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Abstract
We present a comprehensive study of sparse at-
tention patterns in Transformer models. We
first question the need for pre-training with
sparse attention and present experiments show-
ing that an efficient fine-tuning only approach
yields a slightly worse but still competitive
model. Then we compare the widely used lo-
cal attention pattern and the less-well-studied
global attention pattern, demonstrating that
global patterns have several unique advantages.
We also demonstrate that a flexible approach to
attention, with different patterns across differ-
ent layers of the model, is beneficial for some
tasks. Drawing on this insight, we propose a
novel Adaptive Axis Attention method, which
learns—during fine-tuning—different attention
patterns for each Transformer layer depending
on the downstream task. Rather than choosing
a fixed attention pattern, the adaptive axis atten-
tion method identifies important tokens—for
each task and model layer—and focuses atten-
tion on those. It does not require pre-training to
accommodate the sparse patterns and demon-
strates competitive and sometimes better per-
formance against fixed sparse attention patterns
that require resource-intensive pre-training.

1 Introduction

The wide adoption of the Transformer architec-
ture (Vaswani et al., 2017) in contextual language
representations such as BERT (Devlin et al., 2019)
has spurred interest in making transformers more
efficient via sparse attention patterns (Li et al.,
2019; Guo et al., 2019; Gong et al., 2019; Zaheer
et al., 2020; Child et al., 2019).

The typical process for learning a transformer
model (e.g., BERT) with a sparse attention pattern
is to replace the full attention calculation with that
pattern, then pre-train the model with the usual
pre-training task and fine-tune the model to down-
stream tasks. The use of sparse attention pattern

∗ This work was done during the author’s internship at
Adobe Research.

does not necessarily significantly improve the run
time of the models1 but it does reduce the model
memory requirement during inference time. This
reduction is helpful when deploying models on mo-
bile devices or other memory-limited devices.

In this paper we offer an extensive analysis of
attention patterns, organized around the following
questions: (1) is pre-training essential or is it pos-
sible to employ sparse patterns during fine-tuning
only? (2) which types of attention patterns are
important? (3) should the same attention pattern
be applied to different downstream tasks and to all
layers of the model?

The answer to the first question carries critical
implications for the practical adoption of sparse
attention approaches. Most current transformer-
based approaches learn fixed patterns during pre-
training and then apply these to fine-tuning as well.
However, it is costly and impractical to pre-train a
new model from scratch when a different attention
pattern is expected to be more appropriate for a
task. Learning the sparse attention pattern model
during fine-tuning is more reasonable.

With this motivation in mind, we perform a
controlled experiment on the eight tasks in the
GLUE (Wang et al., 2019a) benchmark. We find
that pre-training with sparse patterns is not a cru-
cial ingredient for good performance—learning
the model solely during fine-tuning sacrifices only
one or two performance points on most tasks.
Grounded in this finding, we perform all other ex-
periments efficiently, starting with the same pre-
trained model and varying sparse attention patterns
during fine-tuning alone.

We start to answer the second question by an-
alyzing the two most popular patterns: local and
global (Tay et al., 2020). Local patterns allow each
token to attend only to other tokens within a given
window. Global patterns allow some specially des-

1Due to efficient vectorizations and cache locality of full
attention calculations.
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(a) Local (b) Global (c) Diagonal (d) Axis (e) Local+Global

Figure 1: Five attention patterns (with N = 8): Local, Global, their generalized forms: Diagonal and Axis, and a
combination of Local and Global attention: Local+Global.

ignated tokens to attend to all other tokens while
the remaining tokens are allowed to attend only
to the specially designated tokens. We show that
global pattern exhibits unique and complementary
strengths that local patterns cannot capture. This
finding is aligned with the design choices for recent
models that benefit from the combination of both
patterns (Beltagy et al., 2020; Zaheer et al., 2020).

For the third question, we extend Sparse-
BERT (Shi et al., 2021) to an adaptive diagonal
attention model. With this model, we are able
flexibly learn task-wise and/or layer-wise diago-
nal patterns. Adapting attention patterns to tasks
and layers improves performance over fixed atten-
tion pattern baselines and yields equivalent memory
gains/sparsity levels.

Motivated by these findings, we design an adap-
tive sparse pattern that is learned during fine-tuning
and that adapts to the task, layer as well as to the
input sample. Our pattern is an instance of axis
patterns (Figure 1(d)), which are a more general
form of global patterns; we name it Adaptive Axis
Attention (AAA). AAA samples the important to-
kens by applying a fully connected layer that is
followed by Gumbel Softmax (Jang et al., 2017)
applied to the token representations on each Trans-
former layer. The tokens identified as important
are then designated as the global tokens and are
used to form an axis-aligned attention pattern.

