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Abstract

We aim to investigate the performance of cur-
rent OCR systems on low resource languages
and low resource scripts. We introduce and
make publicly available a novel benchmark,
OCR4MT, consisting of real and synthetic
data, enriched with noise, for 60 low-resource
languages in low resource scripts. We evalu-
ate state-of-the-art OCR systems on our bench-
mark and analyse most common errors. We
show that OCR monolingual data is a valu-
able resource that can increase performance
of Machine Translation models, when used in
backtranslation. We then perform an ablation
study to investigate how OCR errors impact
Machine Translation performance and deter-
mine what is the minimum level of OCR qual-
ity needed for the monolingual data to be use-
ful for Machine Translation.

1 Introduction

Despite many recent successes, Machine Transla-
tion still lacks support or fails to achieve good per-
formance for most low-resource languages, which
represent a very large fraction of the languages spo-
ken by the world’s population (Fan et al., 2020;
Wenzek et al., 2020; Goyal et al., 2021).

The poor performance in these settings can
largely be attributed to the lack of training data.
Many techniques for improving Machine Transla-
tion, such as backtranslation (Sennrich et al., 2016;
Edunov et al., 2018; Zhang et al., 2020) and ap-
proaches which make use of pre-trained language
models (Gao et al., 2019; Chen et al., 2021; Liu
et al., 2021), rely heavily on high quality monolin-
gual data, which is not readily available for low-
resource languages. Fortunately, many books and
other resources in these languages have been dig-
itized and made available online. However, this
textual data is “locked” away in formats such as
PDFs and images, which are not readily accessible.

∗Work done while at Meta AI.

As a result, there are large unexplored collections
of data in many languages which could be used
as a source for monolingual data. For example,
one Nepali books corpus1, contains around 342M
tokens, which would potentially make it one of
the largest sources of monolingual data for this
language.

A solution to this problem is to rely on modern
Optical Character Recognition (OCR) tools to ex-
tract the text. Unfortunately however, most of the
OCR models have only been evaluated on a hand-
ful of languages, and public benchmarks for low-
resource scripts and languages are lacking (Smith,
2007a; Wick et al., 2020). As a result, a compre-
hensive evaluation of OCR tools, particularly for
low-resource languages and scripts, is still an open
problem. Moreover, there is little-to-no understand-
ing of the downstream effect that recognition errors
will have on the data augmentation techniques that
make use of high-quality monolingual data, such as
the methods that low-resource language translation
typically relies upon.

In this paper, we pose the question of what is the
minimum level of OCR quality needed for OCR-
extracted monolingual text to be useful for Machine
Translation, particularly in low-resource scenarios.
To this end, in this work: (i) we create and re-
lease an OCR benchmark, OCR4MT, first of its
kind, based on real and synthetic data, enriched
with noise, for 60 low-resource languages in low
resource scripts; (ii) we evaluate commercial and
research state-of-the-art OCR models on our bench-
mark, analyse their performance and extract their
common errors for many languages; and (iii) we
investigate how the most frequent OCR errors im-
pact Machine Translation performance and deter-
mine what is the minimum level of OCR quality
needed for monolingual data to be useful for Ma-
chine Translation.

From our results, we observe that the best avail-
1
https://pustakalaya.org/en/
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able OCR systems work well on Latin scripts and
perform significantly worse on non-Latin and non-
European scripts (e.g., Perso-Arabic, Khmer).

Our findings also show that monolingual data
from OCR is a valuable source of data for im-
proving Machine Translation for low resource lan-
guages, paving the way for future research on data
augmentation for Machine Translation based on
monolingual data extracted from OCR-ed docu-
ments.

2 Related Work

Despite extensive progress, Machine Translation
for low resource languages is still an unsolved prob-
lem. This is mainly due to two different aspects:
model architecture and lack of training data. In our
work we focus on addressing the latter aspect.

One effective method to increase training data is
to augment the parallel training corpus with back-
translations of target language sentences (Sennrich
et al., 2016; Edunov et al., 2018).

