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Abstract

We introduce distributed NLI, a new NLU
task with a goal to predict the distribution
of human judgements for natural language in-
ference. We show that by applying addi-
tional distribution estimation methods, namely,
Monte Carlo (MC) Dropout, Deep Ensemble,
Re-Calibration, and Distribution Distillation,
models can capture human judgement distribu-
tion more effectively than the softmax baseline.
We show that MC Dropout is able to achieve
decent performance without any distribution
annotations while Re-Calibration can give fur-
ther improvements with extra distribution an-
notations, suggesting the value of multiple an-
notations for one example in modeling the dis-
tribution of human judgements. Despite these
improvements, the best results are still far be-
low the estimated human upper-bound, indicat-
ing that predicting the distribution of human
judgements is still an open, challenging prob-
lem with a large room for improvements. We
showcase the common errors for MC Dropout
and Re-Calibration. Finally, we give guide-
lines on the usage of these methods with dif-
ferent levels of data availability and encourage
future work on modeling the human opinion
distribution for language reasoning.1

1 Introduction

Natural Language Understanding (NLU) and Rea-
soning play a fundamental role in Natural Lan-
guage Processing (NLP) research. It has almost be-
come the de facto rule that newly proposed generic
language models will be tested on NLU tasks and
progress obtained on general NLU often bring po-
tential improvement on other aspects of NLP re-
search (Wang et al., 2019). The well-known NLU
tasks include Sentiment Analysis (Socher et al.,
2013), Natural Language Inference (NLI) (Bow-
man et al., 2015; Nie et al., 2020a), Commonsense

∗ Equal contribution.
1Our code and data are publicly available at https://

github.com/easonnie/ChaosNLI.

Reasoning (Talmor et al., 2019), etc., covering a
representative set of problems for NLP.

One common practice shared by most of the lan-
guage understanding and reasoning tasks is that
they are formalized as a classification problem,
where the model is required to predict a single most
preferable label from a predefined candidate set,
and the goal is to reverse-engineer how a reason-
able human chooses the best one. This simplifica-
tion not only helps standardize the evaluation, i.e.,
accuracy could become the canonical measure, but
also help make the annotation task more straight-
forward during crowdsourcing data collection.

However, recent findings suggest that inher-
ent disagreements exist in both the Natural Lan-
guage Inference (NLI) and Commonsense Reason-
ing datasets (Pavlick and Kwiatkowski, 2019; Chen
et al., 2020; Nie et al., 2020b) and advocate that
NLU evaluation should explicitly incentivize mod-
els to predict distributions of human judgments.
Similarly, Gantt et al. (2020) suggest that NLI
should account for annotator random effects. This
is intuitive since there might be different subjec-
tive views of the world and people might think dif-
ferently given the same reasoning task especially
those involving pragmatic reasoning (Potts et al.,
2016). Modeling the distribution of human opin-
ions provides a higher level “meta-view” of the
collective human intelligence which would be valu-
able for all aspects of NLP applications.

In this work, as a case study for learning the
distribution of human judgements on NLU, we ex-
tend the NLI task to distributed NLI – a new task
in which models are required to predict the distri-
bution of human judgements for natural language
inference. We introduce the new task based on the
data from prior works (Pavlick and Kwiatkowski,
2019; Nie et al., 2020b) with new experimental
guidelines designed for the distribution annota-
tions. Standard NLP models are trained towards
predicting single labels, while in theory models
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trained on single labels should still be able to cap-
ture the whole label distribution (see Appendix E.3
for a more detailed discussion), their predicted dis-
tribution may not be reliable (Guo et al., 2017).
To achieve better distribution estimation and to
maintain the merits of SOTA models, we con-
sider four distribution estimation methods that do
not need major architecture changes, namely, MC
Dropout (Gal, 2016), Deep Ensemble (Lakshmi-
narayanan et al., 2017), Re-Calibration (Guo et al.,
2017), and Distribution Distillation for distributed
NLI. These methods have achieved empirical suc-
cess in estimating the aleatoric uncertainty (Gal,
2016), calibrating the neural network prediction
confidence (Guo et al., 2017), and neural network
knowledge distillation (Hinton et al., 2015), re-
spectively. We show that all four methods can
substantially outperform the baseline and that Re-
Calibration and Distribution Distillation can pro-
vide further improvement by making use of addi-
tional distribution annotations. Specifically, our
primary contributions are:

• We introduce and define the distributed NLI task
with the goal to model the distribution of human
opinions on NLI. We also elaborate the moti-
vation, feasibility (Sec. 2) and the experiential
design (Sec. 3) for the task, serving as common
ground for future research on the topic.

• We test 4 methods (MC Dropout, Deep Ensem-
ble, Re-Calibration, Distribution Distillation) for
predicting the distributions over human judg-
ments on NLI according to our experimental de-
sign, and find: (1) all methods bring substantial
improvements over baseline; (2) Re-Calibration,
MC Dropout, and Distribution Distillation are
able to further improve the performance by using
additional distribution annotations (3) the best re-
sults are still far below the estimated human per-
formance. (4) MC Dropout and Re-Calibration
can achieve decent generalization performance
on out-of-domain distributed NLI test set without
in-domain training data (Sec. 6).

• Despite the improvement, we showcase common
errors of MC Dropout and Re-Calibration and
give guidelines on selecting methods and setting
hyperparameters in different scenarios and argue
for future work on modeling human opinions on
language reasoning (Sec. 7).

2 Distributed NLI

2.1 Natural Language Inference

NLI was first introduced and mostly formulated
as a 3-way classification problem. The input is a
premise paired with a hypothesis. The output y is
a discrete and mutually exclusive label that can be
entailment, neutral, or contradiction, indicating the
truthfulness of the hypothesis given the premise.
Some works advocated a shift for NLI from the
3-way discrete labeling schema to a graded schema
due to the probabilistic nature of entailment infer-
ence (Zhang et al., 2017; Chen et al., 2020). Fol-
lowing such schema, models were instead required
to produce a continuous score representing how
likely the premise is true given the hypothesis. No
matter whether the label is discrete or graded, the
conventional goal of NLI in most recent literature
is to develop models to make the inferences that an
individual would naturally make with an implicit
assumption that there is only one true label.

2.2 Task Definition

We introduce distributed NLI by extending the con-
ventional NLI label to be a distribution representing
collective human opinions on the example. Specifi-
cally, the goal of distributed NLI is to develop NLI
models that can predict a categorical distribution
similar to the real human opinion distribution ob-
tained from a large population. In the following
subsection, we explain the motivation and impor-
tance of distributed NLI.

