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Abstract

Most research on question answering focuses
on the pre-deployment stage; i.e., building an
accurate model for deployment. In this paper,
we ask the question: Can we improve QA sys-
tems further post-deployment based on user in-
teractions? We focus on two kinds of improve-
ments: 1) improving the QA system’s perfor-
mance itself, and 2) providing the model with
the ability to explain the correctness or incor-
rectness of an answer. We collect a retrieval-
based QA dataset, FEEDBACKQA, which con-
tains interactive feedback from users. We col-
lect this dataset by deploying a base QA sys-
tem to crowdworkers who then engage with
the system and provide feedback on the qual-
ity of its answers. The feedback contains both
structured ratings and unstructured natural lan-
guage explanations. We train a neural model
with this feedback data that can generate ex-
planations and re-score answer candidates. We
show that feedback data not only improves the
accuracy of the deployed QA system but also
other stronger non-deployed systems. The gen-
erated explanations also help users make in-
formed decisions about the correctness of an-
swers.1

1 Introduction

Much of the recent excitement in question answer-
ing (QA) is in building high-performing models
with carefully curated training datasets. Datasets
like SQuAD (Rajpurkar et al., 2016), NaturalQues-
tions (Kwiatkowski et al., 2019) and CoQA (Reddy
et al., 2019) have enabled rapid progress in this area.
Most existing work focuses on the pre-deployment
stage; i.e., training the best QA model before it is
released to users. However, this stage is only one
stage in the potential lifecycle of a QA system.

In particular, an untapped resource is the large
amounts of user interaction data produced after the
initial deployment of the system. Gathering this

1Project page: https://mcgill-nlp.github.io/feedbackqa/

data should in practice be relatively cheap, since
users genuinely engage with QA systems (such as
Google) for information needs and may provide
feedback to improve their results.2

Exploiting this kind of user interaction data
presents new research challenges, since they typ-
ically consist of a variety of weak signals. For
example, user clicks could indicate answer useful-
ness (Joachims, 2002), users could give structured
feedback in the form of ratings to indicate the use-
fulness (Stiennon et al., 2020), or they could give
unstructured feedback in natural language expla-
nations on why an answer is correct or incorrect.
User clicks have been widely studied in the field
of information retrieval (Joachims, 2002). Here we
study the usefulness of interactive feedback in the
form of ratings and natural language explanations.

Whilst there are different variants of QA tasks,
this paper focuses primarily on retrieval-based QA
(RQA; Chen et al. 2017; Lee et al. 2019). Given
a question and a set of candidate answer passages,
a model is trained to rank the correct answer pas-
sage the highest. In practice, when such a system
is deployed, an user may engage with the system
and provide feedback about the quality of the an-
swers. Such feedback is called interactive feedback.
Due to the lack of a dataset containing interactive
feedback for RQA, we create FEEDBACKQA.

FEEDBACKQA is a large-scale English QA
dataset containing interactive feedback in two
forms: user ratings (structured) and natural lan-
guage explanations (unstructured) about the cor-
rectness of an answer. Figure 1 shows an example
from FEEDBACKQA. The dataset construction has
two stages: We first train a RQA model on the
questions and passages, then deploy it on a crowd-
sourcing platform. Next, crowdworkers engage
with this system and provide interactive feedback.
To make our dataset practically useful, we focus on

2Google and Bing collect such data through ”Feedback”
button located at the bottom of search results.
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Figure 1: Users interact with the deployed QA model and give feedback. Feedback contains a rating (bad, good,
could be improved, excellent) and a natural language explanation.

question answering on public health agencies for
the Covid-19 pandemic. The base model for FEED-
BACKQA is built on 28k questions and 3k passages
from various agencies. We collect 9k interactive
feedback data samples for the base model.

We investigate the usefulness of the feedback for
improving the RQA system in terms of two aspects:
answer accuracy and explainability. Specifically,
we are motivated by two questions: 1) Can we
improve the answer accuracy of RQA models by
learning from the interactive feedback? and 2) Can
we learn to generate explanations that help humans
to discern correct and incorrect answers?

To address these questions, we use feedback data
to train models that rerank the original answers
as well as provide an explanation for the answers.
Our experiments show that this approach not only
improves the accuracy of the base QA model for
which feedback is collected but also other strong
models for which feedback data is not collected.
Moreover, we conduct human evaluations to verify
the usefulness of explanations and find that the
generated natural language explanations help users
make informed and accurate decisions on accepting
or rejecting answer candidates.