There are large collections of unexplored
scanned documents (i.e., PDFs) and images in low
resource languages, that can be used as monolin-
gual data for backtranslation, such as online repos-
itories of books2 or online archives3. Works like
Rijhwani et al. (2020a) or Bustamante et al. (2020)
also acknowledge that textual data for most low-
resource languages often exists in formats that are
not machine-readable, such as paper books and
scanned images. They address the task of extract-
ing text from these resources and create benchmark
datasets of transcriptions for several endangered
languages: Ainu, Griko, Yakkha (Rijhwani et al.,
2020a) and Shipibo-konibo, Ashaninka, Yanesha,
Yine (Bustamante et al., 2020). A summary of
current benchmarks and data resources for low-
resource languages in Table 1. Observe that the
related benchmarks contain few languages and few
data compared to ours.

Our research can be applied on large data re-
sources of endangered and low resource languages,
such as AILLA4 or ELAR5. Rijhwani et al. (2020a)
find that endangered language linguistic archives
contain thousands of scanned documents — the
Archive of the Indigenous Languages of Latin
America (AILLA) contains around 10,000 such

2
https://pustakalaya.org/en/

3
https://archive.org/

4
https://ailla.utexas.org/

5
https://elar.soas.ac.uk/

#languages #lines

Rijhwani et al. (2020a) 3 1,782
Bustamante et al. (2020) 4 60,000

Gupte et al. (2021) 4 not specified
OCR4MT 60 186,060

Table 1: Summary of some current benchmarks for low
resource and endangered languages.

documents and the Endangered Languages Archive
(ELAR) has around 7,000. Rijhwani et al. 2020a
find that endangered language documents often
contain a translation into another (usually high-
resource) language. Multilingual documents rep-
resent the majority in the archives they examined:
AILLA contains 4,383 scanned documents with
bilingual text and 1,246 scanned documents with
trilingual text, while ELAR contains around 5,000
multilingual documents.

This monolingual data can be collected using
Optical Character Recognition (OCR) tools. How-
ever, we don’t know what is the quality of OCR
tools, particularly for low-resource languages and
low resource scripts. We aim to address this prob-
lem, by building a benchmark of 60 low resource
languages with the goal of testing OCR systems
and analyse how their errors impact backtranslation
performance.

Rijhwani et al. 2020a also show how general-
purpose OCR tools such as (Fujii et al., 2017; Ingle
et al., 2019) are not robust to the data-scarce set-
ting of endangered languages. They address this
problem, by developing an OCR post-correction
method tailored to ease the training in this data-
scarce setting.

The work most similar to ours is the recent re-
search by Gupte et al. 2021. They also built a
pipeline to generate analog synthetic documents
on which they run a commercial OCR model and
analyse the OCR errors. Unlike our work, how-
ever, their focus is on improving Named Entity
Recognition (NER) accuracy and on only 4 differ-
ent languages: (English, German) from CoNLL
2003 (Sang and Meulder, 2003) and (English, Chi-
nese and Arabic) from CoNLL 2012 (Pradhan et al.,
2012).

Our work’s novelty consists in providing the
first large-scale benchmark of 60 low resource lan-
guages and low resource scripts, with the purpose
of evaluating OCR performance on each language
and it’s downstream impact on Machine Transla-
tion.
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3 OCR4MT Benchmark

To build a benchmark useful for multiple low-
resource languages and low resource scripts, we
proposed the use of texts that are freely-available
in multiple languages. To this end, we chose the
Universal Declaration of Human Rights (UDHR)
database6 which represents a legal domain, and the
Flores 101 dataset (Goyal et al., 2021) which is
based on Wikipedia. Moreover, we chose these
datasets because they provide data in many lan-
guages, and have plain text we can evaluate OCR
models on. Our benchmark contains real and
artificially-created PDFs7.

UDHR is composed of articles on fundamental
human rights to be universally protected and it has
been translated into over 500 languages. For each
language, UDHR contains documents in different
formats: plain text, PDF, XML and HTML. There
are currently 460 translations fully converted to
Unicode and available as text. Each document is
composed of 30 short articles, on average 3 sen-
tences each. We used the plain text and correspond-
ing PDF files as validation data for the OCR sys-
tems.

The Flores 101 dataset consists of text data:
3,001 sentences extracted from English Wikipedia,
for 101 languages, covering a variety of different
topics and domains. We artificially created PDFs
from the text documents by saving/exporting the
text documents as PDF.