2.3 Motivation and Positioning

Advocated by Manning (2006), annotation tasks
of NLI should be “natural” for untrained annota-
tors, and that the role of NLP should be to model
the inferences that humans make in practical set-
tings without imposing a prescriptivist definition
of what types of inferences are licensed.2 Main-
taining the “naturalness” of inference instead of
referring to a strict definition of logic entailment
facilitates the practical usage of NLI, however, it
unfortunately brings a degree of uncertainty to the
inference among different individuals. Recent find-
ings reveal that inherent disagreements exist in a
noticeable amount of examples in oft-used NLI

2There has been a gravitation towards the preference of
natural inference over rigorous annotation guidelines based
on a prescriptive definition of entailment relation in logic. We
refer readers to (Pavlick and Kwiatkowski, 2019) for a more
comprehensive discussion on the topic.
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Premise Hypothesis Labels Hypothetical Reason for the Disagreement

To savor the full effect of the architect’s skill, en-
ter the courtyard through the gate which opens
onto the Hippodrome.

The gate to the Hippodrome is an example
of the architect’s skill.

E(76) N(22) C(2) Annotators might have different judgements on what is demon-
strating the architect’s skill. The gate is highly possible for
some annotators but it is not certain for others.

Look, there’s a legend here. See, there is a well known hero here. E(57) N(42) C(1) Whether “a legend” refers to a “well known hero” is debatable
and subjective.

While it’s probably true that democracies are un-
likely to go to war unless they’re attacked, some-
times they are the first to take the offensive.

Democracies probably won’t go to war un-
less someone attacks them on their soil

E(66) N(31) C(3) The words like “probably" and “sometimes" make it hard to
determine whether the “democracies" will be the first to attack
or not.

Table 1: We show 3 examples from ChaosNLI-M with their distribution labels and our hypothesis regarding how
the disagreement arises.

datasets (Pavlick and Kwiatkowski, 2019; Nie et al.,
2020b). Hence, the conventional goal of NLI (i.e.,
to model the natural thinking process of a single
human) may have a risk of ill-definition because a
consensus on the label cannot be reached for some
cases.3 Examples are shown in Table 1. Moreover,
with such label agreements, traditional evaluation
methods using a single label may also become un-
reliable (Gordon et al., 2021). Our proposed dis-
tributed NLI resolves such a risk without compro-
mising the naturalness of the inference.

An alternative approach toward the inherent dis-
agreements is to narrow the task to model only the
majority label. This is the default setup for most
prior studies where multiple labels were collected
for the examples in the development and test sets
and the majority label will be chosen as the gold
label upon which the accuracy will be calculated.
We argue that such a practice is insufficient. With
the advancement in general language modeling for
NLU, we could envision NLI models having a po-
tential influence on AI-aided critical decision mak-
ing. Such decisions may be involved when assisting
a jury’s verdict of a lawsuit given the vocal and tex-
tual reports about the case (Surden, 2019; Armour
and Sako, 2020), providing automated opinions for
company recruiting or university admissions based
on personal information (Ochmann and Laumer,
2020; Newman et al., 2020), or even helping gov-
ernments make decisions (Eggers et al., 2017) (see
the Appendix E.1 for potential NLI inputs for these
applications). Hence, it would be important for
the system used in such a decision-making process
to be aware of different opinions and to pass the
distribution of the collective opinions to either the
actual decision maker or any downstream models.

Merits of Distribution Labels. The Distributed
NLI and the traditional format of NLI seem to be

3In such cases, we cannot coerce a most legitimate label
by giving a prescriptivist definition of the inference since it
will contradict the “naturalness” of the task described above.

two similar tasks with a major difference as using
the distribution labels instead of the one-hot labels.
However, we argue that these distribution labels
can capture more fine-grained and subtle seman-
tics that may have a great impact on downstream
applications, which is ignored in the traditional one-
hot labeling schema. Firstly, distribution modeling
captures more semantic subtleties. Three exam-
ples are shown in Table 1. In order to predict the
corresponding label correctly, the model needs to
understand all these challenging language prop-
erties, including ambiguous relationships between
phrases (e.g. “legend” vs. “well known hero” in the
second example), sentences with subjective under-
standings (the first example), sentences with more
complicated relationships hard to attribute any of
the three classes conclusively (the third example).
These challenges are not visible in the traditional
one-hot label schema, but become essential to solv-
ing the distributed NLI task. Additionally, captur-
ing these semantic ambiguities can also lead to
great impact in downstream tasks and real-life ap-
plications. NLI models are widely used in various
downstream tasks either to conduct a sub-step and
to provide rewards (Pasunuru and Bansal, 2017;
Falke et al., 2019), where the data distribution can
be diverse and noisy (e.g. model-generated sen-
tences are usually imperfect), which leads to more
complex and ambiguous labels. Models capturing
better label distribution can be more useful in these
downstream applications, as well as in the potential
decision-making applications.

Remark on Labeling Schema. For the study of
distributed NLI in this work, we maintain the dis-
crete labeling schema rather than the graded label-
ing schema because this is the default format by
which most of the natural data is recorded. The dis-
crete label is also more straightforward for annota-
tion, since annotators are accustomed to providing
their discrete judgement (yes or no, true or false)
in daily life, but usually not a real value indicating
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how confident (or strong) their feelings are. Note
that despite the schema choice in this work, the con-
cept of distributed NLI can be easily generalized
to graded-label settings where the target is to fit a
distribution of the continuous grade score. Finally,
there can be a connection between the distributed
NLI categorical distribution and the graded score
annotated by an individual human. Despite their
different meanings, the judgement of individual hu-
mans can sometimes be influenced by their belief
of other people’s thoughts (Kovács et al., 2010).

Remark on Future Directions. Additionally, an
ideal model should also be able to capture the
detailed thought process behind the prediction of
each label and provide corresponding explanations.
Such interpretability will make the model more reli-
able in critical applications, but is generally beyond
the capability of current models and hard to evalu-
ate under current datasets. While related informa-
tion can be extracted from current models by using
post-hoc interpretability tools (e.g. LIME (Ribeiro
et al., 2016)), we encourage future works to build
more interpretable models and collect datasets suit-
able for more fine-grained evaluations.