Through extensive experiments we verify that
learning such an adaptive axis attention can
outperform the fixed patterns adopted in Long-
former (Beltagy et al., 2020), BigBird (Zaheer et al.,
2020) and SparseBERT (Shi et al., 2021). AAA
rivals or outperforms the fixed patterns even when
compared with their pre-trained variants, which re-
quire extensive time and resources for pre-training.

We also show that AAA can be integrated into
lightweight models, e.g., MobileBERT (Sun et al.,

2020). The benefits for MobileBERT indicate that
our work is complementary to other methods for
reducing hidden dimensions or attention heads.

Our comprehensive study of different sparse at-
tention patterns in Transformers advances the field
with several key insights.

• We show that pre-training sparse attention pat-
tern models does bring benefits but that a fine-
tuned only approach maintains competitive per-
formance while saving cost and time for pre-
training.

• We present an in-depth comparison between the
two most common patterns in sparse attention
design and verify that they provide different com-
plementary strengths.

• We demonstrate that adapting attention patterns
to tasks and layers is an impactful aspect of
sparse pattern designs. We propose a new at-
tention pattern—Adaptive Axis Attention and
demonstrate that AAA outperforms fixed atten-
tion patterns.

2 Background

Here we highlight some of the core definitions re-
lated to self-attention and describe prior work on
sparse self-attention.

2.1 Revisiting Self-Attention

BERT (Devlin et al., 2019) uses Masked Language
Modeling (MLM), a self-supervised pre-training
objective that allows a transformer encoder to en-
code a sequence from both directions simultane-
ously. Specifically, for an input sequence of N
tokens, let Xℓ ∈ RN×D be the encoded features at
the ℓ-th transformer layer, where D denotes the em-
bedding dimension. The features at the (ℓ+ 1)-th
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layer are obtained by applying a transformer block:

Hℓ+1 = LN
(
Xℓ−1 + f ℓ

MHA(X
l)
)

(1)

Xℓ+1 = LN
(
Hℓ+1 + f ℓ

FF(H
ℓ+1)

)
(2)

where LN denotes the layer normalization, fFF(·)
is composed of two fully-connected sub-layers,
wrapped in residual connection.

The Multi-Head Self-Attention (MHA) opera-
tion f ℓ

MHA(·) in Eq. 1 is calculated as:

f ℓ
MHA(X) = [f ℓ,1

Head(X); . . . ; f ℓ,h
Head(X)]U (3)

f ℓ,i
Head(X) = σ

(
A/
√

Dh

)
V (4)

where σ(·) is a softmax function, A = QKT is
the self-attention matrix, d is the model dimen-
sion, h is the number of heads, Q = XWq,K =
XWk,V = XWv ∈ RN×Dh . Wq, Wk, Wv ∈
RD×Dh are the head-specific weights for query,
key, and value vectors respectively, Dh = D/h
is the head dimension size, and U is the weight
matrix that combines the outputs of the heads. The
computing of self-attention matrix A ∈ RN×N

requires multiplying Q ∈ RN×Dh and KT ∈
RDh×N , which is O(N2) in time and space com-
plexity. This quadratic dependency on the sequence
length has become a bottleneck for Transform-
ers (Wang et al., 2020; Mehta et al., 2021).

2.2 Attention Patterns

Attention patterns can be classified into two gen-
eral categories: (1) the diagonally shaped Diagonal
Patterns and their particular case Local Patterns;
(2) the vertically and horizontally shaped Axis Pat-
terns, and their particular case Global Patterns. A
pictorial representation of the categories is shown
in Figure 1.

To represent the patterns intelligibly, we view
such sparse attention patterns as an attention mask
BS ∈ RN×N , and treat it as an additive mask
to the original self-attention mask A. The new
attention mask Ā can be written as:

Ā = A+ C ·BS (5)

where C is a large negative constant value, and
BS

ij ∈ BS is 1 if and only if token i needs to attend
to token j, and is zero otherwise.

Local vs. Diagonal Patterns Formally, we de-
fine diagonal pattern of size No as a set of user-

designed offsets O = {ok}No
k=1, and define diago-

nal attention mask as:

BL
ij = 1 ⇐⇒ |i− j| ∈ O (6)

where ok ∈ [0, N − 1] is the offset value that mea-
sures the distance between token i and token j.

Most sparse attention pattern designs contain
a local pattern constraint on the window around
each token where attention is allowed. Specifically,
local patterns can be viewed as a special case of
diagonal patterns, where ok = k, and the offset
set is {0} ∪ O. For simplicity, and with a slight
overriding of the definition of sizes, we refer to a
local attention of size No as a diagonal attention
with offsets {0, 1, ..., No}.