Language Selection. We select 60 languages
which are both in Flores 101 and the UDHR
datasets. We prioritize low resource languages,
with low resource scripts. The scripts, together
with the corresponding languages present in our
benchmark can be seen in Table 2.

Annotation Process. The UDHR data is com-
posed of one document image per language (PDF),
and each document contains a preface and around
30 articles. In addition, each document has an ac-
companying text version. To build the benchmark,
we first manually annotate the bounding boxes for
each of the 30 PDF documents. Using the bounding
boxes, we split each document image into individ-

6
https://www.unicode.org/udhr/translations.html

7We call real, the PDFs that had this format originally
and we call artificially-created, the PDFs that were originally
text documents and were converted into PDF format. We
artificially created PDFs in order to increase our benchmark
data size, as by applying augmentation techniques (i.e., adding
noise) they can resemble the real PDFs.

Scripts Languages

Latin

Latin Asturian, Cebuano, Fula, Ganda, Ice-
landic, Lingala, Maori, Nyanja, Oromo,
Polish, Portuguese (Portugal), Roma-
nian, Shona, Slovak, Slovenian, Somali,
Swahili, Swedish, Turkish, Umbundu,
Uzbek, Vietnamese, Wolof, Zulu

Cyrillic

Cyrillic Belarusian, Bulgarian, Kazakh, Kyrgyz,
Macedonian, Mongolian, Russian, Ser-
bian, Tajik, Ukrainian

Perso-Arabic

Arabic Arabic, Sorani Kurdish
Perso-Arabic Pashto, Urdu

North Indic

Bengali Bengali
Devanagari Hindi, Marathi, Nepali
Gujarati Gujarati
Gurmukhi Punjabi

South Indic

Malayalam Malayalam
Tamil Tamil
Telugu-Kannada Kannada, Telugu

Southeast Asian (SEA)

Khmer Khmer
Lao Lao
Myanmar Burmese
Thai Thai

China-Japan-Korea (CJK)

Han Japanese
Hangul Korean
Hant Chinese Simpl

Others

Armenian Armenian
Ge’ez Amharic
Georgian Georgian
Greek Greek
Hebrew Hebrew

Table 2: Scripts and their corresponding languages in
our benchmark. The languages are grouped into 8
groups, according to their location and script.

ual articles of about 40 words in average. This
allows to accurately compare the ground truth text
version with the OCR output for each article.

Each article was labeled by a single annotator.
We had a total of 10 annotators in total. In the tuto-
rial we showed how to crop a bounding box around
each article and how to name the images with their
corresponding language code and number.

Data validation. We then validate the quality
of annotations, both automatically and manually.
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We automatically validate each article by measur-
ing the CER per article. If the CER between the
PDF labeled version and the text version is greater
than two standard deviations away from the mean,
the article is marked as anomalous (Cousineau
and Chartier, 2010). We manually check and re-
annotate all the anomalous articles until no anoma-
lies were detected.

During the manual anomaly check process, we
found cases when for some languages, i.e., Malay-
alam and Pashto, some articles were missing in the
original PDF document. In such cases, we removed
those articles from the benchmark. We also found
and removed all articles for which the PDF and
text versions had different contents (i.e., they were
paraphrases of each other). In total, we removed
141 articles, which is ∼7.8% of the total number
of initial articles. Finally, we obtain 1,659 pairs of
PDF and corresponding text versions of articles.

Data Augmentation. To make the artificial data
closer to real life PDFs, we apply different augmen-
tation techniques: changing font, color, size, letter
spacing, opacity, italic, bold and image: skewing,
adding salt & pepper noise. We choose common
fonts for the data scripts: Times New Roman (for
Arabic, Latin), Arial (for Arabic, Cyrillic), Verdana
(for Cyrillic), Noto Sans Devanagari (for Devana-
gari), Calibri (for Pashto), Jameel Noori Nastaleeq
(for Urdu), Browalia New (for Thai), Korean (for
Korean), PMingLiu (for Traditional Chinese). The
letter spacing, opacity, skewing and noise levels
can be adjusted. A sample augmented document
from Flores 101 is shown in Figure 1.