Remark on Annotation Quality. Evaluation of
distributed NLI compares model prediction to the
opinion distribution estimated by multiple annota-
tions. We noticed that examples with a high-level
of disagreement usually require more mental ef-
fort to annotate. While previous work (Pavlick
and Kwiatkowski, 2019; Nie et al., 2020b) have
conducted analyses showing these collected label
distribution contain genuine intrinsic disagreement,
we also notice unreasonable labels that may just
come from annotation noises. So far, it is still un-
clear whether the collected distribution labels are
high-quality and clean enough to serve as evalua-
tion datasets. Therefore, to ensure that the evalua-
tion is valid, it is crucial to maintain the quality of
annotations such that the label distribution will in-
deed represent opinion diversity rather than annota-
tion errors. As an example, we use ChaosNLI (Nie
et al., 2020b) in our experiments, which is collected
with careful quality control.4 Furthermore, we con-
ducted a manual quality check on 100 examples
from the ChaosNLI-M (the Ddev

s subset later to be

4Note that despite the three-way discrete label schema
choice in this work, the concept of distributed NLI can be
easily generalized to other datasets, including graded-label set-
tings where the target is to fit a distribution of the continuous
grade score. More discussion is in the Appendix E

introduced in Sec. 3). Each example has 100 three-
way annotated NLI labels, and we examine whether
any of the 100 annotations for each example will
be an absolute error in almost all scenarios. In total,
only 4 (out of 100) examples contain more than
10 error annotations and no example contain more
than 16 error annotations. Quantitatively, we have
also verified that these errors do not substantially
impact the findings and comparisons in this paper.
More detailed results and examples on annotation
quality analysis are in the Appendix E.2.

3 Dataset and Experiment Design

In this section, we describe a typical design of
dataset and experiment of the distributed NLI task,
and is used in later experiments in this work. For
a typical NLI task, the dataset is split into train,
development, and test set where each example is
associated with one ground truth label. The model
will be trained using examples in the training set.
Accuracy on the development set is used for model
selection, and accuracy on the test set will be re-
ported as the final metric. For distributed NLI, in
order to develop models that can predict the label
distribution, we assume that each example in the
test set will also have a sufficient amount of hu-
man labels to approximate the real human label
distribution to evaluate the model’s prediction.

Let us define the Dtrain, Ddev, Ddev
s , and Dtest

s

to be the different splits of the dataset. The sub-
script s in Ddev

s and Dtest
s indicates that the ex-

amples in these two splits have soft labels repre-
senting the human label distribution, while there
is no such label in Dtrain and Ddev. Ddev

s is a
very small set of examples with soft-labels besides
the test set. This gives a good simulation for real
production because in practice, Ddev

s will be ex-
tremely scarce. The goal of the distributed NLI
is to develop models that can predict human label
distributions and minimize the average divergence
between predicted label distributions and approx-
imated human label distributions on the test set
using examples in Dtrain, Ddev, and Ddev

s . 5 Even
though obtaining these soft label distributions is ex-
pensive, our design can generalize to the situation
where we can also have enough training data with
soft-label by simply making a new split Dtrain

s on
which the model can be trained.

5Although Ddev
s is also called development set, there is

no strict relation between examples in Ddev
s and Ddev . They

could share some examples or can be mutually exclusive.
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4 Distribution Estimation

The output of a typical NLI classifier is a vector z ∈
R3 whose elements zi represent the unnormalized
scores (or logits) for each of the three labels (Parikh
et al., 2016; Nie and Bansal, 2017). In modern
NLI models, the classifier is usually a deep neural
network and the final output is:

ŷ = Softmax(z), ĉ = argmax(z)

where ŷ is the normalized label distribution whose
element ŷi = ezi/

∑
ezi , and ĉ is the predicted la-

bel. Prior works (Pavlick and Kwiatkowski, 2019;
Nie et al., 2020b) revealed that the distribution ŷ
produced by the softmax layer gives a poor estima-
tion on the real human label distribution.

In this work, we experiment on using distribu-
tion estimation methods for predicting human opin-
ion distribution on NLI, and we show that they
can achieve better performance than the softmax
output. These methods have been used in uncer-
tainty estimation and confidence calibration with
some empirical success. Although the problem of
uncertainty estimation is different from opinion dis-
tribution estimation, the essence of the two are the
same – the estimation of a distribution.6

4.1 Bayesian Inference
The Bayesian view of neural networks (MacKay,
1992; Neal, 1995) offers a mathematically
grounded framework to produce a distribution for
the end task. From a Bayesian perspective, we have
a prior over possible models p(θ), a likelihood of
the data p(D|θ), and we can use the expected pos-
terior prediction as the final prediction distribution:

p(ŷ|x) =
∫
θ
p(ŷ|x, θ)p(D|θ)p(θ)dθ

In practice, the integral over θ is intractable.
We can approximate it by Monte Carlo sam-
pling (Metropolis and Ulam, 1949) θ from an ap-
proximated posterior p(θ|D) ∝ p(D|θ)p(θ) and
then averaging their outputs.

p(ŷ|x) = Ep(θ|D)Jp(ŷ|x, θ)K ≈
1

k

k∑
i

p(ŷ|x, θi)

where θi is one of the k models sampled from the
posterior p(θ|D). The calculation of the real pos-
terior p(θ|D) is also intractable and there are mul-
tiple ways to approximate the model parameters

6Conceptually, capturing the distribution label in NLU
tasks is similar to modeling the aleatoric uncertainty (Kendall
and Gal, 2017). And the uncertainty estimation of the opinion
distribution can be itself a new task out of this paper’s scope.

sampled from the posterior. In this work, we con-
sider two simple and empirically effective methods.

Deep Ensemble. The ensemble of neural net-
works (Lakshminarayanan et al., 2017) has an in-
tuitive Bayesian interpretation: network initializa-
tion is a sample from the prior p(θ) and network
training is maximizing the data likelihood p(D|θ).
Hence, sampling k models from posterior p(θ|D)
can be approximated by training k models with
different initialization and example ordering.

Monte Carlo Dropout. Sampling models by en-
semble is computationally expensive because in
total, k models need to be trained, and even train-
ing one single model is already expensive for some
tasks. Alternatively, Gal and Ghahramani (2016)
proposed an efficient method that directly draws
the samples by making k stochastic forward passes
with dropout in one single fully trained neural net-
work. Loosely speaking, this is similar to obtain-
ing samples by adding noise to a fully trained
network (Srivastava et al., 2014): p(ŷ|x, θi) =
p(ŷ|x, θ + σi). The method was shown to have
good performances on neural network uncertainty
estimation, and we refer the readers to the original
paper for a detailed theoretic description.

