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Abstract

Prompt-based paradigm has shown its competi-
tive performance in many NLP tasks. However,
its success heavily depends on prompt design,
and the effectiveness varies upon the model
and training data. In this paper, we propose a
novel dual context-guided continuous prompt
(DCCP) tuning method. To explore the rich
contextual information in language structure
and close the gap between discrete prompt tun-
ing and continuous prompt tuning, DCCP in-
troduces two auxiliary training objectives and
constructs input in a pair-wise fashion. Experi-
mental results demonstrate that our method is
applicable to many NLP tasks, and can often
outperform existing prompt tuning methods by
a large margin in the few-shot setting.

1 Introduction

With the rise of pretrained language models(PLMs),
natural language processing(NLP) shifted from the
fully-supervised paradigm to pretrain and fine-tune
paradigms (Radford et al., 2018; Devlin et al., 2019;
Liu et al., 2019). To further utilize the large capac-
ity of PLMs, a prompt-based paradigm is proposed
to reformulate downstream tasks into an LM-like
task upon the context and task-specific prompt.

There are some issues with the prompt-based
paradigm, especially prompt engineering. Discrete
prompts (a.k.a hard prompts) (Petroni et al., 2019;
Wang et al., 2021) need expert-level experience
to manually discover templates. To address this
problem, automatic prompt design is conducted on
gradient-based search (Shin et al., 2020), genera-
tion (Ben-David et al., 2021), ensembles (Schick
and Schiitze, 2021) and scoring (Davison et al.,
2019). ADAPET (Tam et al., 2021) provide a
denser supervision during fine-tuning based on the
label-conditioned language modeling task. How-
ever, these methods might get sub-optimal tem-
plates and require adequate validation data (Zhao
et al., 2021; Perez et al., 2021).
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What’s more, it is unnecessary to limit prompts
to hard-crafting text. Continuous prompts (a.k.a
soft prompts) (Liu et al., 2021b; Li and Liang,
2021) take templates as additional trainable param-
eters. Thus, prompt search can be simplified as
optimizing parameters based on downstream task.
Recent works add layer-wise adaptive prompt pa-
rameters (Qin and Eisner, 2021; Liu et al., 2021a),
data-dependent mixture (Qin and Eisner, 2021) and
hard-soft hybrid prompt (Han et al., 2021) based
on adequate training data. When it comes to the
few-shot learning scenario, it remains unclear how
to effectively learn continuous prompts. Previous
works mainly improve continuous prompts by addi-
tional prompt and target encoder (Gao et al., 2021;
Zhang et al., 2021; Liu et al., 2021a).

This paper presents a new model-agnostic per-
spective of further utilizing deep LM features. We
propose a novel Dual Context-guided Continuous
Prompt (DCCP) tuning approach that makes PLMs
better few-shot learners. Our main concern is how
to learn better continuous prompts with only a few
samples, averting dependency on hand-craft engi-
neering and large validation samples.

Considering that prompt-based models predict
based on both prompt and context, the vanilla mod-
els learn about P(Y | Xconteat, Hprompt ). Notably,
additional prompt embeddings Hy,;.omyp¢ are opti-
mized based on the given context X ontert With
LM decoding task on the downstream target Y in
previous works. We give an insight into better con-
tinuous prompt tuning throughout the dual view
of context-aware prompt and label-aware context
representations. Technically, we introduce a new
label-aware context-masked input aligning with
the vanilla context-aware prompt-masked input.
We add two auxiliary training objectives for cou-
pling layer-wise linguistic features. The dual view
makes the model learn P(Xconteat|Y, Hprompt)
and P(H ontext|Y, Hprompt) throughout LM inner
features, further optimizing the prompt embed-
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Figure 1: The Architecture of Dual Context-Guided Continuous Prompt Tuning.

dings. In a nutshell, DCCP goes deep into PLMs
representations for better continuous prompt tun-
ing.