Global vs. Axis Patterns As shown in Fig-
ure 1(d), the Axis Attention mask is composed of
two separate sets R = {rk}Nr

k=1 and C = {cl}Nc
l=1,

and we define the axis attention mask as:

BG
ij = 1 ⇐⇒ i ∈ R or j ∈ C (7)

where rk ∈ [1, N ] and cl ∈ [1, N ] are offset values
indicating the selected k-th row or l-th column.

Global patterns are a special case of axis patterns,
where rk = k and cl = l. In other words, in global
patterns, there is no difference between horizontal
(row) patterns and vertical (column) patterns, and
picked rows and columns are at the start of the input.
In most prior work, global patterns are discussed
as a way to enable long range dependencies.

Random Patterns We introduce random patterns
mainly for the sake of completeness. They were
proposed in BigBird (Zaheer et al., 2020) and are
obtained by randomly selecting some positions in
the attention mask BS . We refer to the size Nr

of a random pattern as the number of positions
selected divided by 2N to approximately match the
definition of the size of local and global patterns.

Prior work typically combines local and global
patterns rather than committing to only using one
of these broad categories. The combination of two
patterns involves an or operation between them.
Given the fixed sparse patterns defined in Eq. 6
and Eq. 7, we have the combined sparse pattern
represented by:

Ā = A+ C · (BL ∨BG) (8)

where ∨ denotes the logical OR operation. Note
that the size of the attention mask when local pat-
tern size increases by one, is very similar to the
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size of the mask when the size of a global pattern
increases by one. We will use this property to com-
pare local and global patterns.

2.3 Sparse Self-Attention

Several sparse attention variants have been intro-
duced to reduce the quadratic complexity of the full
attention model (Guo et al., 2019; Shi et al., 2021).
Longformer (Beltagy et al., 2020) and BigBird (Za-
heer et al., 2020) are two notable models that make
use of pre-defined patterns. Both utilize a combina-
tion of local and global attention patterns; BigBird
also introduces a randomly generated and a fixed
attention pattern.

Most closely related to our approach is Sparse-
BERT (Shi et al., 2021). The authors of Sparse-
BERT study the importance of the main diagonal at-
tention pattern and propose a method to learn diag-
onal attention. Their method learns layer-agnostic
diagonal patterns during pre-training, therefore the
pattern is both layer- and task-unaware. Their ex-
periments are designed to show that the main diag-
onal attention is not important. In contrast we carry
out experiments to show that 1) the global attention
is an important component in sparse attention de-
signs, and 2) task adaptiveness and layer-awareness
can bring good improvements to sparse attention
designs, 3) combining the findings above, we can
design a task and layer (and also input) adaptive
global sparse attention pattern, and such pattern
performs extremely well even without pre-training
the model to adapt the pattern.

Traditional sparse attention approaches usually
learn the sparse attention by replacing the full at-
tention with pre-defined sparse attention pattern
in a transformer model, then learning to operate
with such patterns via a normal pre-training and
fine-tuning pipeline. Despite the promising results
achieved by the recent sparse attention approaches,
rarely have there been studies done to provide a
good understanding of such practices. Our paper is
a comprehensive study on the roles of pre-training,
different attention patterns, and the power of adap-
tiveness of the patterns.

3 Fixed Sparse Attention: A
Comprehensive Analysis

In this section, we address the first two questions
related to fixed attention patterns: (i) is pre-training
with these really necessary or does fine-tuning
alone suffice, and (ii) what are the strengths and

complementary aspects of local and global patterns.

3.1 Pretraining vs. Finetuning

We start with a suite of experiments designed to
find out if sparse attention models can be successful
without pre-training. We compare performance on
the tasks in the GLUE benchmark of: a model
with full attention in pre-training and fine-tuning; a
model with the same sparse attention pattern used
in pre-training and fine-tuning; and a model pre-
trained with full attention (as in standard off-the-
shelf models) and fine-tuned on the specific task
with sparse attention.

We report performance on the eight tasks from
the GLUE benchmark (Wang et al., 2019b). Six
of these tasks involve predictions about the degree
or type of semantic equivalence between pairs of
sentences and two are single sentence tasks, one in-
volving linguistic accessibility judgements (CoLA)
and the other sentiment prediction (SST-2). The
amount of data for each task varies considerably
from close to 400K for MNLI (one of the language
inference tasks) to 2.5K examples in the RTE task.
We do not perform experiments on the WNLI task,
which contains fewer than one thousand samples
for fine-tuning. In results presented later in the
paper, the tasks are listed in decreasing order of
fine-tuning data per-task.

