi-
hop event knowledge as our future work.

4.3 Effects of Knowledge Retrieval

We also study the effect of other knowledge injec-
tion methods, for example simple retrieving rel-
evant nodes from ASER. We use the BM25 al-
gorithm to retrieve Top 5 relevant nodes for each
event in the ROCStories. Following Petroni et al.
(2020), retrieved nodes are appended at the end of
story context and separated by the [ SEP] token.
The results show no obvious improvements over
baselines. The reason might be that single event
nodes could not provide more information and all
the tasks require relational knowledge. Advanced
integration methods with retrieved knowledge like
Lv et al. (2020) and Guu et al. (2020) are worthy
to be deeply explored in the future.

4.4 Probing Experiments

We present one case study from the probing analy-
sis experiment in Table 7 to further investigate the
discourse-aware nature of our proposed language
models. Motivated by Petroni et al. (2019), we put
a [MASK] token between two events and try to ask
the model to predict the connective. Take the case
from COPA dataset as an example, connectives pre-
dicted by CoCoLM clearly show the effect relation
between two events. However predictions from the
baseline models reveal weaker (temporal, conjunc-
tion) or wrong (contrast) relations. Similar obser-
vations could be drawn from another two datasets.
Like Table 1, we also sample 300 high-frequency
pairs from ASER to predict connectives. The P@1
for CoCoLM (BERT-1large) has 15.2% improve-
ment over BERT-large. These observations
show that CoCoLM manages to memorize richer
discourse knowledge about daily events (Note that
connective probing analysis does not mean strong
correlations with downstream task performance).

®The detailed comparison is included in the AppendixA.4
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Dataset | Example

| BERT [MASK]

| CoCoLM [MASK]

ROC Context: Ed made beef jerky for a living. He ran the business | Context + [MASK] + | Context + [MASK] +

Stories out of his garage. One day he woke up and noticed his garage | Ending: Ending:
jarred open. He looked inside and noticed everything in disarray | P: when, then, while | P: so, hence, there-
Positive Ending: Ed was delighted to see this. N: and, but, so fore
Negative Ending: Ed was shocked called the police for an inves- N: or, and, though
tigation.

MATRES | The last surviving member of the team which first conquered | S1, +{]MASK] + S2: S1, +[MASK] + S2:
Everest in 1953 has {e;: died} in a Derbyshire nursing home. | and, sir, Dr then, afterwards, till
George Lowe, 89, {ez: died} in Ripley on Wednesday after a
long-term illness, with his wife Mary by his side.

COPA Premise: The girl found a bug in her cereal. Pre+ [MASK] + Hypo: | Pre + [MASK] + Hypo:
Positive Hypothesis: She lost her appetite. P: then, but, and P: so, therefore, thus.
Negative Hypothesis: She poured milk in the bowl. N: then, next, so N: but, instead, and.

Table 7: Examples from evaluation datasets. Connectives in blue are predicted by the BERT-1arge model
and ones in pink are predicted by CoCoLM (BERT-large). “P” and “N” represent the positive and negative

candidates.

5 Related Work

Understanding Events. It is important to repre-
sent and learn the commonsense knowledge for
deeply understanding the causality and correla-
tion between events. Recently various kinds of
tasks requiring multiple dimensional event knowl-
edge are proposed such as story ending predic-
tion (Mostafazadeh et al., 2016), event temporal or-
dering prediction (Ning et al., 2018a), and event ca-
sual reasoning (Gordon et al., 2012). Prior studies
have incorporated external commonsense knowl-
edge from ConceptNet (Speer et al., 2017) and
ATOMIC (Sap et al., 2019) for solving event rep-
resentation (Ding et al., 2019), story generation
tasks (Guan et al., 2020), KG completion (Bosse-
lut et al.,, 2019). However, their event-level
knowledge is sparse and incomplete due to the
human-annotated acquisition, which thus limits the
model capacity, especially when injecting into LMs.
Zhang et al. (2020b) builds a large-scale eventuality
knowledge graph, ASER, by specifying eventual-
ity relations mined from discourse connectives. It
explicitly provides structural high-order discourse
information between events spanning from tempo-
ral, casual to co-occurred relations, which has been
proven to be transferable to human-defined com-
monsense (Zhang et al., 2020a; Fang et al., 2021)
and help with script learning (Lv et al., 2020). In
this work, we aim at making full use of multi-
dimensional high-order event knowledge in the
ASER to help pretrained LMs understand events.

Injecting Knowledge into LMs. Though Petroni
et al. (2019) shows that pre-trained LMs store fac-
tual knowledge without fine-tuning, still, LMs can
not handle knowledge-intensive tasks such as open-