Remark. The Bayesian approach for the estima-
tion of the NLI human label distribution has an
appealing analogy to collective thinking. Sampling
θi from parameter space can be seen as sampling
an individual person from a large population with
potentially diverse opinions. The stochasticity in
personal experience is analogous to the randomness
of network initialization and training dynamics.

4.2 Re-Calibration
The Bayesian method has a nice theoretical ground
and does not require additional soft-labeled data
Ddev
s . However, the empirical performance of

Bayesian methods can be suboptimal due to overly
idealized approximation. Therefore, we also con-
sider the method of calibration for distribution esti-
mation which makes empirical post-editing on the
output of the network by explicitly taking advan-
tage of additional soft-labeled data Ddev

s . The core
of calibration is to seek a proper scaling of z such
that the calibrated output ŷ can better present the
objective distribution.In our work, the calibrated
predicted distribution is:

ŷi =
zi/T∑
i zi/T
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Experiments Dtrain Ddev Ddev
s Dtest

s

ChaosNLI-α 169,654 3,059 100 1,432
ChaosNLI-S 942,854 10,000 100 1,414
ChaosNLI-M 942,854 10,000 100 1,499
UNLI - - - 2,998
PK2019 - - - 297

Table 2: The size of each data split in this work.

The method is called temperature scaling and T is a
hyper-parameter that will be tuned on the hold-out
validation set Ddev

s by minimizing the summation
of the KL-divergence between the predicted distri-
bution and the true distribution for the examples
in the set:

∑
KL (y‖ŷ). Note that the method is

proposed to be used in confidence calibration (Guo
et al., 2017), whereas we use it for calibrating the
model outputs to the human label distribution.

4.3 Distribution Distillation
Both the Bayesian Inference and Re-Calibration
methods do not involve a supervised learning pro-
cess that is often effective for training models.
Here, we consider another method that involves
direct training of neural networks called Distri-
bution distillation (reminiscent of model distilla-
tion (Hinton et al., 2015)). Distribution distillation
consists of three steps. Firstly, we use a “teacher
method”, which can be the Bayesian Inference or
Re-Calibration method explained above, to obtain
high-quality distribution estimation using Dtrain,
Ddev, Ddev

s . Secondly, we re-label the training set
Dtrain with the “teacher method” so every example
in the training set will be associated with a pseudo
soft-label. Finally, we train a new “student model”
using the relabeled training set. The method is
similar to distilling the distribution knowledge of
the “teacher method” to the final “student model”
through a large-scale diverse training set.

5 Experimental Setup

5.1 Datasets
We consider the following two NLI-related tasks
in our experiments: NLI, and abductive common-
sense reasoning. As described in Sec. 3, we need
to make the split for Dtrain, Ddev, Ddev

s , and
Dtest
s for each task. We use ChaosNLI (Nie et al.,

2020b) as the data source for Ddev
s and Dtest

s since
every example in ChaosNLI are associated with
high quality 100 human-annotated labels.7 Follow-

7As explained in Sec. 2.3, ChaosNLI is collected with rigid
quality control and manual examination reveals that most an-
notation disagreement results in the actual opinion discrepancy
between annotators rather than errors.

ing (Nie et al., 2020b), for each task, we calculate
the soft-label for Ddev

s and Dtest
s by using the 100

labels for each example in ChaosNLI. We sam-
pled 100 examples from ChaosNLI and use them
for Ddev

s and all the other example in ChaosNLI
are used for Dtest

s . We use the training set of
SNLI (Bowman et al., 2015) and MNLI (Williams
et al., 2018) as Dtrain for the NLI task and the
training set of αNLI (Bhagavatula et al., 2020) as
Dtrain for the abductive reasoning task. We use
SNLI-test, MNLI-dev-mismatch, and αNLI-test
as the Ddev.8 Additionally, we use the dataset
(PK2019) collected in Pavlick and Kwiatkowski
(2019) as a generalization test set since it con-
tains NLI examples from a different set of domains
from MNLI and SNLI.9 Note that each example in
PK2019 is labeled by 100 annotators with graded
labeling schema and we converted the graded la-
bels to 3-way labels (the same format as ChaosNLI)
following the conversion guidelines in Pavlick and
Kwiatkowski (2019). The sizes of each split are in
Table 2, and another Table summarizing the split de-
tails here is in the Appendix A. Moreover, to under-
stand how well the distribution estimation method
can capture individual graded plausibility judge-
ments, we also test our methods on UNLI (Chen
et al., 2020) where each example is annotated with
one single graded label denoting a continuous plau-
sibility score. For both UNLI and PK2019, we
again removed the examples that appeared in our
training or development set. The resulting PK2019
dataset used in this work only contains examples
from RTE2 (Dagan et al., 2005), DNC (Poliak et al.,
2018) and JOCI (Zhang et al., 2017).

5.2 Metrics

We report the accuracy on the majority label and
the KL-divergence and JS-distance (JSD) between
the predicted distribution and the soft distribution.
On UNLI, we report the Pearson correlation r and
the Spearman correlation ρ between the provided
graded label and the predicted entailment proba-
bility, following the original UNLI setup.10 On
PK2019, we report the same metrics as ChaosNLI.

8The examples in ChaosNLI used inDtest
s are mostly from

the development splits of the original dataset. Therefore, we
need to modify the original dev and test split in this work.

9There is no official name for the data in (Pavlick and
Kwiatkowski, 2019). For simplicity, we name it PK2019.

10We do not report the MSE metric for UNLI since their
label represents slightly different meanings as our output, our
model is not expected to predict the same value as the target.
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Model ChaosNLI-α ChaosNLI-S ChaosNLI-M

JSD↓ KL↓ Acc.↑ JSD↓ KL↓ Acc.↑ JSD↓ KL↓ Acc.↑

Chance 0.3205 0.406 0.5052 0.383 0.5457 0.5370 0.3023 0.3559 0.4634

Baseline (Mean) 0.2033 0.8142 0.8345 0.2160 0.4661 0.7863 0.3020 0.8017 0.6324
Baseline (Best) 0.2017 0.7757 0.8317 0.2107 0.4276 0.7822 0.2963 0.7558 0.6318
MC Dropout 0.1882 0.5045 0.8251 0.1954 0.3294 0.7845 0.2725 0.5812 0.6231
Deep Ensemble 0.1941 0.6574 0.8359 0.2087 0.4212 0.7942 0.2926 0.7319 0.6264

Re-calibration (Oracle) 0.1663 0.1613 0.8345 0.1866 0.1730 0.7863 0.2007 0.1872 0.6324
Re-calibration 0.1663 0.1615 0.8345 0.1889 0.1733 0.7863 0.2015 0.1873 0.6324
MC Dropout (Opt. Rate) 0.2046 0.3049 0.7629 0.1970 0.2145 0.7474 0.2525 0.3296 0.4981
Dist. Distillation 0.1591 0.1647 0.8365 0.1812 0.1802 0.7840 0.1969 0.1881 0.6374

Human (Nie et al., 2020b) 0.0421 0.0373 0.97 0.0614 0.0411 0.94 0.0695 0.0381 0.86

Table 3: Distribution estimation performances on ChaosNLI. ↓ indicates smaller value is better. ↑ indicates larger
value is better. For each column, the best values are in bold and the second best values are underlined.