We adopt all default training settings and hyper-
parameters from Huggingface (2021) for all experi-
ments. For pre-training, we use eight Nvidia A100
GPUs and train for 1M steps with a per-device
batch size of 32 on English Wikipedia2. We use all
default configurations from bert-base-cased. We
pre-train three models, one with full attention as
in the official bert-base-cased and two with sparse
attention patterns that we describe below.

For fine-tuning, we use four Nvidia A100 GPUs
and train for 30k steps with a per-device batch size
of 32 (effectively, each device runs about three
epochs over the largest dataset, MNLI). Compared
to the default setting of using one device, this guar-
antees the model can learn to converge from a full
attention model to a sparse attention one.

In this section, we consider these patterns:
• Full is the full attention pattern as in traditional

transformer models.
• Local + Global are the patterns used for Long-

former. We use a subscript to indicate the size
of the pattern. For example Local2 + Global2

2wikipedia/20200501.en from huggingface datasets.
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Table 1: Comparison of pre-trained fixed sparse attention patterns designs with fine-tuned only patterns. For the
metrics, Acc stands for Accuracy, F1 is the F1 score, Mcc stands for Matthews correlation coefficient and Spr stands
for Spearman’s rank correlation. All metrics are measured out of 100 (percent), and the higher the better. The
datasets are sorted by training set size, from largest (MNLI) to the smallest (RTE).

Dataset MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE

Metric Acc (mm) F1 Acc Acc Mcc Spr F1 Acc

Full Pattern (pre-train & fine-tune) 82 87 90 91 48 87 90 60

Local2 + Global2 (pre-train & fine-tune) 77 85 86 89 41 52 80 54
Local2 + Global2 (fine-tune) 75 (↓ 2) 78(↓ 7) 82(↓ 4) 89(↓ 0) 44(↑ 3) 29(↓ 23) 76(↓ 4) 51(↓ 3)

Local2 + Global1 + Random1 (pre-train & fine-tune) 77 83 83 89 44 45 78 55
Local2 + Global1 + Random1 (fine-tune) 75(↓ 2) 81(↓ 2) 80(↓ 3) 88(↓ 1) 40(↓ 4) 19(↓ 26) 78(↓ 0) 53(↓ 2)

Table 2: Experiment on the Text dataset in LRA. We
vary the size of the Local Pattern with or without Global
Patterns. “Pf." means the performance.

w/o Global Pattern w/ Global Pattern

Local Pattern Pf. Local Pattern Pf.

512 62.80 512 61.73
128 57.72 128 63.12
16 55.58 16 71.34
2 52.88 2 77.62

stands for a Longformer that contains a local pat-
tern of size 2 and a global pattern of size 2.

• Local + Global + Random are the patterns used
for BigBird. Similarly, we use Local2 + Global1
+ Random1 to denote a combination of local
pattern of size 2, global pattern of size 1, and
random pattern of size 1.

The last two patterns are also used in Sparse-
BERT (Shi et al., 2021)3.

Table 1 shows our comparison between fine-
tuning only approach and pre-training approach for
Local2 + Global2 and Local2 + Global1 + Random1.
The table also gives performance measures for the
model using full attention. Performance drops for
the sparse compared to full attention models. How-
ever the difference between the fine-tuning only
approach and the pre-training sparse attention ap-
proach is not that big. Notably for the acceptabil-
ity judgements task (CoLA), the fine-tuned sparse
attention model without a random component, re-
sults are 3 points higher than for the respective
pre-trained model; performance is the same for
the fine-tuned only and pre-trained model for the
sentiment task (SST-2). The biggest gap in perfor-
mance is for the STS-B, which requires predictions
about the degree of similarity on a five point scale

3The use a Random Pattern of size 2. But our definition of
Random Pattern selects two times more positions than theirs,
so the expected pattern size is still the same

between pairs of sentences. For this task already
switching from full to sparse attention leads to a
dramatic drop in performance. The average drop of
performance across the task excluding this outlier
is just under 3 absolute performance points.

For the sparse attention patterns with a random
component, the pre-trained version is on average
2 absolute performance points better than the fine-
tuned only model (again after the excluding the
outlier for the STS-B task).

3.2 Comparing Local and Global Patterns
Global patterns have been somewhat neglected. For
example, in the Long Range Arena (LRA) bench-
mark (Tay et al., 2021), the Longformer baseline
does not include a global pattern.