Our contributions are as follows:

1. We create the first retrieval-based QA dataset
containing interactive feedback.

2. We demonstrate a simple method of using the
feedback data to increase the accuracy and
explainability of RQA systems.

3. We show that the feedback data not only im-
prove the deployed model but also a stronger
non-deployed model.

2 FEEDBACKQA Dataset

Recently, there have been efforts to collect feed-
back data in the form of explanations for natural
language understanding tasks (Camburu et al. 2018;
Rajani et al. 2019, inter alia). These contain ex-
planations only for ground-truth predictions for a
given input sampled from the training data with-
out any user-system interaction. Instead, we col-
lect user feedback after deploying a RQA system
thereby collecting feedback for both correct and
incorrect predictions. Table 1 presents a compre-
hensive comparison of FEEDBACKQA and exist-
ing natural language understanding (NLU) datasets
with explanation data.

2.1 Dataset collection

In order to collect post-deployment feedback as in
a real-world setting, we divide the data collection
into two stages: pre-deployment (of a RQA model)
and post-deployment.

Stage 1: Pre-deployment of a QA system We
scrape Covid-19-related content from the official
websites of WHO, US Government, UK Govern-
ment, Canadian government,3 and Australian gov-
ernment. We extract the questions and answer pas-
sages in the FAQ section. To scale up the dataset,
we additionally clean the scraped pages and ex-
tract additional passages for which we curate cor-
responding questions using crowdsourcing as if
users were asking questions. We present details on
this annotation process in Appendix A. We use this
dataset to train a base RQA model for each source
separately and deploy them. For the base model,
we use a BERT-based dense retriever (Karpukhin

3We focus on the Province of Quebec
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Datasets Task Feedback Interactive Feedback for
Type Feedback incorrect predictions

e-SNLI (Camburu et al., 2018) NLI Free-form 7 7

CoS-E (Rajani et al., 2019) Commonsense QA Free-form 7 7

LIAR-PLUS (Alhindi et al., 2018) Fact checking Free-form 7 7

QED (Lamm et al., 2021) Reading comprehension Structured 7 7

NExT (Wang et al., 2019) Text classification Structured 7 7

FEEDBACKQA Retrieval-based QA Structured 3 3

& Free-form

Table 1: Comparison of FEEDBACKQA with existing NLU datasets containing feedback in the form of structured
representations (according to a schema) or natural language explanations (free-form).

#Passages #Questions #Feedback

Australia 584 1783 2264
Canada 587 8844 /
UK 956 2874 3668
US 598 13533 2628
WHO 226 688 874

Overall 2951 27722 9434

Table 2: Number of samples in different do-
mains of FEEDBACKQA. We split the data into
train/validation/test sets in the ratio of 0.7 : 0.1 : 0.2.

et al., 2020) combined with Poly-encoder (Miller
et al., 2017) (more details are in Section 3.1).

Stage 2: Post-deployment of a QA system
Since each domain has several hundred passages
(Table 2), it is hard for a crowdworker to ask ques-
tions that cover a range of topics in each source.
We thus collect questions for individual passages
beforehand similar to Stage 1 and use these as in-
teractive questions. The question and top-2 predic-
tions of the model are shown to the user and they
give feedback for each question-answer pair. The
collected feedback consists of a rating, selected
from excellent, good, could be improved, bad, and
a natural language explanation elaborating on the
strengths and/or weaknesses of the answer. For
each QA pair, we elicit feedback from three differ-
ent workers. We adopted additional strategies to
ensure the quality of the feedback data, the details
of which are available in Appendix B. The resulting
dataset statistics are shown in Table 2. In order to
test whether interactive feedback also helps in out-
of-distribution settings, we did not collect feedback
for one of the domains (Canada).
2.2 FEEDBACKQA analysis

Table 3 shows examples of the feedback data, in-
cluding both ratings and explanations. We find
that explanations typically contain review-style
text indicating the quality of the answer, or state-

ments summarizing which parts are correct and
why. Therefore, we analyze a sample of explana-
tions using the following schema:
Review Several explanations start with a generic
review such as This directly answers the question
or It is irrelevant to the question. Sometimes users
also highlight aspects of the answer that are good
or can be improved. For instance, ... could improve
grammatically ... suggests that the answer could be
improved in terms of writing.
Summary of useful content refers to the part of
answer that actually answers the question;
Summary of irrelevant content points to the in-
formation that is not useful for the answer, such as
off-topic or addressing incorrect aspects;
Summary of missing content points the informa-
tion the answer fails to cover.