4 OCR Evaluation

To estimate the impact of recognition errors in
downstream tasks, namely Machine Translation,
we perform a black-box evaluation of two SOTA
OCR systems, one commercial and one research.
These represent reasonable choices for an non-
OCR expert, such as MT practitioners. Below, we
describe our experimental setup in detail.

4.1 OCR SOTA systems
Following Rijhwani et al. (2020b), for the commer-
cial use case, we evaluate the Google Vision API
OCR system (Fujii et al., 2017; Ingle et al., 2019)
as provided by the Google Vision AI toolkit8. For
the research system, we use the Tesseract OCR
engine (Smith, 2007b).

8
https://cloud.google.com/vision

Initial

Bold

Italic

Letter spacing

Opacity

Salt&Pepper 
noise

Skew

All combined

Figure 1: Data augmentation sample on Amharic artifi-
cial PDF from Flores 101: adding bold, italic, increas-
ing letter spacing, decreasing opacity, adding salt and
pepper, skewing and all combined.

Google Vision OCR system is highly performant
and covers 60 major languages in 29 scripts. It also
provides script-specific OCR models in addition
to language specific ones. Per-script models are
more robust to unknown languages because they
are trained on data from multiple languages and
can act as a general character recognizer without
relying on a single language’s model (Rijhwani
et al., 2020a).

Tesseract is one of the most accurate open-source
OCR engines (Smith, 2007b). In our experiments,
we run Tesseract version 4, which is based on an
LSTM architecture (Hochreiter and Schmidhuber,
1997). Tesseract can recognize more than 100 lan-
guages and it can be trained to recognize other
languages.

4.2 Metrics

The metrics we use for measuring OCR per-
formance is character error rate (CER) (Berg-
Kirkpatrick et al., 2013; Schulz and Kuhn, 2017).
The metrics are based on the Levenshtein or edit
distance, which is the minimum number of single-
character edits (insertions, deletions or substitu-
tions) required to change one word into the other.
CER is the edit distance between the OCR-ed data
and the gold standard/initial data, divided by the
total number of characters in the initial data. CER
is not always between 0 and 100, in particular when
there is a high number of insertions. This value is
often associated to the percentage of characters that
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were incorrectly predicted.
Word error rate (WER), CER’s word-based coun-

terpart, is also used in related work (Rijhwani et al.,
2020a; Rigaud et al., 2019; Chiron et al., 2017). In
this work, we choose to report only CER, as word
boundaries are not comparable across languages.

There is no single benchmark for defining a good
CER value, as it is highly dependent on the use case.
Different scenarios and complexity (e.g., printed
vs. handwritten text, type of content, etc.) can
result in varying OCR performances. In Holley
(2009), a review of OCR accuracy in large-scale
Australian newspaper digitization programs came
up with these benchmarks, for printed text:

• Good OCR accuracy: CER 1-2% (i.e.,
98–99% accurate)

• Average OCR accuracy: CER 2-10%

• Poor OCR accuracy: CER > 10% (i.e., below
90% accurate)

4.3 General Results
We evaluate each model on the 60 languages from
our benchmark, on both artificially created PDFs
(Flores 101) and real PDFs (UDHR).

From the results in Table 3, we can see that
the commercial system from Fujii et al. (2017)
performs overall better than Tesseract across lan-
guages and data types: 20% more languages have
good performance on artificial data and 15% more
languages have good performance on real data. In
Table 5 we also provide the results for each lan-
guage, OCR system and data.

As expected, we also observe that the OCR per-
formance is higher on artificially created PDFs (av-
erage CER 5.9 and 2.0) compared to real PDFs
(average CER 12.1 and 8.5). We want to verify this
is not due to the content, but to the format of the
data. Therefore, we create artificial PDFs from the
real ones in UDHR data, and run the OCR models
on each of the 3 datasets. The results can be seen
in Figure 2.

