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Abstract
Warning: This paper contains examples of lan-
guage that some people may find offensive.

Natural Language Processing (NLP) models
risk overfitting to specific terms in the training
data, thereby reducing their performance, fair-
ness, and generalizability. E.g., neural hate
speech detection models are strongly influ-
enced by identity terms like gay, or women,
resulting in false positives, severe unintended
bias, and lower performance. Most mitigation
techniques use lists of identity terms or sam-
ples from the target domain during training.
However, this approach requires a-priori knowl-
edge and introduces further bias if important
terms are neglected. Instead, we propose a
knowledge-free Entropy-based Attention Reg-
ularization (EAR) to discourage overfitting to
training-specific terms. An additional objec-
tive function penalizes tokens with low self-
attention entropy. We fine-tune BERT via EAR:
the resulting model matches or exceeds state-
of-the-art performance for hate speech classi-
fication and bias metrics on three benchmark
corpora in English and Italian. EAR also re-
veals overfitting terms, i.e., terms most likely
to induce bias, to help identify their effect on
the model, task, and predictions.

1 Introduction
Online hate speech is growing at a rapid pace, with
effects that can result in dangerous criminal acts
offline. Due to its verbal nature, various Natural
Language Processing approaches have been pro-
posed (Qian et al., 2018; Indurthi et al., 2019; At-
tanasio and Pastor, 2020; Kennedy et al., 2020;
Vidgen et al., 2021, inter alia). Recently, detec-
tion performance has significantly improved with
the use of large pre-trained language models based
on Transformers (Vaswani et al., 2017), such as
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019). However,

Figure 1: False positive from BERT as a hate speech
detector. The darker and taller the bar, the higher the
overfitting on the term.

several works have shown that by fine-tuning neu-
ral language models on hate speech detection, the
classifiers obtained contain severe unintended bias
(Dixon et al., 2018), i.e. they perform better or
worse when texts mention specific identity terms
(such as gay, Muslim, or woman). As a result, a
sentence like “As a Muslim woman, I agree” would
be wrongly classified as hate speech, purely due
to the presence of two identity terms, i.e., terms
referring to specific groups based on their socio-
demographic features. One cause of false positives
is selection bias in the keyword-driven collection of
corpora (Ousidhoum et al., 2020). Figure 1 shows a
false positive example for a fine-tuned BERT model
on hate speech detection. Ideally, the model should
rely on the words adore and you. Instead, BERT
overfitted to the word Girl and associated it with a
hateful context. This unwanted effect demonstrates
the issues of lexical overfitting, and how they cause
uninteded bias on identity terms.

Various methods have been proposed to mitigate
and measure (unintended) bias (Elazar and Gold-
berg, 2018; Park et al., 2018; Dixon et al., 2018;
Nozza et al., 2019; Kennedy et al., 2020; Vaidya
et al., 2020). However, all those methods rely on
the availability of a set of identity terms. This is
a severe limitation, which hinders the generaliz-
ability and applicability of hate detection models
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to real-world contexts. For example, a model de-
signed to reduce the unintended bias on gender-
related terms (such as woman, wife) will not ad-
dress unintended bias for religious affiliation. So
practitioners must decide a-priori “which vulnera-
ble groups are present in our data?”

We propose an Entropy-based Attention Regular-
ization (EAR) that forces the model to build token
representations by attending to a wider context, i.e.,
consider a larger number of tokens from the rest
of the sentence. We measure the attended context
as the entropy of the self-attention weight distri-
bution over the input sequence. We use EAR as
a regularization term in the loss computation to
maximize each token’s entropy. We apply EAR to
BERT. The resulting model (BERT+EAR) signif-
icantly improves performance on unintended bias
mitigation in English and Italian. In addition, it
requires no a-priori knowledge (e.g., sets of iden-
tity terms), making it fairer and more general. The
contextualized representations EAR induces avoid
basing the classification on individual terms and,
ultimately, mitigate lexical overfitting and intrinsic
bias from pre-trained weights.

As a training by-product, EAR lets us extract
the overfitting terms, i.e., terms accounting for nar-
rower context that most likely induce unintended
bias. These terms can highlight possible weak-
nesses in the model: from the over-sensitivity of
pre-trained weights to specific words (Sheng et al.,
2019; Nangia et al., 2020; Vig et al., 2020), to over-
specialization of training corpora on the keywords
used for collecting data (Ousidhoum et al., 2020).

Note that while we show results on BERT, EAR
is applicable to any attention-based architecture.

Contributions. EAR is a novel entropy-based
attention regularization method to mitigate unin-
tended bias by reducing lexical overfitting. It is
applied to all terms, so it does not need a-priori
domain knowledge (e.g, predefined term lists). In-
dependent of domain-specific information, EAR
generalizes better to different languages and con-
texts compared to similar approaches. Attention
entropy is used to extract a list of the most likely
biased terms. EAR code is available at https:
//github.com/g8a9/ear.