We randomly sample 100 explanations and an-
notate them. Figure 2 shows the distribution of
the types present in explanations for each rating
label. All explanations usually contain some re-
view type information. Whereas explanations for
answers labeled as excellent or acceptable predom-
inantly indicate the parts of the answer that are
useful. The explanations for answers that can be
improved indicate parts that are useful, wrong or
missing. Whereas bad answers often receive ex-
planations that highlight parts that are incorrect or
missing as expected.

3 Experimental Setup

FEEDBACKQA contains two types of data. One
is pre-deployment data Dpre = (Q,A+,A), where
Q is a question paired with its gold-standard an-
swer passage A+ from the domain corpus A. The
other is post-deployment feedback data Dfeed =
(Q,A, Y,E), where Q is a question paired with
a candidate answer A ∈ A and corresponding
feedback for the answer. The feedback consists
of a rating Y and an explanation E. We build
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Rating label Explanation

Excellent This answers the question directly. This answer provides information and recommendation on how
people and adolescent can protect themselves when going online during the Covid-19 pandemic.

Acceptable This answer, while adequate, could give more information as this is a sparse answer for a bigger
question of what one can do for elderly people during the pandemic.

Could be improved The answer relates and answers the question, but could improve grammatically and omit the ”yes”
Could be improved The answer is about some of the online risks but not about how to protect against them.
Bad This does not answer the question. This information is about applying visa to work in critical

sector. It does not provide any information on applying for Covid-19 pandemic visa event as
asked in the question.

Table 3: Examples of explanation and its associated rating label. Span color and their types of components:
generic and aspect review ; summary of useful content ; summary of irrelevant content ; summary of missing
content

Figure 2: Distribution of component number in 100 nat-
ural language feedback of different rating labels.

two kinds of models on pre- and post-deployment
data: RQA models on the pre-deployment data that
can retrieve candidate answers for a given ques-
tion, and feedback-enhanced RQA models on the
post-deployment data that can rate an answer for
a given question as well as generate an explana-
tion for the answer. We use this rating to rerank
the answer candidates. Therefore, in our setting,
a feedback-enhanced RQA model is essentially
a reranker. Keeping in mind the fact that real-
world QA systems evolve quickly, we decouple the
reranker model from the RQA model by using sep-
arate parameters for the reranker independent of
the RQA model. We train this reranker on the feed-
back data. This allows for the reranker to be reused
across many RQA models. We leave other ways to
enhance RQA models with feedback data for future
work. Below, we describe the architectures for the
RQA models and feedback-based rerankers.

3.1 RQA Models (Pre-deployment)

We use dense passage retrievers (Karpukhin et al.,
2020) to build the RQA models, where the sim-
ilarity between the question embedding and the
passage embedding is used to rank candidates. We
use two variants of pre-trained models to obtain the

embeddings: 1) BERT (Devlin et al., 2019), a pre-
trained Transformer encoder; and 2) BART (Lewis
et al., 2020), a pretrained Transformer encoder-
decoder. For BERT, we use average pooling of
token representations as the embedding, whereas
for BART we use the decoder’s final state. While
Karpukhin et al. use question-agnostic passage rep-
resentations, we use a poly-encoder (Humeau et al.,
2020) to build question-sensitive document repre-
sentations. In a poly-encoder, each passage is rep-
resented as multiple encodings, first independent of
the question, but then a simple attention between
the question and passage embeddings is used to
compute question-sensitive passage representation,
which is later used to compute the relevance of the
passage for a given query. Humeau et al. show
that the poly-encoder architecture is superior to
alternatives like the bi-encoder (Karpukhin et al.,
2020) without much sacrifice in computational effi-
ciency.4

Given pre-deployment training data Dpre =
(Q,A+,A), the RQA model parameterized by θ
is trained to maximize the log-likelihood of the
correct answer:

Jθ = logPθ(A
+|Q,A)

Pθ(A
i|Q,A) = exp(S(Q,Ai))∑

A∈A exp(S(Q,A))

(1)

Here S(Q,A) denotes the dot product similarity
between the question and passage embedding. As
it is inefficient to compute the denominator over
all passages during training, we adopt an in-batch
negative sampling technique (Humeau et al., 2020),
merging all of the A+ in the same minibatch into a
set of candidates.