4.4 Group analysis
We also observe that the performance of the OCR
systems vary based on script and location. There-
fore, we group the 60 languages into 8 groups,
as in Table 2, according to their script and lo-
cation: Latin, Cyrillic, Perso-Arabic, North In-
dic, South Indic, Southeast Asian (SEA), China-
Japan-Korea (CJK) and Other/Unique (Armenian,

Flores 101 UDHR UDHR synth
Dataset

0

2

4

6

8

10

12

CE
R 5.9

12.1

6.0

2.0

8.5

1.4

OCR System
Tesseract
Google Vision OCR

Figure 2: Average CER (the lower, the better) of the
SOTA OCR systems: Tesseract and Fujii et al. 2017,
across datasets, over 60 languages. UDHR synth con-
tains artificially created PDFs from UDHR.

Amharic, Georgian, Greek, Hebrew). We run the
overall best OCR system (Fujii et al., 2017) on
these 8 groups of languages and compare the per-
formance between language groups and also be-
tween the different data types: real PDFs (UDHR)
and artificial PDFs (Flores 101). The results can be
seen in Figure 3. Our observations and takeaways
from this evaluation are the following:

• Artificially created data is easier to recog-
nize. As expected, the OCR SOTA model
performs overall better on artificially created
PDFs (Flores 101) than on real PDFs (UDHR).
This holds for each group of languages, with
the exception of the Perso-Arabic group where
the OCR accuracy is slightly poorer (13.7
CER on Flores 101 and 13.2 CER on UDHR).

• Latin and Cyrillic achieve the best perfor-
mance. The OCR SOTA model accuracy is
the highest for European scripts such as Latin
and Cyrillic. The OCR accuracy on Latin and
Cyrillic is good (< 2% CER) on both Flores
101 and UDHR data. Therefore, we conclude
that efforts for improving OCR models should
focus on groups of languages other than Latin
and Cyrillic.

• Perso-Arabic performs badly. Given that
the Perso-Arabic group has a poor perfor-
mance on both Flores 101 and UDHR data (>
10% CER), we conclude that the Perso-Arabic
group needs considerable attention when im-
proving OCR models.

• Performance varies per languages/type of
data. The North Indic, South Indic, SEA and
Other/Unique (Armenian, Amharic, Georgian,
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OCR accuracy Flores 101 UDHR

Tesseract Fujii et al. 2017 Tesseract Fujii et al. 2017

Good (CER < 2%) 60% 80% 35% 50%
Average (CER 2-10%) 28.3% 15% 31.7% 23.3%
Poor (CER > 10%) 11.6% 5% 33.3% 26.7%

Table 3: Evaluation of SOTA models on our benchmark: percentage of languages with a good, average and poor
OCR accuracy, on artificial PDFs (Flores 101) and real PDFs (UDHR).

Greek, Hebrew) groups have a good or aver-
age OCR accuracy on artificially created data
(Flores 101) and a poor OCR accuracy on real
data (UDHR). This shows that OCR models
need more real training data from the North In-
dic, South Indic, SEA and Other/Unique (Ar-
menian, Amharic, Georgian, Greek, Hebrew)
groups. A notable exception is the perfor-
mance for the CJK group, which has a similar
performance on both datasets.

Flores 101 UDHR
Dataset

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

CE
R

0.3
1.1

0.2
1.9

4.0 4.6

1.5

6.1

0.6

12.1

5.6

13.913.7 13.2

1.9

20.9

Group of languages
Latin
Cyrillic

CJK
North Indic

South Indic
SEA

Perso-Arabic
Other

Figure 3: Average CER (the lower, the better) of best
performing OCR model (Fujii et al. (2017)), across
groups of languages in UDHR and Flores 101 datasets.

5 OCR impact in Machine Translation

Monolingual data is a valuable resource for Ma-
chine Translation, particularly for data augmen-
tation techniques such as backtranslation. While
there is plenty of monolingual data available for
a few languages, there is a lack of data for very
low resource languages. Fortunately, we have ob-
served that there exist collections of monolingual
data for low resource languages available as PDFs
and images.

However, we still do not know whether the qual-
ity of the OCR-ed data is good enough to be used

for training and improve the performance of a Ma-
chine Translation (MT) model. In this section, we
explore the performance of an MT model after be-
ing trained on backtranslated OCR-ed (OCR+BT)
data. In particular, we explore the setup in which
a pre-trained multilingual model is fine-tuned on
backtranslated data obtained from OCR-ed mono-
lingual data. We use this setup to understand the
cases in which OCR data improves or hurts perfor-
mance.