Model UNLI PK2019

r↑ ρ↑ JSD↓ KL↓ Acc.↑

Baseline (Mean) 0.5486 0.6421 0.2858 0.6725 0.6445
MC Dropout 0.5585 0.6281 0.2699 0.5089 0.6273
Re-Calibration (S) 0.6344 0.6288 0.2469 0.2926 0.6445
Re-Calibration (M) 0.6577 0.6641 0.2581 0.2926 0.6445

Train on UNLI 0.6762 0.6806 - - -

Table 4: Generalization performances on UNLI (Chen
et al., 2020) and PK2019 (Pavlick and Kwiatkowski,
2019). The bracket on the right of Re-Calibration de-
notes the data for Ddev

s . S=SNLI, M=MNLI.

Re-Calibration Data ChaosNLI-α ChaosNLI-M

JSD↓ KL↓ JSD↓ KL↓∣∣Ddev
s

∣∣ = 100 0.1663 0.1615 0.2015 0.1873∣∣Ddev
s

∣∣ = 10 0.1570 0.1973 0.1962 0.1940

No soft label 0.1738 0.1630 0.2347 0.3704

Table 5: Re-Calibration results with different Ddev
s .

5.3 Implementation Details

All the models in this work are built on RoBERTa-
Large (Liu et al., 2019). We use the accuracy on the
development set (Ddev) for model selection. We
run each model with 10 seeds and report the mean.
Additionally, for the baseline experiments, we also
report the best performance over 10 different runs.
All models are trained using the default dropout
rate (0.1) for RoBERTa-Large models. Hyperpa-
rameter details are in the Appendix B.

6 Results

The performances of different distribution estima-
tion methods are shown in Table 3. The first group
(row 2-5) presents the results that do not make use
of the soft-labeled data Ddev

s , while the second
group (row 6-8) uses Ddev

s . Table 4 shows the per-
formance of distribution estimation methods on the
out-of-domain test set and the performance of pre-

1 2 5 10 20
0.5

0.6

0.7

0.8
KL

Deep Ensemble
MC Dropout

Figure 1: KL divergence of MC Dropout and Deep En-
semble with different numbers of model samples.

dicting individual graded plausibility judgments.
In what follows, we explain the main findings.

MC Dropout is the most preferable method
without additional soft-labeled data. The first
thing we can observe from the first group (row
2-5) in Table 3 is that both MC Dropout and the
Deep Ensemble outperform baselines on all the
metrics. More importantly, MC Dropout substan-
tially outperforms Deep Ensemble in all KL and
JSD columns, with a slight drop on Accuracy. No-
tice that the MC Dropout results reported in this
group are obtained by using the default dropout
rate of RoBERTa-Large models (0.1), without tun-
ing on any additional data. The advantage of MC
Dropout over Deep Ensemble is different from pre-
vious works (Lakshminarayanan et al., 2017), and
we suspect that this is attributed to the fine-tuning
regime of BERT-based models, causing the mod-
els in the ensemble to be less diverse. Note that
compared to Deep Ensemble, MC dropout does not
require training multiple models.

Further improvement can be obtained by us-
ing soft-labeled data, but still below estimated
human upper-bound.11 From the second group
(row 6-8) of Table 3, we can see further improve-

11We refer the readers to Nie et al. (2020b) for details about
the estimation of human upper-bound performance.
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ment over the Bayesian methods by using addi-
tional 100 soft-labeled data Ddev

s . For example,
on ChaosNLI-α, Re-Calibration achieves 0.1615
KL (MC Dropout get 0.5045) and 0.1663 JSD
(MC Dropout 0.1882). We also include an upper-
bound Re-Calibration result by directly applying
this method on the test set (> 1000 examples), but
get very close performance to the result with only
100 labels, showing that Re-Calibration is label-
efficient. With an additional set of soft-labeled data
Ddev
s , we can also tune the optimal dropout rate

of MC Dropout.12 The results are shown in the
table with name MC Dropout (Opt. Rate). The
JSD and KL performance after tuning are substan-
tially higher than the original MC Dropout, how-
ever, there is also a substantial decrease on the
overall accuracy, and overall this method does not
outperform Re-Calibration. Additionally, Distri-
bution Distillation13 only gives slightly better JSD
than Re-Calibration, with additional computational
cost of retraining the model on the whole relabeled
training set, indicating that directly applying Re-
Calibration is more efficient. Lastly, the best results
here are still below estimated human upper-bound,
leaving huge room for improvements.

In-domain improvements hold on the out-of-
domain set. Table 4 shows the direct general-
ization results on PK2019 of the models trained
on SNLI and MNLI. All the improvements on the
in-domain test sets, including MC Dropout over
the baseline and the Re-calibration over the MC
Dropout, still hold on the out-of-domain examples
in the PK2019 test set. Although the out-of-domain
scores are generally lower than the in-domain
scores in Table 3, MC Dropout and Re-Calibration
can still bring substantial improvements over the
baselines without any PK2019 training data.

Correlation exists between opinion distribu-
tion and graded individual judgement. As ex-
plained in Sec. 2.3 and 5.1, the distribution of hu-
man opinions on NLI examples is different from
the individual graded plausibility judgement. In
Table 4, we compare the entailment probability
output by the distribution estimation method with
the graded plausibility scores in UNLI. Although
MC dropout and Re-Calibration method under-

12In this experiment, the tuning is done by a linear search
through 0.0 to 1.0 with step size 0.05. For ChaosNLI-α,
the searched optimal dropout rate is 0.25, and the value for
ChaosNLI-S and ChaosNLI-M is 0.25 and 0.3 respectively.