In Table 2 we present a comparison between
local patterns alone and a combination of local
and global patterns on the Text dataset in the LRA
benchmark. The comparison reveals the possi-
ble reason why partial evidence may suggest that
adding global patterns is not helpful but that more
complete evidence indicates that a combination of
local and global patterns yields substantial benefits.

The first row of Table 2, shows that performance
with global patterns and a local pattern of size 512
actually is a bit worse than without the global pat-
terns. However, subsequent rows in the table reveal
that as we decrease the size of the local pattern
while keeping the global pattern, performance im-
proves. Performance can reach as high as 77.62
with the global patterns, while the best performance
from other baselines reported in the LRA bench-
mark paper is about 65.90. Global patterns bring
unique information that local patterns do not cap-
ture and they should be included in future sparse
attention pattern designs or baseline comparisons.

We further empirically compare local and global
patterns and evaluate the performance of models
with different degrees of focus on the two patterns
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in Figure 2. To obtain the model’s performance
with a certain pattern, we start with a pre-trained
full attention model and fine-tune it on the datasets
with the sparse pattern. We compare models that fo-
cuses on vastly different amount of local and global
patterns, while controlling the overall sparsity of
the attention pattern. Comparing local-pattern only
models with global-pattern only models would be
naive, given that most prior approaches to sparse
attention combine the two. In our experiments we
consider models with a baseline size of two on both
local and global patterns. Then, to analyze how the
global pattern affects performance, for example, we
fix the size of the local pattern to be 2 and vary the
size of global patterns from 1 to 8. A similar set of
experiments is done for the local patterns. Recall-
ing the previous observation that we can compare
local and global attention patterns with the same
size, the experiments with different focus on local
and global patterns can be compared.

We present experiments only for the three tasks
with the largest amount of fine-tuning data in the
GLUE benchmark. Figure 2 shows that, for both
types of patterns, increasing the size of the pat-
terns from the base size improves the performance.
However, the areas of improvement are different
on different tasks for local and global patterns. We
can see that for MNLI and QNLI, increasing global
patterns is more helpful than increasing local ones,
while for QQP, the local patterns are more help-
ful. Intuitively, this is because different tasks re-
quire differing information types for language un-
derstanding — QQP requires more local informa-
tion to distinguish the sentence pairs than MNLI
and QNLI.

Figure 2: Comparison of Local Attention Pattern and
Global Attention Pattern. We experiment with two sets
of models, the first of 8 models of different sizes of local
patterns and the second set of 8 models of different sizes
of global patterns.

4 Beyond Fixed Sparse Attention

In this part, we discuss the importance of adaptive-
ness and propose an adaptive axis attention pattern.

4.1 Adaptiveness of Patterns
In the previous section we discussed evidence that
global patterns and local patterns contribute differ-
ently to performance in different tasks. Should we
then design different patterns for different tasks,
and how can we do so? Moreover, given that dif-
ferent layers of BERT capture different linguistic
knowledge (Clark et al., 2019; Michel et al., 2019;
Kovaleva et al., 2019; Li et al., 2019)—should the
patterns be adaptive to the layers as well?

We set out to study whether such adaptations to
task and layer will indeed lead to better perfroam-
nce. To this end, we generalize SparseBERT(Shi
et al., 2021) to suit our needs and conduct experi-
ments with it. SparseBERT as originally introduced
learns a diagonal attention pattern (along with a
fixed global pattern) model during pre-training.
The learned model is applied to downstream tasks,
keeping the patterns learned during pre-training
fixed. However, the attention pattern learning as-
pect of their approach is applicable to fine-tuning
as well. In our work we make use of it to train di-
agonal attention pattern models during fine-tuning
only, thus allowing the model to learn different
patterns for different tasks.

Before proceeding with these comparisons, we
introduce the notion of attention sparsity and dis-
cuss a controllable method for obtaining models
with similar sparsity levels. This is necessary for
a meaningful comparison of sparse attention ap-
proaches, because in general reductions from full
to sparse attention leads to drop in performance, as
we saw for example in the tasks from the GLUE
benchmark.

Sparsity Sparsity measures the size of the sparse
attention (fixed or learned) when compared with
the full attention. The sparsity used in (Shi et al.,
2021) is defined as: 1− |BS |/N2, where |BS | =
|{(i, j)|BS

ij ̸= 0}| is the number of ones in the
sparse attention mask matrix BS . This definition
is suitable for patterns that are fixed during fine-
tuning. In our work, different tasks may yield differ-
ent patterns. Therefore, we propose a generalized
definition of sparsity:

ρ =
1

|D|Lh

|D|∑
i=1

(
L∑
l=1

h∑
a=1

(
1−

|BS
i,l,a|
N2

i

))
(9)
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where |D| is the size of the dataset D, Ni denotes
the sequence length of the i-th input sample, which
can be different from the fixed value (128) in Shi
et al. (2021) 4, L the number of transformer layers,
and h number of attention heads. BS

i,l,a refers to
the sparse attention mask matrix for the i-th input
sample, l-th layer, and a-th attention head.