5.1 The Nepali case

One of the languages with a promising number
of documents is Nepali, which contains around
342M tokens from the corpus of Nepali books9,
which potentially makes it the largest sources of
monolingual data for this language. To understand
how valuable is the data and the validity of our
evaluation setup, we explore adding OCR+BT data
in small increments.

Setup. We collect the OCR-ed Nepali data using
the open-source model Tesseract (Smith, 2007b).
We then perform backtranslation, where we trans-
late the OCR-ed Nepali data into English synthetic
data using a SOTA MT model and use the data to
fine-tune the model. As SOTA MT model, we use
the pre-trained model M2M-124 with 615M param-
eters from Goyal et al. 2021 which was extended
to 124 languages from the M2M-100 multilingual
model (Fan et al., 2020).

We fine-tune the model on 10k, 20k and 30k sen-
tences and obtain significant gains in performance.
The results can be seen in Figure 4. Observe how
the performance significantly increases (+7 BLEU)
with the additional 30K pairs of OCR+BT data.

5.2 The impact of OCR errors on MT

As seen in Figure 4, the performance of the SOTA
MT model increased significantly when fine-tuned
on OCR-ed data. Therefore, we want to explore in
more depth what is the level of quality needed for

9
https://pustakalaya.org/en/

1169

https://pustakalaya.org/en/


0k 10k 20k 30k
size

0
1
2
3
4
5
6
7

BL
EU

0.12 0.3

3.0

7.5

Figure 4: English to Nepali Machine Translation re-
sults from fine-tuning on OCR-ed monolingual data
collected from Nepali books corpus.

the OCR-ed data to be useful for Machine Transla-
tion. Specifically, we want to measure the impact
of OCR errors on MT performance: i) which error
types affect it the most; ii) if there is an error thresh-
old after which the OCR-ed data is detrimental to
the MT model/hurts the performance; iii) if this
threshold depends on data size or language.

To measure these, we first learn automatically
the most frequent recognition errors that happen
in each language. Then inject these errors to clean
monolingual data to simulate an imperfect OCR
process. Finally, we run several backtranslation
experiments using the error-injected data and vary
the data size and rate of OCR errors applied to the
data.

Monolingual Data. We select three languages,
with diverse scripts, based on their high error
rates on the OCR-ed UDHR data: Khmer, Pashto
and Tamil. We apply the OCR errors on large
scale monolingual data from WikiMatrix (Schwenk
et al., 2021) and CC100 (Wenzek et al., 2020; Con-
neau et al., 2020). To determine how the size of
the monolingual data influence translation perfor-
mance, we vary the data size to be 10,000 and
20,000 sentences.

OCR errors. We insert the 10 most frequent
OCR errors from the best performing model on
the UDHR test set. The errors are insertions, dele-
tions and substitutions10. Some examples of most
common character deletions and substitutions are
shown in Table 4. The errors are applied randomly
to the monolingual data, based on the frequency
they appear in the UDHR data. We vary the rate

10One interesting fact is that the most common insertion
and deletion across languages is the white-space.

at which we apply the errors on the monolingual
data from 0 to 20. We then measure CER. A CER
of 20 means that around 20% of the characters are
incorrect.

Language Substitution Deletion

Khmer ដ → ត ដ

Lao ໃ→ ໄ ; ລ→ ຣ ຣ

Pashto گ→ګ ; →ي ی ي

Table 4: Examples of most common substitutions and
deletions from UDHR OCR-ed data in Khmer, Lao and
Pashto.

Backtranslation. We use the same MT model
that we used in the Nepali experiment, the pre-
trained M2M-124 model with 615M parameters
from Goyal et al. 2021. The source language is
English and target languages are Khmer, Pashto
and Tamil.

We train a separate model for each target lan-
guage. In order to measure how the OCR errors
affect backtranslation performance, we run the ex-
periments on both the initial/non OCR-ed monolin-
gual data and the OCR-ed monolingual data. We
use the M2M-124 pre-trained model in backtrans-
lation as following. First, we translate the mono-
lingual corpus into English, using the M2M-124
pre-trained model. Then, we fine-tune the model
on the generated noisy English corpus and target
monolingual data. For testing the fine-tuned model
we use the the Flores devtest set and for validation,
the Flores dev set (Goyal et al., 2021).