13We use Re-Calibration as its teacher method.

perform the baseline on Spearman correlation, Re-
Calibration can still greatly improve the Pearson
correlation r. More importantly, our best distribu-
tion estimation method without using any UNLI
data is noticeably comparable to the reported num-
bers in UNLI (Chen et al., 2020) using a fine-tuned
model on in-domain UNLI data. This hints at a cer-
tain correlation between opinion distributions and
graded individual judgements, consistent with our
intuition regarding the interpretation of the labels.

7 Ablation & Analysis

7.1 Ablations for Re-Calibration

In the previous section, we showed the effective-
ness of Re-Calibration in predicting human opin-
ion distribution by explicitly utilizing extra soft-
labeled data Ddev

s . To get a better sense of what
contributes to the performance, we make two abla-
tions on Ddev

s : (1) reducing the size of Ddev
s from

100 to 10; (2) using only the majority class as hard
labels in Ddev

s rather than the whole label distribu-
tion as soft labels for Re-Calibration. Table 5 shows
the results.14 We can observe that with only 10 ex-
amples, Re-Calibration can already achieve good
performance, with slightly worse KL but slightly
better JSD.15 However, using only the hard labels
gives significantly worse scores than using the soft
labels on ChaosNLI-M, indicating the necessity of
extra annotations in human distribution modeling.

7.2 Sample Sizes in Bayesian Method

In both MC Dropout and Deep Ensemble meth-
ods, the distribution is approximated by sampling.
To understand how the number of samples will in-
fluence the results, we present the result for both
methods with different numbers of samples (k) on
ChaosNLI-α in Figure 1. We can see that while a
larger number of samples will lead to better distri-
bution estimation results on KL, the gain is gradu-
ally diminished (even with the log-scale x-axis in
Figure 1). Similar trends can also be seen on JSD
and Accuracy and the figures are in the Appendix D.
Considering practical constraints on inference time
and computational budget that prohibit a very large
number of samples, in our experiments, numbers
around 10 is a sweet point between good perfor-
mance and an acceptable computational budget.

14See Appendix C for full results including ChaosNLI-S.
15The diverse trend is because that the re-calibration is

conducted only using the KL metric, but the temperature with
the best KL metric does not lead to the best JSD.
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Premise Professor Rogers began her career by clerking for The
Honorable Thomas D. Lambros of the United States
District Court for the Northern District of Ohio.

Hypothesis Her career benefited from being a clerk to Thomas.

Prediction (Entailment / Neutral / Contradiction)

Human Distribution 0.33 / 0.66 / 0.01
MC Dropout 0.1617 / 0.8362 / 0.0021

Re-Calibration 0.3063 / 0.5902 / 0.1035

Table 6: An example of prediction distribution and hu-
man ground truth in MNLI.

7.3 Distribution Prediction Example

Table 6 shows an example from MNLI with the
prediction distribution from both MC Dropout and
Re-Calibration. We can see that one-third of hu-
mans believe the label should be entailment and
two-third as neutral. It is commonsense that clerk-
ing for an honorable District Court can be a really
rewarding experience, though the premise does not
explicitly say so. The MC Dropout method un-
derestimates such a factor and gives more than
80% for the neutral label. Notably, although Re-
Calibration method predicts a smoother distribution
that resembles human distribution more, it ends up
erroneously increasing the probability for the inex-
plicable contradiction label. Such observation that
MC Dropout tends to overlook the disagreement
and Re-Calibration can sometimes produce smooth
distribution but with erroneously high probabilities
is common and should be taken into consideration
before practical deployment. More error-analysis
examples and a more detailed comparison of the
predictions of distribution prediction methods on
the whole-dataset level is in the Appendix F, G.

8 Related Work

Inherent disagreement and ambiguity in NLP an-
notations has a long history (Poesio and Artstein,
2005; Zeman, 2010) involving tasks like coref-
erence resolution (Poesio et al., 2008, 2019; Li
et al., 2020), POS-tagging (Zeman, 2010; Plank
et al., 2014, 2016), semantic frame disambigua-
tion (Dumitrache et al., 2019), humorousness pre-
diction (Simpson et al., 2019), etc. Most previous
works design methods to predict one single gold
label by aggregating the noisy information (Dawid
and Skene, 1979; Hovy et al., 2013; Rodrigues
et al., 2017; Paun et al., 2018; Braylan and Lease,
2020; Fornaciari et al., 2021). On the contrary, fol-
lowing the recent definition in NLI works (Chen
et al., 2020; Pavlick and Kwiatkowski, 2019; Nie
et al., 2020b), we directly try to predict distribution
labels that accurately reflect the opinion of a large

population. Peterson et al. (2019) is most similar
to us in label definition, and studied the advantage
of using distribution labels in image classification.

Uncertainty and calibration have also been stud-
ied in various NLP models, from traditional struc-
tured prediction models (Nguyen and O’Connor,
2015), to seq-to-seq models (Ott et al., 2018; Ku-
mar and Sarawagi, 2019; Xu et al., 2020) and trans-
formers (Desai and Durrett, 2020). Gantt et al.
(2020) suggests a constructive view of NLI model-
ing in which the prediction is explicitly grounded
on annotator identifiers, incorporating the annota-
tor random effects. Zhang and de Marneffe (2021)
propose an ensemble-based framework that can
identify examples with high label disagreement.
Xiao and Wang (2019) shows that explicitly mod-
eling the uncertainty can improve performance,
and Wang et al. (2020) propose a label smooth-
ing method that improves calibration for NMT. In-
stead of aiming for a better uncertainty, our work
uses multiple uncertainty estimation methods for
more accurate distribution prediction. Concur-
rently, Meissner et al. (2021) explores training mod-
els directly on the multiple labels from each anno-
tator in SNLI and MNLI, Zhang et al. (2021a,b)
also leverage distribution labels in the model de-
velopment process and explore training methods
combining the supervision signal of one-hot and
distributional labels. In comparison, our work stud-
ies additional Bayesian estimation methods and
provides a detailed discussion on why and how
modeling distribution labels is beneficial for NLU,
including the motivation, nuances, and evaluation
standardization.

9 Conclusion

We introduce distributed NLI – an extension of NLI
with a new goal of predicting human opinion dis-
tribution. We show that several distribution estima-
tion methods can capture such distributions more
effectively than softmax, but the best results are
still far below the estimated upper-bound. We ana-
lyze the properties and weaknesses of the methods,
highlight the importance of the task, and encour-
age future work on developing better models for
estimating the human opinion distribution.