4The performance results of poly-encoder and bi-encoder
for our task are shown in Table 9.
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3.2 Feedback-enhanced RQA models
(Post-deployment)

On the post-deployment dataDfeed = (Q,A, Y,E),
we train a reranker that assigns a rating to an answer
and also generates an explanation. We use BART
parameterized by φ as the base of EXPLAINRATE

because it is ease to adapt it to both explanation
generation and rating classification. The encoder of
the BART model takes as input the concatenation
[Q;SEP;A], and the decoder generates an explana-
tion E; after that, an incremental fully-connected
network predicts the rating Y given the last hidden
states of decoder. The rating is used to score QA
pairs, whereas the generated explanation is passed
to humans to make an informed decision of ac-
cepting the answer. We also implement a variant
where the model directly produces a rating without
generating an explanation. Since each candidate
answer is annotated by different annotators, an an-
swer could have multiple rating labels. To account
for this, we minimize the KL-divergence between
the the target label distribution and the predicted
distribution:

Jφ′ = −DKL(P (Y |Q,A)||Pφ(Y |Q,A)),

P (Yi = y|Qi, Ai) =
Cy,i∑
y Cy,i

(2)

where Cy,i is the count of the rating label y for the
i-th feedback.

In order to enhance an RQA model with the
reranker, we first select the top-k candidates accord-
ing to the RQA model (in practice we set k = 5).
The reranker then takes as input the concatenation
of the question and each candidate, then generates
a rating for each answer. We simply sum up the
scores from the RQA model and the reranker model.
In practice, we found that using the reranker proba-
bility of excellent worked better than normalizing
the expectation of the rating score (from score 0
for label bad to 3 for excellent). So, we score the
candidate answers as follows:

S(A|A, Q) =Pθ(A = A+|A, Q)

+ Pφ(y = excellent|A,Q)
(3)

4 Experiments and Results

We organize the experiments based on the follow-
ing research questions:

• RQ1: Does feedback data improve the base RQA
model accuracy?

• RQ2: Does feedback data improve the accuracy
of RQA models that are stronger than the base
model?
• RQ3: Do explanations aid humans in discerning

between correct and incorrect answers?

We answer these questions by comparing the RQA
models with the feedback-enhanced RQA models.
The implementation and hyper-parameter details
of each model are included in Appendix D.

4.1 RQ1: Does feedback data improve the
base RQA model?

Model details. Our base model is a BERT RQA
model which we deployed to collect feedback data
to train the other models (Section 3.1).

For the feedback-enhanced RQA model, we use
the BART-based reranker described in Section 3.2.
We train one single model for all domains. We
call this FEEDBACKRERANKER. We compare two
variants of FEEDBACKRERANKER on validation
set, one of which directly predicts the rating while
the other first generates an explanation and then
the rating. And we found the first one performs
slightly better (Appendix Table 10). We conjecture
that learning an explanation-based rating model
from the limited feedback data is a harder problem
than directly learning a rating model. Therefore,
for this experiment, we only use the rating predic-
tion model (but note that explanation-based rating
model is already superior to the base RQA model).

To eliminate the confounding factor of having
a larger number of model parameters introduced
by the reranker, we train another reranker model
on the pre-deployment data VANILLARERANKER

and compare against the reranker trained on the
feedback data. To convert the pre-deployment data
into the reranker’s expected format, we consider a
correct answer’s rating label to be excellent, and
the randomly sampled answer candidates5 to be
bad. Note that this dataset is much larger than the
feedback data.

Finally, we combine the training data of FEED-
BACKRERANKER and VANILLARERANKER and
train the third reranker called COMBINEDR-
ERANKER.

To measure retrieval accuracy, we adopt Preci-
sion@1 (P@1) as our main metric.