2 Entropy-based Attention
Regularization

Attention was originally designed for aligning tar-
get and source sequences in machine translation

Figure 2: Self-attention distribution on tokens Girl
(solid orange) and you (shaded blue). Attention for
Girl is concentrated on its representation: its entropy is
low. Attention for you is spread: its entropy is high.

(Graves, 2013; Bahdanau et al., 2015). However, in
the Transformer architecture (Vaswani et al., 2017),
it has become a means to account for lexical influ-
ence and long-range dependencies. It also provides
useful information about the importance of a term
for the output (Wiegreffe and Pinter, 2019; Brunner
et al., 2020; Sun and Marasović, 2021). Here, we
use the notion of attention entropy, and EAR’s use
of it in BERT. Note, though, that EAR can be used
with any attention-based architecture.

Self-attention in Transformers. The Trans-
former model consists of two connected units, an
encoder and a decoder, designed for sequence-to-
sequence tasks.

A transformer encoder applies scaled-dot prod-
uct self-attention over the input tokens to com-
pute N independent attention heads.1 Let E =
[e0, ..., eds ] be the sequence of input embeddings,
with ei ∈ Rdm . For the h-th attention head and
i-th position, each embedding ei is projected into
a query qh,i, a key kh,i and value vh,i. So each
token expresses an attention distribution over all
input embeddings as

ah,i = softmax

(
qTh,iKh√

dk

)
(1)

where Kh is the matrix of keys and dk their dimen-
sion.

Attention weights ah,i = [ah,i,0, ..., ah,i,ds ],
where ah,i,j ∈ [0, 1] and

∑
j ah,i,j = 1, can be

seen as a soft-indexing over the values. Since the
values are projections of the tokens themselves,
each weight in self-attention measures the contri-
bution of its token to the attention head and, in
turn, to the new token representation. We provide
additional details to the self-attention mechanism
in Appendix A.

1In the following, we use token and embedding inter-
changeably. We represent vectors with lowercase bold letters.
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Attention entropy. Information entropy was first
introduced in Shannon (1948), and measures the
average information content of a random variable
X with the set [x0, ..., xn] of possible outcomes. It
is defined as

H(X) = −
∑
i

P (xi) logP (xi) (2)

Following Ghader and Monz (2017), we com-
pute the entropy in the self-attention heads by inter-
preting each token’s attention distribution as a prob-
ability mass function of a discrete random variable.
The input embeddings are the possible outcomes,
and the attention weights their probability.

For the sake of simplicity, we now discuss the
computation of attention entropy of a single to-
ken in a standard transformer encoder. Attention
weights are first averaged over heads by defining
a′i,j = 1

h

∑
h ah,i,j as the mean attention that the

token at position i pays to the token at position
j. Then, we define a probability mass function by
applying a softmax operator:

ai,j =
ea

′
i,j∑

j e
a′i,j

(3)

We define the attention entropy as follows

Hi = −
ds∑
j=0

ai,j log ai,j (4)

Intuitively, attention entropy measures the de-
gree of contextualization while constructing the
model’s upper level’s embedding. A large entropy
suggests that a wider context contributes to the new
embedding, while a small entropy tells the oppo-
site: only a few tokens are deemed relevant. From a
broader viewpoint, contextualized tokens improve
the information passage between continuous layers
by re-distributing the information content for every
unit involved.

Figure 2 shows a toy example of self-attention
distributions for two arbitrary tokens. Solid or-
ange bars correspond to aGirl,j , while shaded blue
bars correspond to ayou,j . The toy example illus-
trates the correlation between attention distribu-
tions and entropy. The representation of you uses a
wider context and, thus, it has a higher attention en-
tropy. Note that, if present, we discard padding to-
kens from the attention entropy computation. Con-
versely, we include special tokens when required
by the downstream task.

Figure 3: Overview of BERT+EAR. Grey boxes are
Transformer layers. Each builds a token with attention
entropy Hℓ

i . Right green box pools layer-wise contextu-
alization contributions and outputs regularization loss.
First layer self-attention distribution (bottom) shown for
you (shaded blue) and Girl (solid orange).

EAR in BERT. We introduced attention entropy
as a proxy for the degree of contextualization of
token representations above. Following this in-
tuition, we propose BERT with EAR mitigation
(BERT+EAR), a novel model trained to learn to-
kens with maximal self-attention entropy over the
input sequence. We fine-tune BERT+EAR in the
downstream task of hate speech detection. Note,
though, that the approach is feasible for any classi-
fication task. In classification models, having more
contextualized tokens avoids individual terms driv-
ing the classification outcome because they got
over-attentioned.