The sparsity definition in Eq. 9 has several key
advantages: 1) It is applicable when attention pat-
terns are different across instances, layers, and at-
tention heads rather than fixed; 2) It uses the actual
sequence (text) length, more truthfully reflecting
how much attention is used when processing a spe-
cific input. The original sparsity definition is in-
volves only the model-wise maximum sequence
length. For example, a local pattern of size 2 has a
sparsity value5: 1− 5/N + 6/N2. This is undesir-
able because by just changing the model maximum
sequence length, sparsity changes without impact-
ing the performance on individual inputs.

Sparsity Controllable Training Controlling the
target sparsity of self-attention is beneficial for
comparison purposes. Given the fixed target spar-
sity ρtarget, we define the training objective as:

LAll = Ltask︸︷︷︸
Finetune Loss

+ α ·max(0, ρtarget − ρ)︸ ︷︷ ︸
Sparsity Loss

(10)

where the first term (Ltask) denotes the objective
loss for the fine-tuning task, ρ is the sparsity dur-
ing training, α is an amplifying factor of the spar-
sity loss. The hinge loss encourages the runtime
sparsity to be close to the desired sparsity. In our
experiments, we consider two variants of α: 1) a
constant value and 2) an increasing linear value
that reaches its maximum at half of the epochs and
then stays constant. We pick the best variant of α
among the two and gradually increase its absolute
value until the target sparsity has been reached.

Results In our experiment, we consider three di-
agonal attention pattern models that have different
levels of adaptiveness:
• Fixed is a fixed diagonal attention pattern model,

where the pattern is copied from a pre-trained
SparseBERT model.

• Task-adaptive is a model that learns the attention
pattern during fine-tuning, therefore is different
for different tasks.

4The consideration of the actual input sequence size makes
our sparsity levels lower than the sparsity in SparseBERT.

51−
(
N+2(N−1)+2(N−2)

)
/N2 = 1−5/N+6/N2.

• Task- & Layer-adaptive further allows different
layers of the model to learn different patterns.

All attention patterns are paired with global atten-
tion, and the results are reported in Table 3. We can
see clearly that the task-adaptive model is better
than the fixed model, as the patterns are learned
from the tasks. Further, adding adaptiveness into
the layers also brings a small boost to the perfor-
mance. These experiments show that having the
patterns adaptive and learnable is beneficial for
sparse pattern designs.

4.2 Adaptive Axis Attention
We show experiments highlighting the strengths
of global attention (in Section 3.2) and of allow-
ing adaptiveness of attention (in Section 4.1). To
combine these strengths, we design a novel atten-
tion pattern that incorporates the learning of Axis
Patterns, a more general form of Global Patterns.
Intuitively, we want the model to learn which input
tokens are important and focus on rows or columns
in the attention map associated with these tokens.

Specifically, we learn a row/column-wise impor-
tance value for each token representation xn ∈ X
through a fully-connected layer. This importance
value is fed into a Gumbel-sigmoid operation to
retrieve a 0/1 indicator:

Ĩkn = fGumbel-sigmoid(f
k
FC(xn)), k ∈ {r, c} (11)

where Ĩkn is the importance indicator for n-th to-
ken retrieved by the Gumbel-sigmoid operation, k
indicates the column (c) or row (r). Specifically,
Ĩrn = 1 indicates that all attention values in row n
of the attention matrix are kept. Equivalently, this
means this token can attend to all other tokens in
the input. Similarly, Ĩcn = 1 indicates column n of
the attention matrix is kept.

Given the importance indicators Ĩri and Ĩcj , the
axis pattern BS

ij ∈ BS can be calculated as follows:

BS
ij = Ĩri + Ĩcj − Ĩri · Ĩcj (12)

where BS
ij = 1 means either the importance indi-

cator for row i or column j is on6. Usually, this
adaptive axis attention pattern is also paired up
with some local patterns, especially the main diag-
onal local attention. This is to ensure that no rows
are empty, which is needed because self-attention
includes operations such as softmax and linear com-
binations, which are undefined over empty values.

6Such calculation allows gradient to backpropogate to the
fully connected layer that calculates the importance value.
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Table 3: Comparison of learnable diagonal attention models that have different levels of adaptiveness. ρ is the
sparsity value defined in Eq. 9. We also show the relative difference from each row to the previous row.