10 Ethical Considerations

The main target of this paper is to propose a new
extension of the NLI task that focuses on predict-
ing the whole distribution instead of one single
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label. Our new formalization can potentially make
the related application of NLI more reliable in the
practice, as the models trained on our proposed task
will focus more on minority opinions which may be
ignored in the traditional formalization. Nonethe-
less, we are strongly against the use of current NLI
models in any critical applications (e.g. admission,
jury, etc.). While NLP models can use to help hu-
man judgment (and the results should be verified
by a human), their robustness and fairness are still
an unsolved issue, and cannot replace the work of
human experts.
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A Dataset Split Details

The details of dataset split, including the source
of the data and the corresponding size in Ta-
ble 7. The UNLI data can be downloaded at
https://nlp.jhu.edu/unli/. The PK2019
data is at https://github.com/epavlick/

NLI-variation-data. The ChaosNLI data is at
https://github.com/easonnie/ChaosNLI.

B Hyperparameter Details

All the models in this work are built on RoBERTa-
Large (Liu et al., 2019). For both NLI and αNLI
tasks, we fine-tune our model with peak learning
rate 5e-6, warm-up ratio 0.1 and linear learning
rate decay. We use a batch size of 32. We train
the NLI model for 2 epochs, and the αNLI model
for 3 epochs. We always use the accuracy on the
development set (Ddev) for model selection. All
our experiments are conducted on a single server
with 4 GTX 1080Ti GPUs.

C Full Re-Calibration Ablation

The full results of Re-Calibration ablations is
shown in Table 8. We can see on all three subsets
of ChaosNLI, Re-Calibration always achieves good
performance even with as few as 10 additional dis-
tribution labels; and using 100 distribution labels
always significantly outperforms using 100 hard
labels without any distribution information.

D The Effect of Sample Size

Figure 2 shows model performances on all three
metrics (JSD, KL and Accuracy) with different
sample sizes. We can observe similar trends on the
KL metric as discussed in the main paper. While
a larger number of samples usually leads to better
performance, the gain is gradually diminished.

E Additional Motivation and Positioning
of Distributed NLI

E.1 Potential Applications of Distributed NLI
In order for NLU models to aid humans in decision-
making, it is important for NLI models to output a
valid distribution and to capture the opinions of the
minority sub-populations. We include two example
inputs in such situations in Table 9.

E.2 Analysis of Annotation Quality
We manually examined the label correctness of the
100 examples in the Ddev

s split of ChaosNLI-M.
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Experiments Train Dtrain Dev Ddev Soft Dev Ddev
s Test Dtest

s

ChaosNLI-α αNLItrain (169654) αNLITest (3059) αNLIdev (100) ChaosNLI-α- Ddev
s (1432)

ChaosNLI-S SNLItrain + MNLItrain (942854) SNLITest (10000) SNLIdev (100) ChaosNLI-S- Ddev
s (1414)

ChaosNLI-M SNLItrain + MNLItrain (942854) MNLIdev
mismatch (10000) MNLIdev

match (100) ChaosNLI-M- Ddev
s (1499)

UNLI - - - UNLI (2998)
PK2019 - - - PK2019 (297)

Table 7: Data sources for each split. The corresponding size of each split is shown in the bracket after the source.

ChaosNLI-α ChaosNLI-S ChaosNLI-M

JSD↓ KL↓ JSD↓ KL↓ JSD↓ KL↓
Ddev

s = 100 0.1663 0.1615 0.1889 0.1733 0.2015 0.1873
Ddev

s = 10 0.1570 0.1973 0.1744 0.1977 0.1962 0.1940
No soft label 0.1738 0.1630 0.2008 0.3667 0.2347 0.3704

Table 8: Re-calibration performances with different types of labels. ↓ indicates smaller value is better. ↑ indicates
larger value is better. For each column, the best values are in bold.

Premise Hypothesis

Case Description: Some dark night a policeman
walks down a street, apparently deserted; but sud-
denly he hears a burglar alarm, looks across the street,
and sees a jewelry store with a broken window. Then
a gentleman wearing a mask comes crawling out
through the broken window, carrying a bag which
turns out to be full of expensive jewelry.16

The gentleman is dis-
honest and guilty for
stealing.

The Off Fossil Fuels for a Better Future Act lays out
that by 2035: (1) 100% of electricity must be gener-
ated from clean energy resources, (2) 100% of vehi-
cle sales from manufacturers must be zero-emission
vehicles, and (3) 100% of train rail lines and train
engines must be electrified.

Passing the bill means
embracing clean en-
ergy sources for the
good of sustainable de-
velopment.

Table 9: Examples where AI-aided human decision
making can be formulated as an NLI problem.

Due to the careful quality control over label col-
lection, only a very limited set of the labels are
incorrect. Out of the 100 examples in the exam-
ined subset, only 4 examples contain more than
10 error annotations and no example contain more
than 16 error annotations. In Table 10, we show
two examples of incorrect label annotations in the
Ddev
s split of ChaosNLI-M. While both examples

do contain a certain level of semantic ambiguities,
with careful reasoning, we do not find sufficient ev-
idence to make the "contradiction" or "entailment"
judgement in those cases respectively, hence we
view these labels as error annotations.

We also verified these incorrect labels will not
substantially impact the results in this paper. For
these 100 examples, we removed all the incorrect
labels with more than 5 annotations and created
a corrected label set. The performance differ-
ence between the original annotations and the cor-
rected annotations can be seen in Table 12. We
can see only marginal performance difference is
shown for the Baseline, MC Dropout and Deep

Ensemble variants. The performance difference for
the Re-Calibration variant is slighter larger due to
the fact that these labels are also directly used in
the temperature calibration process, but it also only
leads to a relatively small difference around 0.01.
Furthermore, using either the original or the cor-
rected labels, the order of more effective methods
(Re-Calibration > MC Dropout > Deep Ensemble
> Baseline) always holds.