Although EAR is applicable to any Transformer-
based model, we base our approach here on the
BERT (Devlin et al., 2019) base architecture.
BERT provides an informative case study, given
the number of architectures it has spawned and the
recent interest in its attention patterns (Clark et al.,
2019b; Kovaleva et al., 2019; Serrano and Smith,
2019). BERT consists of twelve stacked trans-
former encoders, each running self-attention on
the output of the previous encoder. In BERT+EAR,
we build new tokens with the maximal information
content coming from the previous layer for every
transformer layer in the architecture. Using Equa-
tion 4, we first compute the attention entropy of
each token in the input sentence. We then take their
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mean and define the average contextualization for
the ℓ-th layer as

Hℓ =
1

ds

ds∑
i=0

Hℓ
i (5)

where Hℓ
i is the attention entropy of the token at po-

sition i, and ds is the length of the input sequence
(excluding the padding tokens but including the
[CLS] and [SEP] special tokens). Finally, we intro-
duce a new regularization term to the model loss to
maximize the entropy at each layer:

L = LC + LR, LR = −α
∑
l

Hℓ (6)

L is the total loss, LC and LR are the classification
and regularization loss, respectively, and α ∈ R is
the regularization strength. As in previous work,
LC is the Cross Entropy loss obtained with a linear
layer on top of the last encoder as a classification
head. It receives the [CLS] embedding and outputs
the probability of the positive class (Hate).

The new regularization term LR frames the task
of maximal contextualization learning in the net-
work. This framing has several advantages over ex-
isting approaches. First, it is a sum of differentiable
terms and is hence differentiable. We can thus opti-
mize BERT+EAR with classical back-propagation
updates. Second, the regularization is agnostic to
specific identity terms. It instead induces the net-
work to learn contextualized tokens globally. This
induction is crucial to regularize biased terms that
might not be known in advance. Finally, note that
the LR pools each layer’s entropy-based contribu-
tions Hℓ. Each term Hℓ is in turn dependent on the
sole attention entropy defined in Equation 4. This
makes the setup a general framework not limited to
BERT. LR can be used to evaluate and maximize
the token contextualization in any attention-based
architecture.

Figure 3 shows a graphical overview of
BERT+EAR. Each layer provides a contextualiza-
tion contributing to the loss independently, where
layers with a low average contextualization in-
crease the loss the most. Note also that, similarly
to He et al. (2016), LR introduces skip connec-
tions between layers and the classification head, so
shorter paths for the contextualization information
to flow.

Insights from attention entropy. On the one
hand, we use attention entropy maximization to

train BERT+EAR and test its classification and
bias mitigation performance. On the other hand,
we can leverage attention entropy to automatically
extract the tokens with the lowest contextualization,
which are the most likely to induce unintended
bias. When a sentence is fed through a model like
BERT, we can inspect the attention distribution of
its terms2.

We propose to exploit entropy, and hence con-
textualization, to gain insights into any attention-
based model. Given a corpus and a model we want
to inspect, we repeatedly query the model with sen-
tences from the corpus and collect each token’s
attention entropy. Finally, we take each token’s
mean to measure the impact it has on bias, where
lower is worse. Note that the same term can impact
bias differently depending on the sentence.

While our approach works for any attention-
based model and data set, we test it on fine-tuned
classifiers to extract the biased terms learned on the
training data set. We discuss this functionality in
Section 5.

3 Experimental settings
In this work, we consider the problem of unin-
tended bias (Dixon et al., 2018): “a model contains
unintended bias if it performs better for comments
containing some particular identity terms than for
comments containing others”.

Datasets. Unintended bias is measured on syn-
thetic test sets, artificially generated by filling man-
ually defined contexts with identity terms (e.g., I
hate all ___, I love all ___) . By construction, each
identity term appears 50% of the time in hateful
contexts and 50% in non-hateful ones. If a model
then classifies the instances related to one identity
term differently than the others, it means that the
model contains unintended bias towards that term,
e.g., if every instance containing the term women
is labelled hateful, independently of the context.
Synthetic test sets simulate new data, so a model
that has low performance on this set demonstrates
low generalization abilities and incapacity to be
used in real-world contexts and applications.

We test BERT+EAR on hate speech datasets
with associated synthetic test sets to measure unin-
tended bias.

MISOGYNY (EN) (Fersini et al., 2018) is a state-
of-the-art corpus for misogyny detection in English.

2For complex terms, we average the attention entropy of
their sub-words.
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MISOGINY
(EN)

MISOGINY
(IT) MLMA

# Train 4,000 5,000 5082
# Test 1,000 1,000 565
% Validation 10 10 10
% Hate (train, test) 45, 46 47, 53 88, 88
B2 0.858 0.852 0.881

# Synthetic 1,464 1,908 77,000
# Identity terms 12 18 50
% Hate (Synthetic) 50 50 50

Table 1: Statistics of the data sets.

The related synthetic test set (Nozza et al., 2019)
was created via several manually defined templates
and synonyms for “woman” as identity terms.

MISOGYNY (ITA) (Fersini et al., 2020) is the
benchmark corpus for misogyny detection in Ital-
ian. The synthetic test set has been generated simi-
larly to the English one. This dataset allows us to
study EAR’s impact on cross-lingual adaptation.

MULTILINGUAL AND MULTI-ASPECT HATE

SPEECH (MLMA) (Ousidhoum et al., 2019) con-
sists of tweets with various hate speech targets. We
choose to work on its English part. We use the
synthetic test provided in Dixon et al. (2018), gen-
erated by slotting a wide range of identity terms
into manually defined templates.