5.3 Evaluation

We compare the performance of the M2M-124
fine-tuned on OCR-ed monolingual data with the
M2M-124 pre-trained model and with the M2M-
124 fine-tuned on initial/non OCR-ed monolingual
data. The evaluation metric used is BLEU score
over tokenized text with an spm model (Goyal et al.,
2021). The results can be seen in Figure 5.

Our observations and takeaways from this abla-
tion are the following.

• Translation quality is robust to small
amounts of noise. When comparing perfor-
mance of fine-tuning MT models on the OCR-
ed data vs. initial/non OCR-ed, the MT per-
formance varies per language, but on average,
until CER 4%, there is very few difference in
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BLEU score. Therefore, OCR-ed data with
average OCR acuracy (≤ 4% CER) can be
effectively used for fine-tuning MT models.
Beyond that threshold, more degradation can
be expected. However, in absense of any other
data, noisy OCR-ed data still provides an ad-
vantage.

• Replacements are more damaging than
other errors. The different types of OCR
errors (insertion, deletion and replacement)
have different effects on the overall MT per-
formance. On average, the replacement OCR
error affects MT performance more than in-
sertions and deletions: e.g., for fine-tuning
data size 20k, until CER ∼10, the drop in per-
formance caused by deletions or insertions is
negligible and reaches -2 BLEU by CER 20,
while replacements reduce the BLEU score
much faster than the other error types (∼-2
BLEU at CER 10 and -6 BLEU at CER 20).
Therefore, OCR-ed data with average OCR
accuracy (CER ≤ 10) with mostly insertion
and deletion errors can be effectively used for
fine-tuning MT models.

• More data results on higher or more rapid
decreases in BLEU scores. This trend is ob-
served mostly for replacement errors. The
insertions and deletions affect the OCR per-
formance about the same amount ( -2 BLEU
at CER 20) in both 10k and 20k fine-tuning
data size.

6 Conclusion

In this paper, we proposed a new benchmark with
real and synthetic data, enriched with noise, for
60 low-resource languages in low resource scripts.
We group the 60 languages into groups according
to their scripts and location, evaluate SOTA OCR
models on our benchmark and extract their most
common errors. We use the SOTA OCR errors
to measure their impact on Machine Translation
models by comparing the MT models fine-tuned
with OCR-ed data with pre-trained MT models and
MT models fine-tuned with initial/non OCR-ed
data.

Our most important takeaway is that OCR-ed
monolingual data improves Machine Translation
(MT) through backtranslation. This augmentation
is robust to most types of errors, except replace-
ments, and in general most current OCR models

Error type Insertion Deletion Replacement

Figure 5: Ablation studies on OCR errors impact on
MT performance. Upper graph (fine-tuning on 10k
data) and lower graph (fine-tuning on 20k data) show
the difference in BLEU scores between the M2M-124
MT model fine-tuned on OCR-ed data and the pre-
trained M2M-124 MT model (shown in orange) and the
difference in BLEU scores between the M2M-124 MT
model fine-tuned on OCR-ed data and the M2M-124
MT model fine-tuned on non OCR-ed data (shown in
blue).

produce good enough recognition to be able to train
MT models, with the exception of a few scripts like
Perso Arabic.

Our work paves the way for future research on
data augmentation for Machine Translation based
on OCR documents.

The scripts to download and process the bench-
mark introduced in this paper are available at
https://github.com/facebookresearch/flores.
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Flores 101 UDHR