E.3 Predicting Label Distribution from
Deterministic Labels

Another question around the feasibility of the Dis-
tributed NLI is whether model can learn label dis-
tributions if only deterministic labels are possible.
Here we prove it is definitely possible if the deter-
ministic labels are annotated by individual annota-
tors.17 Specifically, if we assume all the training
inputs x are randomly sampled from a dataset D,
and each corresponding label y is provided from
a random annotator a from a set of annotators A.
Then, on the training set, the model is trained to
minimize E

x∈D
E
a∈A

KL (ya(x)‖P (x)). Specifically,

assuming the model parameter is θ, the optimiza-

17Annotations from datasets like MNLI and SNLI can still
be roughly viewed as labels from individual annotators with
an additional voting-based filtering methods that filters out
noisy labels using voting among 5 annotators.
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Figure 2: Performances of MC Dropout and Deep Ensemble with different numbers of model samples.
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Figure 3: Entropy quantile curve on ChaosNLI. Each point in this figure represents model’s prediction on one
example. y-axis is the entropy value, and x-axis is the prediction’s index in a sequence of examples sorted in the
increasing-entropy order.

tion target is:

argmin
θ

E
x∈D

E
a∈A

KL (ya(x)‖Pθ(x))

= argmin
θ

E
x∈D

E
a∈A

∑
j

ya(x)j
log ya(x)j
logPθ(x)j

=argmin
θ

E
x∈D

E
a∈A

∑
j

−ya(x)j logPθ(x)j

=argmin
θ

E
x∈D

∑
j

−( E
a∈A

ya(x))j logPθ(x)j

=argmin
θ

E
x∈D

∑
j

( E
a∈A

ya(x))j
log(Ea∈A ya(x))j

logPθ(x)j

=argmin
θ

E
x∈D

KL

(
E
a∈A

ya(x)‖Pθ(x)
)

, where j is each dimension of the output label.
Hence, even with deterministic labels, the model
still achieves the best performance if and only if
when given an example x, Pθ(x) = E

a∈A
ya(x),

where the model correctly predicts the distribution
of all labels.

F More Analysis on Distribution
Prediction Examples

In this section, we provided more prediction exam-
ples and a more comprehensive analysis in addition
to the examples shown in the Ablation & Analysis
section in the main paper. Specifically, we focus on
analyzing what are the worst-prediction examples
produced by current models.

17The example is from Jaynes (2003).

For each model variant, we checked the per-
formance on the Ddev

s split on ChaosNLI-M and
focused on the examples with the largest KL-
divergence (worst-prediction examples). For the
baseline, we again noticed the trend that models
being over-confident on examples with substantial
ambiguity. We show two examples in Table 11.
In both of these cases, the model fails to capture
the label distribution caused by subtle phrase rela-
tionships or under-specified meaning depending on
the context, etc. As shown in the results section in
the main paper, Such over-confidence can be par-
tially alleviated by the Bayesian uncertainty estima-
tion methods (e.g., MC-Dropout and Deep Ensem-
ble) and by the Re-calibration methods. However,
most of the top 10 worst-prediction examples of
the baseline variant still remain in the top 10 worst-
prediction list of the Bayesian and Re-calibration
approaches. This observation is possibly due to the
limited improvement of Bayesian approaches and
the incapability of Re-calibration methods to cor-
rect totally wrong predictions, hence showing cur-
rent models’ inherent incapability to capture these
distributions. We also encourage future work to
explore the connection between the model’s incapa-
bility to capture distribution labels and the model’s
tendency to focus on artifact features.

G Prediction Difference in Bayesian
Inference and Re-Calibration

We show that both Bayesian Inference and Re-
Calibration can achieve better JSD and KL scores
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Premise you want to punch the button and go
Hypothesis You don’t want to push the button lightly, but rather punch it hard.

Prediction (Entailment / Neutral / Contradiction)

Original Annotation 0.48 / 0.45 / 0.07
Incorrect Labels Contradiction

Reasons for Incorrect Labels There is no sufficient evidence in the premise indicating "you also want to push the button lightly".

Premise The tomb guardian will unlock the gate to the tunnel and give you a candle to explore the small circular
catacomb, but for what little you can see, it is hardly worth the effort.

Hypothesis The tomb garden can give you a thorough tour of the catacombs.

Prediction (Entailment / Neutral / Contradiction)

Original Annotation 0.10 / 0.14 / 0.76
Incorrect Labels Entailment

Reasons for Incorrect Labels The premise mentions "tomb guardian" instead of "tomb garden", so it should not be entailment.

Table 10: Examples of wrong annotations on the Ddev
s split of ChaosNLI-M.

Premise They said that (1) agencies need to be able to design their procedures to fit their particular circumstances (e.g.
Hypothesis The authors of the recently introduced bill stated each agency would be required to match their operational

methods to their particular situations.

Prediction (Entailment / Neutral / Contradiction)

Human Distribution 0.58 / 0.30 / 0.12
Baseline 0.002 / 0.997 / 0.001

Reasons for Ambiguity Based on different understanding of the phrases "need to be able to" in the premise, this sentence pair can have
different labels.

Premise What changed?
Hypothesis Nothing changed.

Prediction (Entailment / Neutral / Contradiction)

Human Distribution 0.04 / 0.76 / 0.20
Baseline 0.001 / 0.007 / 0.992

Reasons for Ambiguity In different contexts, the question in the premise can imply different meanings.

Table 11: Examples of prediction distribution of the baseline model and human ground truth in MNLI.

Model JSD↓ KL↓

Original Corrected Original Corrected

Baseline (Mean) 0.3053 0.3039 0.8383 0.8343
MC Dropout 0.2649 0.2653 0.5851 0.5839
Deep Ensemble 0.2956 0.2941 0.7775 0.7709
Re-Calibration 0.1983 0.2079 0.1859 0.1983

Table 12: Performances difference on the Ddev
s split of

ChaosNLI-M.

in the main paper. In order to investigate the
difference between the predictions produced by
the two methods, we conduct the following anal-
ysis. Firstly, for each example in the test set, we
calculate the entropy for the models outputs as
H (p) = −

∑
i∈{e,n,c} pi log(pi) where pi is the

probability for entailment, neutral, or contradic-
tion. We also calculate the entropy for human
using the annotations in ChaosNLI. We then sort
the entropy and plot their entropy values for each
model. The plot is shown in Fig. 3.18 We can

18The design of the figure is similar to the Q–Q (quantile-
quantile) plot (Gnanadesikan and Wilk, 1968), a visualization
method to compare two probability distributions by plotting
their quantiles against each other. We modify the plot to

see a large gap between the blue line represent-
ing human distribution and the orange dashed line
representing the baseline, consistent with previous
quantitative findings. While Bayesian inference
methods can slightly reduce this gap, there is still
large room for improvements. Moreover, the dis-
tribution predicted by the Re-Calibration method
is noticeably different from the ones given by the
MC Dropout, Ensemble, and the baseline method,
while the latter three are very similar to each other.
Finally, it is worth noting that the line for the Re-
Calibration method is above the human line while
the other three methods are below the human line.
This suggests that Re-Calibration method tends
to over-predict the disagreement among humans
whereas the Bayesian method and the baseline fail
to capture some inherent disagreements.

give an intuitive comparison for all the distribution estimation
methods in our study.
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