domain question answering or commonsense rea-
soning. Previous works explore different ways to
inject various knowledge into pre-trained LMs for
downstream tasks. They mainly differ from knowl-
edge resources, masking strategies, and training
objectives. From the resource side, entity-centric
KGs are infused into LMs in the form of linked en-
tities (Zhang et al., 2019; Peters et al., 2019; Xiong
et al., 2020). triplets (Yao et al., 2019; Liu et al.,
2020; Wang et al., 2020b) or descriptions (Wang
et al., 2021b; Yu et al., 2020). Besides that, lin-
guistic knowledge (e.g.,synonym/hypernym rela-
tions (Lauscher et al., 2020), word-supersense
(Levine et al., 2020), dependency parsing (Wang
et al., 2020b), and constituent parsing (Zhou et al.,
2019)) also plays a critical role to improve LMs.
Simple commonsense knowledge from Concept-
Net (Speer et al., 2017) is injected into LMs
via linked entity-level MLMs and a new distrac-
tor loss function (Shen et al., 2020). Last but
not least, domain-specific knowledge is also cus-
tomized to improve relevant tasks such as mined
sentiment word (Tian et al., 2020), event temporal
patterns (Zhou et al., 2020), and numerical reason-
ing data (Geva et al., 2020). We refer readers to
Safavi and Koutra (2021) for the comprehensive
survey. In this work, we aim at injecting complex
commonsense into pre-trained LMs with two sig-
nificant difference against previous works: 1) we
use the event rather than tokens as the semantic
unit, and propose to use an eventuality-based mask-
ing strategy as well as two auxiliary tasks to help
LMs understand events; 2) We first leverage the
random walk process on a large-scale knowledge
graph to include multi-hop knowledge.
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6 Conclusion and Future Work

In this work, we aim at helping pre-trained lan-
guage models understand complex commonsense
about eventualities. Specifically, we first conduct
the random walk over a large-scale eventuality-
based knowledge graph to collect multi-hop event
knowledge and then inject the knowledge into the
pre-trained LMs with an eventuality-based mask
strategy as well as two auxiliary tasks. Experiments
on three downstream tasks as well as extensive anal-
ysis demonstrate the effectiveness of the proposed
model. As our approach is a general solution, we
believe that it can also be helpful for other tasks
that require complex commonsense about events.

For future work, we would sample sub-graph
structures to explore more meaningful event-centric
commonsense knowledge (Wang et al., 2021a).
Moreover, we will equip our models with gener-
ative abilities by finetuning powerful T5 (Raffel
et al., 2020) or BART (Lewis et al., 2020) mod-
els to help narrative story completion (Ji et al.,
2020), commonsense inference (Gabriel et al.,
2021), event infilling tasks (Lin et al., 2021). Uni-
fied event-aware language models like Zhou et al.
(2022) would be promising and interesting direc-
tions.
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A Appendices

A.1 Examples of Evaluation Datasets

We select one example for each commonsense eval-
uation dataset and list in Table 8. In terms of MA-
TRES, it has 13,577 event pairs among 256 articles
with 4 temporal relations, i.e., Before (6,874), Af-
ter(4,570), Equal (470) and Vague (1,656). Com-
pared with MATRES and COPA, solving the
ROCStories requires more complex commonsense
knowledge to understand the whole narrative and
multiple types of relations across events.

A.2 ASER Discourse Relations

In the Table 9, we list ten discourse relations as
well as representative connectives (markers) used
to train CoCoLM. We further categorize them into

Dataset | Example

ROC
Stories

Context: The Mills next door had a new car. The
car was stolen during the weekend. They came to
my house and asked me if I knew anything. I told
them I didn’t, but for some reason they suspected
me.

Positive Ending: They called the police to come
to my house.

Negative Ending: They liked me a lot after that.

MATRES| Fidel Castro {e;: invited} John Paul to {es:
come} for a reason.
Label: BEFORE

COPA Premise: I knocked on my neighbor’s door.
Positive Hypothesis: My neighbor invited me in.

Negative Hypothesis: My neighbor left his house.

Table 8: The examples for all commonsense evaluation
datasets.

three types: “temporal”, “casual” and “others”. We
refer the readers to original ASER papers (Zhang
et al., 2020b) for detailed relation analysis.

Types | Relations | Connectives
Precedence before
Temporal Succession after
Synchronous | meanwhile
Reason because
Casual Result SO
Condition if
Conjunction and
Contrast but
Others Alternative or
Concession although

Table 9: The discourse relations as well as representa-
tive markers in the ASER knowledge graph.

A.3 Eventuality Sequences

We append more sampled eventuality sequences
from random walk. Also we organize the sequences
into several meta-paths (the paths with same re-
lation patterns). Here only 2-hop and 3-hop se-
quences are listed and we could observe meaning-
ful high-order connections between eventualities.

The sequence distributions with different lengths
and types of relations are shown in the Figure 3.
We can see that casual relations take up a small
share, which again show that causal knowledge
tends to be implicit and hard to acquire.

A4 ATOMIC V.S. ASER

In this section, we summarize the nine casual/effect
relations from ATOMIC (Sap et al., 2019) in the
Table 2. Fang et al. (2021) shows ASER’s dis-
course relations could be converted to causal knowl-
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Figure 3: The distribution of lengths along with rela-
tion edges for generated eventuality sequences.

edge in the ATOMIC. Thus ASER might roughly
cover the knowledge in the ATOMIC. Moreover,
ASER also covers agentless events such as “the
weather is good”, which was partially covered
by GLUCOSE (Mostafazadeh et al., 2020) How-
ever it contains noise compared with ATOMIC.
CoCoLMexperiments show ATOMIC (877K edges)

performs better than ASER(4.4 M - 5xlarger).

If-Then Types | Relations | Causal Types
xIntent Cause
If-Event-Then-State xReact Effect
oReact Effect
xNeed Cause
xEffect Effect
If-Event-Then-Event xWant Effect
oEffect Effect
oWant Effect
If-Event-Then-Persona | xAttr |  Stative

Table 10: The if-then types and causal relations be-
tween events in the ATOMIC knowledge graph. For

9

relations, “x” and “0” refer to PersonX and others while
“xAttr”, “xIntent”, “xReact” mean the attribute, intent,

reaction of PersonX etc.
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