We conduct experiments on 10 NLP datasets
in the few-shot learning setting. DCCP signifi-
cantly outperforms conventional fine-tuning, dis-
crete prompts, and previous works on continuous
prompts. DCCP achieves 89.6% (on average) of the
full-supervised fine-tuning performance across all
datasets with only 16 training samples. It obtains
gain 11.8%, 2.5%, and 1.6% absolute improvement
on average compared to conventional fine-tuning,
vanilla continuous prompts (Gao et al., 2021), and
state-of-the-art continuous prompts (Zhang et al.,
2021). We empirically demonstrate that DCCP
makes LM a better few-shot learner.

2 Methodology

In this section, we first introduce the vanilla con-
tinuous prompt tuning model and then clarify our
dual context-guided prompt tuning method.

2.1 Vanilla Continuous Prompt Tuning

Given a pretrained language model, a context input
sequence X ontext = (Z0,- .., Ty) is tokenized as
[CLS| X context[SEP]. The conventional fine-tuning
model predicts based on [CLS] output. For prompt-
based methods, a task-specific prompt X pompt =
(to,-..,[MASK],...,t) is added into the input
as Xin, = [CLS| X conteat|SEP] X prompt[SEP]. t; is
represented by a trainable pseudo token embedding
h;. It takes downstream tasks as a masked language
modeling(MLM) task. Assume that verbalizer L :

Y — V maps the class set Y to vocabulary set V/,
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the probability of predicting y; € Y is:

P(y;1Xin) = p(IMASK] = V| Xprompts Xeontent) (1)
where X,.ompt 18 represented by the additional
trainable embedding parameters. Here we discard
the prompt and target encoders used in (Liu et al.,
2021b,a), retaining origin LM architectures. Based
on downstream tasks, the vanilla model is opti-
mized based on cross-entropy loss:

1
Lo=-=

N (@)

Y
EZNEL- lyi; log pij.

2.2 Dual Context-Guided Prompt Tuning

Continuous prompt tuning simply introduces a
trainable pseudo template for automatic prompt
searching. It faces optimization challenges of word
embedding discreteness and prompt embedding as-
sociation (Liu et al., 2021b), which makes it hard
tune continuous prompt with only a few samples.

Although continuous prompts are pseudo tokens
and not referred to any real word, we propose that
continuous prompt tuning should be consistent with
natural language modeling. It could take more
language modeling constraints into account, thus
further reducing the gap between pretraining and
fine-tuning. Vanilla continuous prompt tuning has
considered an MLM-like objective L. for matching
target verbalizer and masked token output, focusing
on prompt and downstream tasks. Furthermore, we
propose two auxiliary language modeling tasks for
both pluggable prompt and origin context.

We aim to further leverage context information
for better guiding prompt tuning. The auxiliary



SST-2 (acc) MR (acc) CR (acc) SUBJ (acc) TREC (acc)

Majority ' 50.9 50.0 50.0 50.0 18.8

Prompt-based zero-shot? 83.6 80.8 79.5 514 32
“GPT-3” in-context learning ~ 84.8 (1.3) 80.5 (1.7) 87.4 (0.8) 53.6 (1.0) 26.2 (2.4)
Fine-tuning 81.4 (3.8) 76.9 (5.9) 75.8 (3.2) 90.8 (1.8) 88.8 (2.1)
LMBEFF (Gao et al., 2021) 92.3(1.0) 85.5(2.8) 89.0 (1.4) 91.2 (1.1) 88.2 (2.0)
PTuning (Liu et al., 2021b) 92.4 (0.6) 86.4 (1.5) 91.1 (0.6) 91.8 (0.8) 90.5 (1.6)
DART (Zhang et al., 2021) 93.5(0.5) 88.2 (1.0) 91.8 (0.5) 90.7 (1.4) 87.1(3.8)
DCCP 94.1 (0.6) 89.2 (0.7) 92.6 (0.6) 92.8 (1.0) 92.1 (2.3)

Fine-tuning (full)f 95.0 90.8 89.4 97.0 97.4
MNLI (acc) SNLI (acc) QNLI(acc) MRPC (F1) QQP (F1)