Table 1 reports statistics of the data sets. Along-
side the size of train, test, and validation sets, we
report also the percentage of hateful instances to
show the class balance. Note that MLMA is highly
unbalanced with 88% of instances associated with
the hateful class. Note that the original MULTI-
LINGUAL AND MULTI-ASPECT dataset comes in
a multi-label, multiple class setting. Following
Ousidhoum et al. (2021), we used the Hostility
dimension of the dataset as target label and cre-
ated a Hate binary from it as follows. We con-
sidered single-labeled "Normal" instances to be
non-hate/non-toxic and all the other instances to be
toxic.

To further characterize our data sets, we explore
the aspect of selection bias, reporting the measure
B2 (Ousidhoum et al., 2020). The metric ranges
from 0 to 1 and evaluates how likely topics of the
data set are to contain keywords of the data collec-
tion. Values above 0.7 demonstrate high selection
bias, implying the need for unbiasing procedures.

We report also the size and number of identity
terms used in the synthetic test sets. The percent-
age of hateful content is perfectly balanced (50%)
since each identity term should appear exactly in

the same context as the others to measure the unin-
tended bias. See Appendix B for the list of identity
terms and further preprocessing details.

3.1 Metrics

We use the weighted and binary F1-score of the
hateful class (F1w and F1hate) as classification met-
rics. We consider both due to the class imbalance
of test sets (see Table 1).

We compute the unintended bias metrics from
Dixon et al. (2018) and Borkan et al. (2019). They
are computed from differences in the score dis-
tributions between instances mentioning a spe-
cific identity-term (subgroup distribution) and the
rest (background distribution). The three per-term
AUC-based bias scores are:

1) AUCsubgroup calculates AUC only on the data
subset of a given identity term. A low value means
the model performs poorly in distinguishing be-
tween hateful and non-hateful comments that men-
tion the identity term.

2) Background Positive Subgroup Negative
(AUCbpsn) calculates AUC on the hateful back-
ground examples and the non-hateful subgroup
examples. A low value means that the model con-
fuses non-hateful examples that mention the iden-
tity term with hateful examples that do not.

3) Background Negative Subgroup Positive
(AUCbnsp) calculates AUC on the non-hateful back-
ground examples and the hateful subgroup exam-
ples. A low value means that the model confuses
hateful examples that mention the identity with
non-hateful examples that do not.

We report the averaged metrics across identity
terms, i.e., AUCsubgroup, AUCbpsn, and AUCbnsp.3

3.2 Baselines

We compare BERT+EAR against the following ex-
isting approaches: (1) BERT (Devlin et al., 2019),
(2) BERT+SOC mitigation (Kennedy et al., 2020),
where the authors modify BERT’s loss to lower
the importance weight of identity terms, computed
with the Sampling-and-Occlusion (SOC) algorithm
(Jin et al., 2019), (3) Nozza et al. (2019), a single-
layer neural network architecture based on the Uni-
versal Sentence Encoder (USE) representation (Cer
et al., 2018), (4) Lees et al. (2020), a multilingual
BERT model fine-tuned on the training data, (5)
Ousidhoum et al. (2021), a classifier based on TF-

3Statistical significance and results from Lees et al. (2020)
on these metrics could not be computed due to data unavail-
ability and label distribution assumptions.
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Unintended bias (synthetic) test
AUCsubgroup AUCbnsp AUCbpsn F1w F1hate F1w F1hate

Nozza et al. (2019), no mitigation 49.83 49.83 49.83 49.97 51.33 72.29 71.62
Nozza et al. (2019), debiased 50.27 50.21 50.21 45.40 29.31 71.43 69.37

Zhang et al. (2020) 69.99 62.19 62.19 43.01 66.70 31.35 63.21
BERT, no mitigation 70.97 66.62 66.62 58.19 64.61 69.60 70.21
BERT+SOC mitigation 78.11 76.60 76.60 51.88 58.89 57.39 60.47
BERT+SOC mitigation, missing ITs 68.58 67.38 67.38 38.49 41.38 51.14 43.65
BERT+EAR 80.08 75.18 75.18 62.59 •▲ 70.58 •▲ 70.90 ▲ 70.83 ▲

Lees et al. (2020), debiased - - - 47.00 58.58 79.87 82.45

Zhang et al. (2020) 48.10 48.29 48.29 33.33 66.66 33.54 66.69
BERT, no mitigation 47.30 47.54 47.54 39.72 61.17 81.57 83.56
BERT+SOC mitigation, translated ITs 45.54 45.88 45.88 46.34 51.62 80.28 81.73
BERT+EAR 48.59 48.65 48.65 40.64 62.71 •▲ 83.29 •▲ 84.68 ◦▲

Ousidhoum et al. (2021), no mitigation 63.87 60.80 61.10 33.33 66.66 82.84 93.80

Zhang et al. (2020) 74.14 64.74 65.76 33.33 66.66 82.84 93.79
BERT, no mitigation 69.38 67.12 67.12 50.24 39.65 64.70 70.14
BERT+SOC mitigation 56.15 55.83 55.58 33.79 59.89 76.49 86.24
BERT+EAR 74.31 71.43 71.25 40.09 67.45 •▲ 83.05 •▲ 91.88 •▲

Table 2: Results (in %) on MISOGYNY (EN) (top), MISOGYNY (ITA) (middle), and MLMA. Significance of
BERT+EAR over BERT without mitigation (•: p ≤ 0.01) and BERT with SOC mitigation (▲: p ≤ 0.01).