Adaptiveness MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE

ρ Pf. ρ Pf. ρ Pf. ρ Pf. ρ Pf. ρ Pf. ρ Pf. ρ Pf.

Fixed 86 70 85 79 88 72 83 89 75 34 85 28 88 79 88 50
Task-adaptive 86 74(↑ 4) 87 79(↑ 0) 89 75(↑ 3) 83 83(↓ 6) 81 38(↑ 4) 85 36(↑ 8) 88 77(↓ 2) 89 56(↑ 6)
Task & Layer-adaptive 86 76(↑ 2) 85 81(↑ 2) 89 77(↑ 2) 83 86(↑ 3) 78 35(↓ 3) 86 38(↑ 2) 89 77(↑ 0) 89 55(↓ 1)

Following designs in Section 3.2, we pair it up with
a local pattern of size 2. This adaptive axis pattern
is also learned separately for each layer and dif-
ferent tasks, taking full advantage of the benefits
of adaptiveness. Similar to the adaptive diagonal
attention patterns introduced in Section 4.1, we
optimize the model with Eq. 10.

4.3 Experiments with AAA

In this section, we verify empirically the effective-
ness of our proposed AAA. Quantitative results are
listed in Tables 4, 5, and 7.

Experiment Settings In this section, our experi-
ments follow the setting described in Section 3.1.
We also include some other patterns to show that
findings are stable for different combinations:
• Local3 + Global1 is a variant of the Longformer-

like pattern in which we increase the size of the
local attention but decrease global attention size.
As discussed previously, this results in a model
with comparable capacity but may provide differ-
ent benefits.

• Local1 + Global1 + Random2 is similarly a vari-
ant for BigBird. Here we increase the size of the
random patterns, so the resulting sparsity values
are different from the corresponding Local2 +
Global1 + Random1 attention.

• Diagonal + Global1 represents patterns coming
from SparseBERT. It combines a learned diago-
nal pattern with global pattern of size 1.

AAA outperforms fix pattern models We com-
pare our AAA with several fixed attention patterns.
We optimize AAA with Eq. 10, and set different
targets of the final sparsity values ρtarget for each
task. For all baselines, we report the sparsity values
and performance on the development set in Table 4.
We first point out an encouraging result related to
sparsity: AAA exhibits a similar sparsity value in
the development set as in the training set. For all
datasets, AAA is able to reach the desired, and
sometimes slightly better, sparsity values. Next,
we compare the performance of the models. For all

tasks, our model performs better than the fixed pat-
tern approaches. For most tasks, the improvement
is large. This success further confirms the strength
of adaptiveness in designing attention patterns.

AAA rivals pre-trained pattern models Now
we also compare with the pre-trained variant of
the adaptive diagonal attention model. Rather than
starting from a pre-trained BERT model with full
attention, we pre-train a sparse adaptive diagonal
attention model. The results, along with pre-trained
variants of fixed pattern models, are shown in Ta-
ble 5. We already know, from Section 3.1, that
the pre-trained variants of fixed patterns improve
a moderate amount of performance. The perfor-
mance for the adaptive patterns is also comparable
to the fine-tuned only AAA on most tasks. Fur-
thermore, on the STS-B task where fixed patterns
suffered a great drop in performance, AAA shows
very strong performance. The pre-trained version
of the diagonal patterns shows strong performance
and is better than our model in most tasks. Overall,
we show that AAA achieves a strong performance
that is comparable to other sparse patterns that in-
volve pre-training.

AAA focuses more on columns than rows AAA
separates the importance learning of row-wise pat-
terns and column-wise patterns. After fine-tuning,
we examine for each input sample during evalua-
tion the percentage of important tokens selected for
rows and for columns. Table 6 shows the results.
There are much more important column tokens than
important row tokens. This means that for axis pat-
terns, tokens that other tokens attended to are more
important than tokens that attend to other tokens.
This finding is another indication that fixed (global)
patterns are not ideal.

AAA is orthogonal to MobileBERT Improving
the efficiency of transformers is needed for real-
world applications and several approaches have
been developed to improve efficiency on resource-
limited devices, such as reducing attention heads
and hidden dimensions. To show that gains from
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Table 4: Comparison of fixed sparse attention map designs with ours. In the first row, we show the performance
when using the unchanged full attention. Since our method AAA has the ability to learn to a fixed sparsity ratio, we
train our model to adapt to the specific sparsity ratio on each task when compared to other different fixed patterns.

Fine-tuning Pattern MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE

ρ Pf. ρ Pf. ρ Pf. ρ Pf. ρ Pf. ρ Pf. ρ Pf. ρ Pf.