5We also tried using the top predictions from the base
QA model, but found this approch leads to slightly worse
performance than negative sampling.
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Methods Australia US Canada UK WHO All Beats

BERT RQA model 47.25 65.30 81.49 48.50 81.19 64.75 None
+ FEEDBACKRERANKER 55.13 65.97 83.74 51.07 77.05 66.59
+ VANILLARERANKER 54.29 64.80 83.20 49.63 77.96 65.98
+ COMBINEDRERANKER 55.63 67.54 84.99 53.21 78.51 67.97

Table 4: Accuracy of the BERT RQA model, i,.e., the deployed model, and its enhanced variants on the test set.
FEEDBACKRERANKER is trained on the post-deployment feedback data, VANILLARERANKER is trained on the
pre-deployment data and COMBINEDRERANKER is trained on both. The column Beats indicates that the model
significantly outperforms (p-value < 0.05) the competing methods. All of the results are averaged across 3 runs.

Methods Australia US Canada UK WHO All Beats

BART RQA model 52.88 68.47 82.49 51.29 81.97 67.42 None
+ FEEDBACKRERANKER 54.78 70.45 84.38 53.47 82.51 69.12
+ VANILLARERANKER 53.09 70.40 82.76 53.08 82.33 68.33
+ COMBINEDRERANKER 55.27 71.45 85.35 54.83 83.61 70.10

Table 5: Accuracy of the BART RQA model and its enhanced variants on the test set. Results are averaged across
3 runs.

Results. As shown in Table 4, the feedback-
enhanced RQA model is significantly6 better than
the base RQA model by 1.84 points. Although
VANILLARERANKER improves upon the base
model, it is weaker than FEEDBACKRERANKER,
and COMBINEDRERANKER is a much stronger
model than any of the models, indicating that learn-
ing signals presented in feedback data and the pre-
deployment data are complementary to each other.
Moreover, we also see improved performance on
the Canada domain, although feedback data was
not collected for that domain.

From these experiments, we conclude that feed-
back data can improve the accuracy of the base
RQA model, not only for the domains for which
feedback data is available but also for unseen do-
mains (Canada).

4.2 RQ2: Does feedback data improve the
accuracy of RQA models that are
stronger than the base model?

If feedback data were only useful for the base RQA
model, then its usefulness would be questionable,
since the RQA development cycle is continuous
and the base RQA model will eventually be re-
placed with a better model. For example, we find
that BART-based dense retriever is superior than
the BERT RQA model: Table 9 in Appendix E
shows the results on validation set which indicate
that BART RQA model overall performance is
nearly 4 points better than the BERT RQA model.

6We follow Berg-Kirkpatrick et al. (2012) to conduct the
statistical significant test

To answer RQ2, we use the same FEEDBACK-
RERANKER and VANILLARERANKER to rescore
the BART RQA predictions, even though feedback
data is not collected for this model. We observe
that the resulting model outperforms the BART
RQA model in Table 5, indicating that the feed-
back data is still useful. Again, FEEDBACKR-
ERANKER is superior to VANILLARERANKER al-
though the feedback data has fewer samples than
the pre-deployment data, and the COMBINEDR-
ERANKER has the best performance.

These results suggest that the feedback data is
useful not only for the base RQA model but also
other stronger RQA models.

4.3 RQ3: Do explanations aid humans in
discerning between correct and incorrect
answers?

We conduct a human evaluation to investigate
whether explanations are useful from the perspec-
tive of users. Unfortunately, rigorous definitions
and automatic metrics of explainability remain
open research problems. In this work, we simu-
late a real-world scenario, where the user is pre-
sented an answer returned by the system as well as
an explanation for the answer, and they are asked
to determine whether the answer is acceptable or
not. Jacovi and Goldberg (2020) advocate utility
metrics as proxies to measure the usefulness of
explanations instead of directly evaluating an ex-
planation since plausible explanations does not nec-
essarily increase the utility of the resulting system.
Inspired by their findings, we measure if explana-
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Explanation Accuracy Agreement

Blank 69.17 0.31

Human-written 88.33 0.80
BART feedback model 81.67 0.71

BART summarization model 74.17 0.30

Table 6: Human evaluation results of the usefulness of
explanations. Accuracy measures the utility of explana-
tions in selecting the correct rating label for an answer,
whereas agreement measures whether explanations in-
voke same behaviour pattern across users.

tions can: 1) help users to make accurate decisions
when judging an answer (with respect to a ground
truth) and 2) improve the agreement among users
in accepting/rejecting an answer candidate. The
former measures the utility of an explanation and
the latter measures if the explanations invoke the
same behavioral pattern across different users irre-
spective of the utility of the explanation. Note that
agreement and utility are not tightly coupled. For
example, agreement can be higher even if the utility
of an explanation is lower when the explanation
misleads end users to consistently select a wrong
answer (González et al., 2021; Bansal et al., 2021).