IDF and Logistic Regression, and (6) Zhang et al.
(2020), a debiasing training framework based on
instance weighting.

The debiased version proposed in Lees et al.
(2020) is obtained by training the model on addi-
tional samples from Wikipedia articles (assumed to
be non-hateful) to balance the distribution of spe-
cific identity terms. Nozza et al. (2019) extracted
these additional non-hateful samples from an exter-
nal Twitter corpus (Waseem and Hovy, 2016).

To address the impact of different term lists, we
also consider two different versions of BERT+SOC
mitigation, one where we test the effect of miss-
ing identity terms and the other where the identity
terms are translated for adapting to a new language.

4 Experimental Results

Table 2 shows classification and bias metrics on
both synthetic and test set for the three corpora,
i.e., MISOGYNY (EN) (top), MISOGYNY (ITA)
(middle), and MLMA (bottom). The top rows in
each table section report the performance of hate
speech detection models specifically proposed for
the respective dataset. The lower rows show the
results of baselines and BERT+EAR. BERT+SOC
mitigation uses the identity terms from Kennedy
et al. (2020) (see Appendix C), unless a different
identity terms lists is specified (e.g., “BERT+SOC
mitigation, translated ITs”).

BERT+EAR obtains comparable and, in most

cases, better performance on all three datasets than
all state-of-the-art debiasing approaches, which
are based on (i) the knowledge of identity terms
and (ii) data augmentation techniques. However,
identity terms are not always readily available,
which severely limits the generalization of those
approaches. Similarly, there are several drawbacks
to data augmentation with (assumed) non-hateful
samples containing the identity terms. 1) Data
augmentation is expensive. It requires filtering a
large dataset (usually Wikipedia) and retraining the
model with a much larger set of instances. 2) Data
augmentation with task-specific identity terms re-
quires prior knowledge of those terms, and is there-
fore limited by the authors’ knowledge. 3) The
overlap between identity terms in the evaluation
set and the augmented data inevitably (but some-
what unfairly) improves the performance on the
synthetic dataset.

BERT+EAR is overall the best debiasing model
considering the proposed bias metrics. The
only exception is MISOGYNY (EN), for which
BERT+EAR has lower AUCbnsp and AUCbpsn than
BERT+SOC mitigation. The latter’s advantage,
however, comes with high variability in the results.
BERT+SOC mitigation seems more sensitive to
random initialization. The standard deviation over
10 runs is 37%, compared to 13% of BERT+EAR.
Figure 4 shows the AUCsubgroup metric separately
by identity term on MISOGYNY (EN). We compare
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Figure 4: AUCsubgroup results broken down by identity term on MISOGYNY (EN).

BERT and BERT+EAR over 10 different initializa-
tion runs. EAR improves BERT across all identity
terms

Most existing models and AUC-based metrics
for unintended bias focus only on the false posi-
tives (i.e., hateful instances wrongly recognized as
non-hateful). While correctly recognizing hateful
instances is important, we believe that the prob-
lem of false negatives is equally important. Since
BERT+EAR does not rely on identity term lists,
it regularizes terms that impact both the positive
and negative class. BERT+EAR obtains an aver-
age decrease of 15.04% in false negative rate com-
pared to BERT and BERT+SOC mitigation. Indeed,
the performance difference between BERT+EAR
vs. BERT and BERT+SOC is mainly due to non-
hateful instances (∼95% of the time). Reducing
the impact of overfitting terms like f*ck and p*ssy
in MISOGYNY (EN) causes BERT+EAR to con-
sider a larger context, and correctly labels them as
non-hateful.

4.1 Error Analysis

Table 3 shows tweets from the MISOGYNY (EN)
data set which have been correctly predicted
by BERT+EAR but misclassified by BERT or
BERT+SOC. These tweets serve as qualitative ex-
amples of the effectiveness of forcing the model
to attend to a wider context and not overfit to
training-specific terms, exploiting the richness of
information (Nozza et al., 2017). The examples
are an excerpt of the most common cases where
BERT+EAR classifies the non-hateful examples
correctly: (1) when slurs or negative words (such
as sk*nk) are used in a non-hateful context, like
slang or lyrics, (2) when many words associated

with misogyny appear in the sentence (e.g., rape,
abuse) and (3) when the hateful target is male and
the instance should not be classified as misogynous.
The use of a wider context by BERT+EAR allows
the model identify such non-misogynous instances
compared to BERT and BERT+SOC. In particu-
lar, BERT+SOC is even more biased in these cases
because its debiasing techniques overly rely on spe-
cific terms (e.g. woman) and increase overfitting to
training-specific examples.