Full 0 84 0 88 0 91 0 92 0 54 0 88 0 89 0 62

Local2 + Global2 76 77 70 85 82 84 64 90 34 48 70 42 83 78 84 53
Local3 + Global1 76 77 70 83 82 80 63 89 34 48 70 31 83 79 84 53
AAA 77 81(↑ 4) 73 85(↑ 0) 82 86(↑ 2) 65 89(↓ 1) 36 56(↑ 8) 72 79(↑ 37) 86 83(↑ 5) 85 58(↑ 5)

Local2 + Global1 + Random1 80 77 76 84 85 79 70 90 45 44 75 44 86 82 87 56
AAA 81 80(↑ 3) 82 85(↑ 0) 85 86(↑ 7) 84 89(↓ 1) 76 50(↑ 6) 82 75(↑ 31) 89 80(↓ 2) 89 56(↑ 0)

Local1 + Global1 + Random2 85 77 81 84 88 80 77 90 57 33 81 49 89 79 89 49
AAA 86 80(↑ 3) 86 85(↑ 1) 88 86(↑ 6) 84 89(↓ 1) 76 50(↑ 17) 86 67(↑ 18) 89 80(↑ 1) 89 56(↑ 7)

Table 5: Comparison of pretrained sparse attention map designs with ours.

Pattern MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE

ρ Pf. ρ Pf. ρ Pf. ρ Pf. ρ Pf. ρ Pf. ρ Pf. ρ Pf.

Local2 + Global2 (pre-train & fine-tune) 76 77 70 85 82 86 63 89 34 41 70 52 83 80 84 54
AAA (fine-tune) 77 79(↑ 2) 72 84(↓ 1) 83 84(↓ 2) 66 89(↑ 0) 48 41(↑ 0) 71 81(↑ 29) 86 85(↑ 5) 87 53(↓ 1)

Local2 + Global1 + Random1 (pre-train & fine-tune) 80 77 76 83 85 83 70 89 45 44 75 45 86 78 87 55
AAA (fine-tune) 81 80(↑ 3) 78 84(↑ 1) 86 84(↑ 1) 71 88(↓ 1) 56 40(↓ 4) 76 80(↑ 35) 89 84(↑ 6) 90 53(↓ 2)

Diagonal + Global1 (pre-train & fine-tune) 86 79 85 85 88 86 83 90 75 38 85 64 88 84 88 54
AAA (fine-tune) 87 78(↓ 1) 86 83(↓ 2) 88 84(↓ 2) 84 87(↓ 3) 77 36(↓ 2) 85 75(↑ 11) 91 86(↑ 2) 90 50(↓ 4)

Table 6: Percentage of row-wise important tokens and
column-wise important tokens.

MNLI QQP QNLI MNLI QQP QNLI

row 0.8 0.6 1.0 column 1.6 1.3 1.7

Table 7: AAA can be integrated with MobileBERT.

Model MNLI QQP QNLI

ρ Pf. ρ Pf. ρ Pf.

BERT 0 84 0 87 0 91
BERT + AAA 77 81 73 85 82 86

MobileBERT 0 83 0 87 0 90
MobileBERT + AAA 78 78 74 83 83 86

our AAA are compatible with such approaches, we
compare AAA with MobileBERT (Sun et al., 2020)
in Table 7. The amount of performance dropped
with the same sparsity is similar for both BERT and
MobileBERT. Therefore, AAA’s performance is
not impeded by a model that is already compressed
to reduce attention heads or hidden dimensions
and can be integrated into such a model easily and
effectively.

5 Conclusion

In this paper, we present a comprehensive analy-
sis of sparse attention patterns. We demonstrate
that while pre-training with sparse attention does
improve performance on many tasks, using sparse
attention only in fine-tuning sacrifices a bit of per-

formance for a big gain in time and computational
resource savings.

We compare the popular local and global pat-
terns and conclude that either type provide an ad-
vantage depending on the task. We also show that
allowing sparse patterns to be adaptive to the task
or layers improves performance. Finally we present
AAA which incorporated all these insights and
learns important tokens during fine-tuning. Our
model is consistently and considerably better than
other sparse attention pattern models and rivals
models that require extensive pre-training. For fu-
ture work, we anticipate to integrate the adaptive
diagonal pattern with our adaptive axis pattern to
construct a fully learnable pattern.

Ethical Considerations

The work presented in this paper deals with foun-
dations aspects of representation learning for lan-
guage tasks. We present experiments on core tasks
dealing with textual semantic equivalence, which
do not pose ethical concerns.
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