Majority ' 32.7 33.8 49.5 81.2 0.0

Prompt-based zero-shot! 50.8 49.5 50.8 61.9 49.7
“GPT-3” in-context learning ~ 52.0 (0.7) 47.1 (0.6) 53.8(0.4) 45.7 (6.0) 36.1(5.2)
Fine-tuning 45.8 (6.4) 48.4 (4.8) 60.2 (6.5) 76.6 (2.5) 60.7 (4.3)
LMBFF (Gao et al., 2021) 68.3 (2.5) 77.1 (2.1) 68.3 (7.4) 76.2 (2.3) 67.0 (3.0)
PTuning (Liu et al., 2021b) 65.7 (4.0) 68.3(7.3) 67.6 (7.3) 78.6 (1.1) 65.8 (3.9)
DART (Zhang et al., 2021) 67.5 (2.6) 75.8 (1.6) 66.7 (3.7) 78.3 (4.5) 67.8 (3.2)
DCCP 68.6 (2.6) 74.1 (3.9) 71.3 (3.2) 80.3 (1.3) 67.9 (3.5)

Fine-tuning (full)f 89.8 92.6 93.3 91.4 81.7

Table 1: Main results using RoBERTa-large. 1 refers to using the full training set while I refers to using no training
samples. The others involve K = 16 (per class) for few-shot experiments. Note that the mean (and standard
deviation) performances are reported over 5 different splits. “GPT-3” in-context learning: using the in-context
learning proposed in (Brown et al., 2020) with RoBERTa-large (no parameter updates).

tasks are constructed for context language model-
ing. Technically, a label-aware context-masked in-
put X, is fed as another model input aligning with
origin context-aware prompt-masked X;,. Given
the ground-truth label y, we obtain a semantically
intact prompt Xp,ompt- A masked context input
X context 18 generated by randomly masking context
tokens at position of z; € Z in the same manner
as the pretrained MLM task. The new input is:

Xin = [CLS] X context[SEP] X prompt [SEP],
Xeontezt = (To, ..., [MASK],...,[MASK],...,z,), 3
JL(y), ..., t).

Xprompt = (t07 e

As depicted in Fig 1, we obtain a couple of
model inputs. The origin context-aware prompt-
masked input has intact context information but
lacks downstream label information. On the con-
trary, the label-aware context-masked input is
aware of the ground-truth label but misses partial
context features. Although these two dual inputs
separately lack partial semantic information, they
should be semantically paraphrased.

Specifically, the first auxiliary constraint L,
is for the masked language modeling task of label-
aware masked context tokens Z. It is calculated as:
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03 = —log(p(@t? = 2 |yi, Xp, Xe,j € Z)),
Lon 1 Gz, “)
mezizz — g R
TN )T Tmim

where c and p refer to the context and prompt. The
origin text token x¢’ serves as the hard label of this
label-aware context cloze task.

In addition, paraphrased texts can be closely re-
lated to each other throughout the language struc-
ture. We further exploit different-level linguistic
features for aligning the dual context input as a
paraphrased couple. According to the large capac-
ity of PLMs, the LM encoder could be directly
utilized as a linguistic feature encoder. We add a
metric constraint on internal representations of the
pairwise masked context tokens Z. It aligns the
label-aware masked context X context With the ori-
gin context X ontext Upon linguistic features across
LM layers. The training objective is calculated
based on internal representations as a mean square
error 10ss Ly, se.

bonae (T, 2%) = GSEIREYS = i3
1
121
where h is the hidden state, S indicates the depth
of the LM model, j refers to the masked context

.. )
Lmse = sz



Dataset Verbalizer ‘ Prompt
SST-2
MR terrible/great
Cr [unused1] [unused2] [unused3] <mask>[unused4][unused5].
SUBJ subjective/objective
TREC | Description/Entity/Expression/Human/Location/Number
71\54NN]51 No/Yes/Maybe
QNLI [unused1] <mask>[unused2]
MRPC No/Yes
QQP

Table 2: Verbalizer and Pseudo prompt templates for continuous prompt tuning experiments.

tokens, and ¢ means the i-th sample. The over-
all training objective is L = L. + Ly + Linse-
These two auxiliary constraints are trained in a
self-supervised learning manner, which leverages
more information than the vanilla prompt tuning
within the same dataset size. In the other words,
this model-agnostic training method makes full use
of the current training data from the view of going
deep into the internal representations.