4.2 Impact of predefined identity terms

We also analyze the impact of predefined identity
term lists on performance by evaluating the effect
of (i) missing identity terms, and (ii) adapting to a
new language where the list is unavailable.

First, we remove every identity term of
BERT+SOC from MISOGYNY (EN) that appears
at least once in the evaluation set, here women and
woman out of 24 terms. This reflects the real-world
case where the identity term list does not contain a
specific group present in the data. The significant
performance drop resulting from this case (Table 2,
top, “missing ITs”) highlights a strong weakness
of term-based mitigation strategies.

Second, we analyze the case where identity
terms need to be adapted to a new language, e.g.,
Italian. We translated the English identity terms
from BERT+SOC to Italian via Google Translate.4

Table 2 (middle, “translated ITs”) shows that the
performance is lower than BERT+EAR. A simple
translation of predefined identity terms is therefore
not an option for cross-lingual settings. This aligns
with the findings by Nozza (2021), that demon-

4For gendered Italian words, we kept both the masculine
and the feminine (e.g., muslim → musulmana, musulmano).
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text Ground truth BERT BERT+SOC BERT+EAR

I’m just a sk*nk for understanding the basics of life! 0 1 1 0

You’re such a f*cking hoe, I love it - the new Kanye and Lil Pump I
kings make women feel comfortable about their sexuality.

0 1 1 0

GIRL, YOU’RE HYSTERICAL. I AM DANCING SO HAPPY
FOR TODAY

0 0 1 0

#metoo I’m a victim of rape, abuse and harrassment. Every woman
who had any these experiences.

0 1 1 0

some people at school drive me insane. like cool b*tch! im depressed
too!! doesnt mean im a f*cking c*nt

0 1 1 0

@male_user And you are a hysterical k*nt. 0 0 1 0

@male_user F*ck you p*ssy 0 1 1 0

Table 3: Examples of MISOGYNY (EN) tweets misclassified by BERT or BERT+SOC, and correctly classified
by BERT+EAR. Next to the tweet text, we report the ground truth label and the prediction of each model. Exact
phrasing changed to protect privacy.

strated that cross-lingual hate speech detection is
limited by the use of non-hateful, language-specific
taboo interjections that are not directly translatable.

In sum, we demonstrated that relying on a pre-
defined list of identity terms is a strong limitation
for performance and generalizability of the model.
In contrast, BERT+EAR’s independence from any
predefined terms makes it the ideal model in real-
world scenarios.

5 Extracting overfitting terms
While being the core of EAR, attention entropy
serves another purpose. Once standard fine-tuning
is concluded (i.e., with no regularization involved),
models have overfitted specific terms. We identify
these terms using attention entropy.

To extract the most indicative terms, we replicate
training conditions. Specifically, we run inference
using all the training data using a fine-tuned check-
point and a standard BERT tokenizer. We collect
attention entropy values for each term and average
them over all training instances. Terms with lowest
average entropy show the highest overfitting as the
model learned them with a narrow context.5

Retrieving these terms after training allows us to
gain insights into the domain and language-specific
aspects driving the outcome.

Table 4 shows the top 10 terms with highest lex-
ical overfitting on the studied datasets extracted
from the corresponding fine-tuned model. We ex-
tract terms strongly correlated with the positive

5To filter out noise, we report only words with a document
frequency higher than 1%.

class, e.g., womens*ck (97%), shut (96%), n*gger
(92%), sb*rro (97%), c*lone (95%). Note that
these terms are not frequent in the corpus. Over-
fitting terms appear with an average document fre-
quency of only 4.7%, while the most frequent terms
have 32.5% average document frequency across
datasets. These results suggest that the higher the
class polarization of a token, the narrower the con-
text BERT will use to learn its representation, and
the higher the overfitting.

6 Related Work
The first works to study bias measurement and mit-
igation in neural representation aimed at remov-
ing implicit gender bias from word embeddings
(Bolukbasi et al., 2016; Caliskan et al., 2017; Garg
et al., 2018; Romanov et al., 2019; Ravfogel et al.,
2020). More recently, researchers have started to
focus on contextualized sentence representations
and effective neural models for understanding the
presence and resolution of bias (Nozza et al., 2021;
Ousidhoum et al., 2021).