We sample 60 feedback samples from the hid-
den split of the feedback dataDfeed = (Q,A, Y,E)
for evaluation purposes.7 We evaluate four experi-
mental setups on these samples which vary in the
type of explanation shown to the end users: 1) no
explanation; 2) human-written explanations; 3) ex-
planations generated by the BART model trained
on the feedback data (Section 3.2); and 4) summary
of the answer candidate generated by a strong fine-
tuned BART-based summarization model.8 The
last setting is inspired from the observation in Sec-
tion 2.2 that a large portion of explanations contain
summary of questions/answers. We investigate if
conventional summary of an answer is as useful
as an explanation. For each of these setups, two
crowdworkers assign a rating label to each answer
candidate indicating the quality of the answer. Each
setup has its own set of workers in order to avoid
information-leakage across setups (this simulates
A/B testing often used by production systems).

We measure the workers’ accuracy (average of
the two workers) in determining the correctness of
an answer with respect to the original annotation

7For simplicity, we merge the answer feedback labels good
and could be improved into one label called partially correct.
The final set of answer labels we used are correct (for original
label excellent), partially correct and incorrect (for original
label bad).

8https://huggingface.co/facebook/bart-large-xsum

Question: What are the restrictions to travelers landing in
the US?

Answer: ... Under current federal regulations, pilots must
report all illnesses and deaths to CDC before arriving to a
US destination. According to CDC disease protocols, if a sick
traveler is considered to be a public health risk, CDC works
with local and state health departments and international
public health agencies to contact passengers and crew exposed
to that sick traveler. Be sure to give the airline your current
contact information when booking your ticket so you can be
notified if you are exposed to a sick traveler on a flight. ...

Generated explanation: This answer is irrelevant to the
question. The question is asking about restrictions on travelers
landing in the US and this answer provides information on
what to do if there is a sick passenger on an international or
domestic flight.

Human explanation: This information does not answer
the question. The question is asking for information on the
restrictions to travelers landing in the US and this answer
contains information on pilots reports on illnesses and deaths
before arriving to a US destinations and airline notification
when passengers are exposed to sick travelers on a flight.

Generated Summary: The Centers for Disease Control and
Prevention (CDC) is working with airlines to help prevent
illness and death on flights.

Question: Should I wear gloves when I go out in public to
prevent Covid-19?

Answer: No, WHO does not recommend the regular use of
gloves by people in the community. The wearing of gloves
may increase risks, since it can lead to self-infection or trans-
mission to others through touching contaminated surfaces
which is not followed by removal of gloves and hand hygiene.
Therefore, in public places such as supermarkets, in addition
to physical distancing...

Generated Explanation: This answer is excellent because it
unequivocally states that gloves are not recommended. There-
fore, it answers the question directly. It goes on to explain why
gloves aren’t recommended. This is a great answer.

Human explanation: The question is answered directly. The
answer states not to wear gloves in public.

Generated Summary: The World Health Organization
(WHO) has issued a guidance on the use of gloves in pub-
lic places.

Question: Can students work in aged care?

Answer:...The Australian Government has announced that
residential aged care facilities should take extra precautions
to keep residents safe from COVID-19. Both individuals and
management need to take responsibility for the health of visi-
tors and staff at facilities to protect our most vulnerable com-
munity members. Aged care facilities will: closely monitor the
health of staff...

Generated Explanation: This answer does not address
whether or not students are allowed to work in aged care.
This answer only provides information on precautions to be
taken by aged care facilities to keep residents safe.

Human Explanation: The information here give explanation
on guideline that aged care facility staffs should put in place
and did not say anything about student working in aged care
facility.

Generated Summary: Residents in aged care facilities
across Australia are being urged to take extra precautions
to prevent the spread of a deadly virus.