All in all, the vanilla model predicts downstream
task via filling the blank of prompts based on
the context information. Our proposed auxiliary
tasks reconstruct the masked context based on the
ground-truth label and prompt semantics. There-
fore, our dual context-guided continuous prompt
(DCCP) tuning method would advance few-shot
learning based on the dual implementation of
prompt and context features.

3 Experiments

We experiment our proposed architecture on 10
NLP tasks in the few-shot setting (k=16) according
to LMBEFF (Gao et al., 2021). The datasets involve
sentiment analysis (SST-2, MR, CR), subjective
analysis (SUBJ), question type (TREC), natural
language inference (MNLI, SNLI, QNLI), para-
phrase detection (MRPC, QQP).

3.1 Experimental Settings

The experiment is conducted in the same setting
as (Gao et al., 2021; Zhang et al., 2021), which
is based on RoBERTa-large (Liu et al., 2019). We
conduct a grid search on multiple hyper-parameters
for each set, and choose the best setting on the de-
velopment subset. We use AdamW (Loshchilov
and Hutter, 2019) as the optimizer. We average the
performance on the test set with five fixed random
few-shot training datasets for each task. The ver-
balizer and pseudo prompt template can be referred
to Tab 2.
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3.2 Results and Analysis

Main Result In Table 1, we compare the per-
formance of our DCCP to the state-of-the-art
prompt-based methods and conventional fine-
tuning method. Our model achieves great per-
formance gain compared to the conventional fine-
tuning and vanilla continuous prompt tuning model
over all 10 tasks. DCCP outperforms the SOTA
prompt-based methods (Gao et al., 2021; Zhang
et al., 2021) across 9 datasets, which indicates the
great advancement of our DCCP on few-shot learn-
ing. Especially, in the condition of only 16 training
and development samples, DCCP could obtain a
competitive result compared to the full training
set in SST-2, MR and CR dataset. Our results
obtain up to 5% and 4% absolutely improvement
when compared to DART (Zhang et al., 2021) and
LMBFF (Gao et al., 2021).

Ablation Study According to Table 3, both aux-
iliary tasks outperform the vanilla model and pre-
vious works. It denotes that the context-view lan-
guage modeling tasks are beneficial for the con-
tinuous prompt tuning approach in the few-shot
learning scenario. The results reveal that the metric
constraint on internal representation is complemen-
tary to the masked language modeling.

Our overall methodology achieves 2.5% perfor-

Method Avg. Performance
Fine-tuning 74.51
LMBFF (Gao et al., 2021) 80.31
PTuning (Liu et al., 2021b) 79.79
DART (Zhang et al., 2021) 80.74
DCCP 82.3
w/o MLM 81.02
w/o MSE 80.97

Table 3: Ablation Study of DCCP. The score refers to
the average performance across all datasets.
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guage modeling.

mance gain upon the vanilla model without mod-
ifying the model architecture or leveraging more
external data.

Will the layers of metric constraint affects per-
formances? Referring to Fig 2, it is necessary to
consider internal representations at different LM
layers as we couple the dual context linguistic fea-
tures. It could get more stable and better results by
comparing all linguistic features of the label-aware
masked context and origin context.

Performance on various training dataset size.
Fig 3 illustrates our stable improvement compared
to conventional fine-tuning and vanilla prompt tun-
ing as the number K of training samples increases.
Even though it converges with vanilla prompt tun-
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Figure 3: Conventional Fine-tuning vs Vanilla PTuning
vs our DCCP across various K -shot (i.e. # instances per
class) settings on QNLIL.
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ing around K = 256, it retains better stability and
performance.

4 Conclusion

In this paper, we present a model-agnostic approach
for advancing continuous prompt. Specifically, we
propose a novel dual context-guided continuous
prompt tuning method for few-shot learning. Our
approach constructs a couple of dual inputs, includ-
ing the origin context-aware prompt-masked input
and label-aware context-masked one. Then, we go
deep into the language model to leverage linguistic
features for two auxiliary constraints on the pair-
wise context inputs. The empirical results show
that continuous prompts can be further revised dur-
ing the procedure of reconstructing context.
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