While the majority of proposed approaches fo-
cus on data augmentation (Dixon et al., 2018;
Nozza et al., 2019; Sharma et al., 2020; Bartl et al.,
2020; de Vassimon Manela et al., 2021), differ-
ent approaches have been proposed for bias miti-
gation intervening directly in the objective func-
tion. Kennedy et al. (2020) proposed to apply
regularization during training to the explanation-
based importance of identity terms, obtained with
Sampling-and-Occlusion (SOC) explanations (Jin
et al., 2019). Kaneko and Bollegala (2021) pro-
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Dataset Overfitting terms

MISOGYNY (EN) girls, womens*ck, hoes, c*ck, shut, stupid, hoe, p*ssy, trying, f*ck
MISOGYNY (ITA) pezzo, bel, bellissima, scoperei, p*ttanona, zitta, sb*rro, t*ttona, bella, c*lone

(piece, nice, very nice, I’d f*ck, sl*t, shut up, c*m, b*sty, beautiful, fat*ss)
MLMA n*gger, n*gro, shut, chong, ching, d*ke, okay, sp*c, tw*t, f*ggot

Table 4: Terms with highest lexical overfitting identified using attention entropy.

posed a method for debiasing pre-trained contex-
tual representation by retaining the learned seman-
tic information for gender-related words (e.g., she,
woman, he, man) and simultaneously removing any
stereotypical biases in the pre-trained model. Zhou
et al. (2021) exploited debiasing methods for nat-
ural language understanding (Clark et al., 2019a)
to explicitly determine how much to trust the bias
given the input. Vaidya et al. (2020) proposed a
multi-task learning model for predicting the pres-
ence of identity terms alongside the toxicity of a
sentence.

The main drawback of all aforementioned works
is their strict reliance on a set of predefined identity
terms. This list can be either defined manually by
experts or extracted a-priori from the data set. In
both cases, the subsequent debiasing models will
be strongly affected by these biased terms, limiting
the applicability of the trained model to new data.
This is a severe limitation, since it is not always
possible to retrain a model on new data to reduce
bias, resulting in limited use in real-world cases.

7 Conclusion

We introduce EAR, a regularization approach appli-
cable to any attention-based model. Our approach
does not require any a-priori knowledge of iden-
tity terms, e.g., lists. This feature (i) allows us
to generalize to different languages and contexts,
and (ii) avoids neglecting important terms. Thus, it
prevents the introduction of further bias. As part
of the training procedure, EAR also discovers the
impact of relevant domain-specific terms. This au-
tomatic term extraction provides researchers with
an analysis tool to improve data collection and bias
mitigation approaches.

EAR, applied to BERT, reliably classifies data
with competitive performance and substantially im-
proves various bias metrics. BERT+EAR gener-
alizes better to new domains and languages than
similar methods.

In future work, we will apply EAR-based models
to different downstream tasks to both improve bias
mitigation and automatically extract biased terms.
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Ethical Considerations
In this paper, we propose term attention entropy
as a proxy for unintended bias in attention-based
architectures. Our approach allows us to extract,
for a given classifier and data set, a list of terms that
induce most of the bias in the model. While this
list is intuitive and easy to obtain, we would like to
point out some ethical dual-use considerations.

The process of collecting the list is a data-driven
approach, i.e., it is strongly dependent on the task,
collected corpus, term frequencies, and the chosen
model. Therefore, the list might lack specific terms
or include terms that do not strictly perpetrate harm,
but are prevalent in the sample. Because of these
twin issues, the resulting lists should not be read as
complete or absolute. We discourage users from de-
veloping new models based solely on the extracted
terms. We want, instead, the terms to stand as a
starting point for debugging and searching for po-
tential bias issues in the task at hand, be it in data
collection or model development.

Further, while the probability is low, we can
not exclude the possibility that future users run
EAR on other tasks and data sets to derive private
information or profile vulnerable groups.
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A Details on self-attention in
Transformers

The Transformer (Vaswani et al., 2017) is the build-
ing block of many recent neural language models.
A Transformer model consists of two connected en-
coder and a decoder units which align a source and
a target sequence. Differentiating from the original
formulation, large language models, such as BERT,
drop the encoder and use the remaining encoder to
process a single input sequence.

A transformer encoder consists of a multi-head
self-attention block and a position-wise, fully con-
nected feed forward neural network. Both the self-
attention block and the feed forward network adopt
a residual skip connection and batch normalization.
We provide details for a standard forward pass in
the encoder. In attention blocks, the multi-head out-
put is computed with Scaled Dot-Product Attention
between a set of queries and keys of dimension dk,
and a set of values of dimension dv. Let Q, K and
V be the respective matrix representations. The
attention is then computed as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

To improve expressiveness, the operation is per-
formed on N different, independent linear projec-
tions of the same queries, keys and values, so that
N attention heads are produced. The heads are
then concatenated, projected back to the original
input space, and finally fed through the fully con-
nected neural network to produce the next layer
embeddings. Let E = [e0, ..., eds ] be the sequence
of input embeddings6, with ei ∈ Rdm . In the spe-
cific case of a transformer encoder, queries, keys
and values correspond to the input embeddings -
i.e. Q = K = V = E. As such, the output
of the multi-head self-attention block is computed
applying the previously presented Equation to the
N token projections, concatenating and projecting
back to the original space:

MultiHead(Q,K, V ) = (o0|| . . . ||oN )WO

where

oh = Attention
(
QWQ

h ,KWK
h , V W V

h

)
and WO and each WQ

h , WK
h , W V

h are projection
matrices.