Language Script Group Tesseract Fujii et al.
2017

Tesseract Fujii et al.
2017

Arabic Arabic Perso-Arabic 9.0 3.9 9.4 4.8
Sorani Kurdish Arabic Perso-Arabic 41.6 29.5 10.2 1.4
Armenian Armenian Other 6.4 0.4 40.6 39.8
Bengali Bengali Indo-Aryan 5.3 4.1 3.7 1.6
Belarusian Cyrillic Cyrillic 0.6 0.4 0.7 1.2
Bulgarian Cyrillic Cyrillic 0.8 0.2 0.8 0.8
Kazakh Cyrillic Cyrillic 1.2 0.2 1.3 1.3
Kyrgyz Cyrillic Cyrillic 0.8 0.2 1.9 3.0
Macedonian Cyrillic Cyrillic 0.6 0.2 0.6 1.5
Mongolian Cyrillic Cyrillic 0.2 0.1 1.8 1.6
Russian Cyrillic Cyrillic 1.0 0.3 0.5 1.3
Serbian Cyrillic Cyrillic 0.4 0.2 1.3 1.7
Tajik Cyrillic Cyrillic 1.0 0.2 2.1 2.9
Ukrainian Cyrillic Cyrillic 0.7 0.3 3.2 3.4
Hindi Devanagari Indo-Aryan 0.9 0.5 1.8 0.3
Marathi Devanagari Indo-Aryan 0.7 0.3 1.2 1.5
Nepali Devanagari Indo-Aryan 1.4 0.9 30.6 26.0
Amharic Ge’ez Other 25.3 3.8 15.1 45.2
Georgian Georgian Other 1.1 0.1 19.4 17.6
Greek Greek Other 3.0 0.1 2.5 0.7
Gujarati Gujarati Indo-Aryan 1.4 0.9 10.2 5.2
Punjabi Gurmukhi Indo-Aryan 5.0 2.4 3.1 2.1
Japanese Han, Hiragana, Katakana CJK 2.0 0.1 6.4 4.8
Korean Hangul CJK 59.8 1.7 5.4 3.8
Chinese Simpl Hant CJK 6.3 10.4 9.0 5.3
Hebrew Hebrew Other 5.2 4.9 1.3 1.4
Khmer Khmer SEA 26.1 9.0 15.9 12.8
Lao Lao SEA 17.1 2.6 67.9 32.4
Asturian Latin Latin 2.3 0.4 2.9 0.9
Cebuano Latin Latin 0.3 0.1 1.1 0.7
Fula Latin Latin 2.5 1.9 5.5 5.2
Ganda Latin Latin 0.9 0.1 1.6 1.1
Icelandic Latin Latin 0.1 0.1 28.8 28.6
Lingala Latin Latin 0.3 0.1 1.2 0.9
Maori Latin Latin 0.3 0.3 57.7 57.6
Nyanja Latin Latin 0.8 0.1 2.3 0.8
Oromo Latin Latin 3.9 0.2 2.7 0.7
Polish Latin Latin 0.1 0.1 0.6 0.7
Portuguese (Por.) Latin Latin 0.1 0.1 3.3 1.6
Romanian Latin Latin 1.4 0.4 2.0 1.8
Shona Latin Latin 0.9 0.1 1.1 0.8
Slovak Latin Latin 0.3 0.1 16.0 16.1
Slovenian Latin Latin 0.4 0.1 25.6 25.6
Somali Latin Latin 1.3 0.1 4.0 0.7
Swahili Latin Latin 0.3 0.1 0.5 0.7
Swedish Latin Latin 0.1 0.1 25.1 25.1
Turkish Latin Latin 0.2 0.1 0.6 0.8
Umbundu Latin Latin 2.8 1.0 2.5 1.7
Uzbek Latin Latin 0.1 0.1 5.2 5.3
Vietnamese Latin Latin 0.8 0.2 0.2 0.1
Wolof Latin Latin 3.6 0.4 6.1 2.1
Zulu Latin Latin 1.4 0.2 1.2 0.7
Malayalam Malayalam Dradivian 6.8 0.6 18.5 19.2
Burmese Myanmar SEA 64.6 9.8 78.3 1.0
Pashto Perso-Arabic Perso-Arabic 15.2 15.9 30.4 27.5
Urdu Perso-Arabic Perso-Arabic 4.2 5.6 53.7 18.9
Tamil Tamil Dradivian 0.9 0.2 14.1 11.2
Kannada Telugu-Kannada Dradivian 4.5 0.9 3.2 4.1
Telugu Telugu-Kannada Dradivian 3.7 0.7 32.3 13.9
Thai Thai SEA 5.0 1.2 26.9 9.4

Average error 5.9 2.0 12.1 8.5

Table 5: Evaluation of SOTA models on our benchmark: CER on artificial PDFs (Flores 101) and real PDFs
(UDHR), sorted alphabetically, by script and language name.
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