Table 7: Examples of different explanation types:
model-generated and human-written explanation and
model-generated summary.
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in FEEDBACKQA, as well as compute the agree-
ment of workers with each other using Spearman
correlation. Table 6 presents the results. All expla-
nation types improve accuracy compared to the the
model with no explanations. This could be because
any explanation forces the worker to think more
about an answer. The human-written explanations
has the highest utility and also leads to the biggest
agreement. Both the human-written explanations
and the explanations generated by the BART feed-
back model have more utility and higher agreement
than the BART summarization model. In fact, the
summarization model leads to lower agreement.

These results indicate that explanations based on
feedback data are useful for end users in discern-
ing correct and incorrect answers, and they also
improve the agreement across users.

Table 7 shows some examples of explanation that
helps the users make more informed and accurate
decision. In the first example, the model-generated
explanation points out the gap between the question
and the answer candidate, though there are a large
number of overlapping keywords. Meanwhile, hu-
man explanations are generally more abstractive
and shorter in nature (e.g., see the second example).

5 Related work

Retrieval-based question answering has been
widely studied, from early work on rule-based sys-
tems (Kwok et al., 2001), to recently proposed
neural-based models (Yang et al., 2019; Karpukhin
et al., 2020). Most existing work focuses on im-
proving the accuracy and efficacy by modification
of a neural architecture (Karpukhin et al., 2020;
Humeau et al., 2020), incorporation of external
knowledge (Ferrucci et al., 2010), and retrieval
strategy (Kratzwald and Feuerriegel, 2018). These
methods focus on the pre-deployment stage of
RQA models.

By contrast, we investigate methods to improve
a RQA model post-deployment with interactive
feedback. The proposed methods are agnostic to
the architecture design and training methods of the
base RQA model.

Learning from user feedback has been a long
standing problem in natural language processing.
Whilst earlier work proposes methods for using im-
plicit feedback—for instance, using click-through
data for document ranking (Joachims, 2002)—
recent work has explored explicit feedback such as
explanations of incorrect responses by chatbots (Li

et al., 2016; Weston, 2016) and correctness labels
in conversational question answering and text clas-
sification (Campos et al., 2020). However, the feed-
back in these studies is automatically generated
using heuristics, whereas our feedback data is col-
lected from human users. Hancock et al. (2019)
collect suggested responses from users to improve
a chatbot, while we investigate the effect of natural
feedback for RQA models.

Explainability and Interpretability has re-
ceived increasing attention in the NLP community
recently. This paper can be aligned to recent ef-
forts in collecting and harnessing explanation data
for language understanding and reasoning tasks,
such as natural language inference (Camburu et al.,
2018; Kumar and Talukdar, 2020), commonsense
question answering (Rajani et al., 2019), document
classification (Srivastava et al., 2017), relation clas-
sification (Murty et al., 2020), reading comprehen-
sion (Lamm et al., 2021), and fact checking (Al-
hindi et al., 2018). The type of feedback in FEED-
BACKQA differs from the existing work in several
aspects: 1) FEEDBACKQA has feedback data for
both positive and negative examples, while most
of other datasets only contains explanations of pos-
itive ones; 2) FEEDBACKQA has both structured
and unstructured feedback, while previous work
mainly focuses on one of them; 3) The feedback
in FEEDBACKQA is collected post-deployment; 4)
While previous work aims to help users interpret
model decisions, we investigate whether feedback-
based explanations increase the utility of the de-
ployed system.

6 Conclusion

In this work, we investigate the usefulness of feed-
back data in retrieval-based question answering.
We collect a new dataset FEEDBACKQA, which
contains interactive feedback in the form of ratings
and natural language explanations. We propose a
method to improve the RQA model with the feed-
back data, training a reranker to select an answer
candidate as well as generate the explanation. We
find that this approach not only increases the accu-
racy of the deployed model but also other stronger
models for which feedback data is not collected.
Moreover, our human evaluation results show that
both human-written and model-generated explana-
tions help users to make informed and accurate
decisions about whether to accept an answer.