6The input embeddings for the first layer are the static
token embeddings plus their position encoding.

B Experimental setup

Hyper-parameters All our experiments use
the Hugging Face transformers library (Wolf
et al., 2020). We base our models and to-
kenizers on the bert-base-uncased
checkpoint for English tasks and on the
dbmdz/bert-base-italian-uncased
checkpoint for Italian. We pre-process and
tokenize our data using the standard pre-trained
BERT tokenizer, with a maximum sequence
length of 120 and right padding. We train all
models with the following hyperparameters:
batch size=64, learning rate=0.00002, weight
decay=0.01, learning rate warmup steps=10%,
full precision, maximum number of training
epochs=30, and early stopping on non-improving
validation loss after 5 epochs. Table 2 report
results of BERT+EAR trained for 20 epochs with
no early stopping, and regularization strength
α = 0.01. We chose the latter parameters with grid
search on α ∈ [0.0001, 0.001, 0.01, 0.1, 1] and
epochs ∈ [10, 20, 30, 40, 50]. When fine-tuning
on MULTILINGUAL AND MULTI-ASPECT, we
use a weighted cross-entropy classification loss
(LC) to discount class unbalance. Specifically, we
normalize the loss for data points belonging to
class C by the prior probability of C, evaluated as
its relative frequency in the training set.

For Kennedy et al. (2020), Nozza et al. (2019),
Lees et al. (2020), and Ousidhoum et al. (2021),
we kept all the parameters as specified by the re-
spective authors. Please refer to our repository
(https://github.com/g8a9/ear) for fur-
ther details or the respective publications.

We trained all models with 10 different initial-
ization seeds per parameter configuration and aver-
aged over them to obtain stable results and mean-
ingfully compute significance.

Statistical significance We compute the statis-
tical significance of BERT+EAR over BERT and
BERT with SOC mitigation via bootstrap sampling,
following Søgaard et al. (2014), using ◦ and △ (and
their filled counterparts for a stronger significance)
symbols, respectively. We use 1000 bootstrap sam-
ples and a sample size of %20. For Hate Speech,
significance can only be computed on F1-scores,
since bias metrics require an assumption about the
label distribution across identity terms that is not
given.
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Selection bias We computed the B2 metric fol-
lowing Ousidhoum et al. (2020). Specifically,
we run the authors’ code on each of our training
dataset, using the query keywords used to sample
each dataset. In case of queries composed of multi-
ple words, we split and considered them separate
keywords.

Dataset preprocessing The original MULTILIN-
GUAL AND MULTI-ASPECT dataset comes in
a multi-label, multiple class setting. Following
Ousidhoum et al. (2021), we used the Hostility
dimension of the dataset as target label and cre-
ated a Hate binary from it as follows. We con-
sidered single-labeled "Normal" instances to be
non-hate/non-toxic and all the other instances to be
toxic.

Computation time We report NVIDIA Tesla
V100 PCIE-16GB -equivalent computation time
for the tested models. Averaging across the three
presented data sets, training and evaluating 10
seeds of BERT+EAR (without early stop) requires
22 hours, compared to 72 hours for BERT+SOC
and 7 hours for BERT. The regularization of atten-
tion entropy does not affect the computation time
by a significant amount.

CO2 emission Experiments were conducted us-
ing a private infrastructure, which has an estimated
carbon efficiency of 0.432 kgCO2eq/kWh. A cumu-
lative of 319 hours of computation was performed
on the hardware of type Tesla V100-PCIE-16GB
(TDP of 300W). Total emissions are estimated to
be 41.34 kgCO2eq.

Estimations were conducted using the Machine
Learning Impact calculator presented in (Lacoste
et al., 2019).

C List of identity terms
In the following, we report the list of identity terms
used in the considered data sets and methods.

(Kennedy et al., 2020): muslim, jew,
jews, white, islam, blacks, muslims,
women, whites, gay, black, democrat, is-
lamic, allah, jewish, lesbian, transgender,
race, brown, woman, mexican, religion,
homosexual, homosexuality, africans

(Nozza et al., 2019): woman, women,
daughter, girl, girls, mother, she, wife,
lady, ladies, girlfriend, sister

(Fersini et al., 2020): nonne, matrone,
mamme, casalinghe, compagne, mo-

rose, femmine, donne, fidanzate, nonna,
matrona, casalinga, morosa, femmina,
mamma, donna, fidanzata, compagna

(Dixon et al., 2018): lesbian, gay, bi-
sexual, transgender, trans, queer, lgbt,
lgbtq, homosexual, straight, heterosex-
ual, male, female, nonbinary, african,
african american, black, white, euro-
pean, hispanic, latino, latina, latinx, mex-
ican, canadian, american, asian, indian,
middle eastern, chinese, japanese, chris-
tian, muslim, jewish, buddhist, catholic,
protestant, sikh, taoist, old, older, young,
younger, teenage, millenial, middle aged,
elderly, blind, deaf, paralyzed
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