933



7 Limitations and Ethical consideration

The training and inference of a reranker with feed-
back data increases the usage of computational
resources. We note that our feedback collection
setup is a simulation of a deployed model. The
feedback in real-world systems may contain sensi-
tive information that should be handled with care.
Moreover, real-world feedback could be noisy and
is prone to adversarial attacks.
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A Details of Data Collection

Passage curating After we scraped the web-
sites, we collect the questions and answers in the
Frequently-Asked-Questions pages directly. For
those pages without explicit questions and answers,
we extract the text content as passages and proceed
to question collection.

Question collection We hire crowd-source work-
ers from English-speaking countries at the Amazon
MTurk platform to write questions conditioned on
the extracted passages. The workers are instructed
not to ask too generic questions or copy and paste
directly from the passages.

A qualification test with two sections is done to
pick up the best performing workers. In the first
section, the workers are asked to distinguish the
good question from the bad ones for given pas-
sages. The correct and incorrect questions were
carefully designed to test various aspects of low-
quality submissions we had received in the demo
run. The second section is that writing a question
given a passage. We manually review and score
the questions. We paid 0.2$ to workers for each
question.

B Details of Feedback Collection

We asked the workers to provide rating and natural
language feedback for question-answer pairs. For
qualification test, we labeled the rating for multiple
pairs of questions and answers. The workers are
selected based on their accuracy of rating labeling.
We paid 0.4$ to workers for each feedback.

C Details of Human Evaluation

The worker assignment is done to make sure a
worker rates the same question-answer pair only
once. Otherwise there is risk that the workers just
blindly give the same judgement for a certain QA
pair.

We adopt the qualification test similar to the
one for feedback collection. We also include some
dummy QA pairs, whose answer candidate were
randomly sampled from the corpora, and we filter
out the workers who fail to recognize them. We
paid 0.3$ to workers for each QA pair.

D Implementation Details

Throughout the experiments, we have used 4 32-
GB Nvidia Tesla V100. The hyperparameter (learn-
ing rate, dropout rate) optimisation is performed

lr Dropout

BERT (Bi-encoder) 5.0e-05 0.1
BERT (Poly-encoder) 5.0e-05 0.1
BART (Bi-encoder) 9.53e-05 0.01026
BART (Poly-encoder) 4.34e-05 0.1859
FEEDBACKRERANKER 5.0e-05 0.1

Table 8: Hyper-parameter setting of different variants
of QA models as well as EXPLAINRATE and RA-
TEONLY. There is no pooling operation in the latter
two models.

for the RQA models only and standard fine-tuning
hyperparameters of BART are used for building the
FEEDBACKRERANKER model. We set batch size
as 16. We truncate the questions and passages to
50 and 512 tokens, respectively. The models are
trained with 40 epochs. For our hyperparameter
search, we have used 5 trials and while reporting
the final results the best hyperparameter variant’s
performance was averaged across 3 different runs.
All experiment runs were finished within 20 hours.

E Validation performance

In addition to the Poly-encoders, we also explore
Bi-encoder and we have found that its performance
is consistently worse. Table 9 presents the per-
formance of base QA models with different pre-
trained Transformer models and encoding methods
on the validation set.
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Methods Australia US Canada UK WHO All

BERT (Bi-encoder) 44.57 64.24 81.12 50.55 81.85 64.47
BERT (Poly-encoder) 47.25 65.30 81.49 48.50 81.19 64.75
BART (Bi-encoder) 47.13 67.62 86.01 55.06 85.48 68.26
BART (Poly-encoder) 49.17 66.98 85.75 54.27 87.46 68.73

Table 9: The accuracy of different RQA models on the validation set. All of the results are averaged across 3 runs.

Methods Australia US Canada UK WHO All

BART RQA model

BART RQA model 49.17 66.98 85.75 54.27 87.46 68.73
+ FEEDBACKRERANKER with
explanation-based rating

51.34 69.09 84.20 56.87 87.79 69.86

+ FEEDBACKRERANKER with
rating only

51.09 68.57 86.84 58.21 88.78 70.70

BERT RQA model

BERT RQA model 47.25 65.30 81.49 48.50 81.19 64.75
+ FEEDBACKRERANKER with
explanation-based rating

51.34 70.15 83.72 53.71 84.49 68.68

+ FEEDBACKRERANKER with
rating only

51.09 68.46 84.18 55.69 85.15 68.91

Table 10: Accuracy of PIPELINE models using different feedback data to train the re-ranker on the validation set.
All of the results are averaged across 3 runs.

937


