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Abstract

Generating explanations for recommender sys-
tems is essential for improving their trans-
parency, as users often wish to understand the
reason for receiving a specified recommenda-
tion. Previous methods mainly focus on im-
proving the generation quality, but often pro-
duce generic explanations that fail to incor-
porate specific details of user and item. To
resolve this problem, we present Multi-Scale
Distribution Deep Variational Autoencoders
(MVAE). A deep hierarchical VAE with a prior
network that eliminates noise while retaining
meaningful signals in the input, coupled with
a recognition network serving as the source
of information to guide the learning of the
prior network. Further, the Multi-scale dis-
tribution Learning Framework (MLF) along
with a Target Tracking Kullback-Leibler diver-
gence (TKL) mechanism are proposed to em-
ploy multiple KL divergences at different scales
for more effective learning. Extensive empiri-
cal experiments demonstrate that our methods
can generate explanations with concrete input-
specific contents.

1 Introduction

Due to the massive demand for convincing high-
quality recommendations, researchers from both
academic and industrial communities have paid in-
creasing attention to the topic of enhancing the ex-
plainability of recommender systems (Wang et al.,
2018b,a; Xian et al., 2019; Chen et al., 2019). Ex-
planations for recommendations in real-world sce-
narios are presented in a variety of different forms,
among them, the most popular and natural form
is that of free-text explanations given in natural
language (Zhang and Chen, 2020).

As shown in Fig. 1, this task requires a machine
to generate a textual explanation based on a given
user ID, item ID, and the rating score from a rec-
ommender system. Previous models attempt to
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Figure 1: An example of explanation generation.

embed these IDs in a similar way as normal words.
However, since the IDs appear far less frequently
than the words, most approaches typically fail to
account for specific features of the users and item.
Hence, it is a very common phenomenon to obtain
explanations without concrete characteristics about
the given user and item as shown in Table 4. A
probable reason for this phenomenon is that these
models fail to utilize the input embeddings effec-
tively. Specifically, in most models, the user and
item information is merely provided as randomly
initialized input embeddings, which barely contain
meaningful information, but introduce noise that
may be indistinguishable from more meaningful
information. Here, we refer to noise from the simi-
larities of randomly initialized input embeddings
that are conflated with implicit patterns contained
in our data. For example, there may be two user
embedding similar to each other while in our data
they represent users very different from each other.
Importantly, as the recommendation data is sparse,
some of the noisy embeddings are not able to be
adequately trained, resulting in that the noise dom-
inates the representation of those embeddings, as
shown in Section 4.5. Since the presence of noise
disturbs the model’s ability to interpret the input
embeddings at the inception of training, the model
may tend to generate explanations in an uncondi-
tional manner. Moreover, such noisy inputs may
still exist even after training. A common phenom-
ena is that some users or items have very limited
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relevant training instances. Consequently, their
corresponding representation embeddings are in-
sufficiently trained and remain noisy. Therefore, it
is vital to overcome such noise, so as to ensure the
model can generate in a conditional manner.

To deal with this problem, we present Multi-
Scale Distribution Deep Variational Autoencoders
(MVAE). They consist of three modules, namely
a recognition network, prior network, and a re-
construction network. The prior network in our
model can filter out the noise contained in input
embeddings, while retaining meaningful informa-
tion for generation through information compres-
sion. Moreover, to help the prior network learn
to generate fine-grained information, the recogni-
tion network is leveraged to provide the prior net-
work with suitable guiding information. Thus, the
decoder tends to generate explanations in a condi-
tional manner with a substantially more informative
generation signal.

However, with strong guiding signals available
during training, generation becomes much sim-
pler, which may result in a degradation of perfor-
mance when such information is no longer avail-
able during testing. Thus, we propose a Multi-scale
distribution Learning Framework (MLF) along
with a target Tracking Kullback-Leibler divergence
(TKL) mechanism to reduce this performance gap
between training and testing. The optimization
effectiveness of the prior network can further be
boosted when this method is employed at multiple
different scales.

Overall, our contributions are as follows:

• We highlight the problem of noise in the in-
put embeddings that current approaches suffer
from. To the best of our knowledge, MVAE
is the first model that aims to overcome such
noisy input embeddings in explanation gener-
ation for recommender systems.

• We propose MVAE, a novel VAE model for
explanation generation, which can utilize the
input embedding effectively for generating
high-quality explanations. The prior network
in our model filters the noise contained in the
input embeddings, while retaining meaningful
information for generation. Moreover, we pro-
pose multi-scale distribution learning frame-
work along with a target tracking Kullback–
Leibler divergence mechanism to improve the
optimization of the prior network, yielding
better generalization performance.

• Extensive experiments show that our approach
yields state-of-the-art results on three real-
world datasets, demonstrating its effectiveness
in generating high-quality explanations. A se-
ries of in-depth analyses shed further light
on its ability to overcome noise contained in
input embeddings in the training process.

2 Related Work

For generation of textual explanations, main-
stream research can be divided into two categories:
template-based and natural language generation
approaches. Template-based approaches generate
explanations by filling the slots of predefined tem-
plates (Zhang et al., 2014), which are typically man-
ually specified in advance. Natural language gen-
eration approaches, in contrast, adopt an encoder–
decoder framework such as a recurrent seq-to-seq
model (Li et al., 2020) or a Transformer-based ar-
chitecture (Li et al., 2021) to learn to generate more
diverse explanations based on the respective input.

In recent years, the latter strategy has received
considerable attention, mainly owing to advances
in neural generation along with the massive avail-
ability of text from online review systems.

Still, existing natural language generation meth-
ods may generate overly generic sentences that fall
short at providing concrete information and are
thus less useful for users (Cao et al., 2018). Indeed,
explanation generation goes beyond mere genera-
tion, as it is expected to improve the transparency
of the recommendation engine (Tintarev and Mas-
thoff, 2015). Thus, technical ideas to encourage the
generation process to account for more conditional
signals are crucial to enable models to generate
more specific explanations that are custom-tailored
for particular user–item pairs.

Variational autoencoders (VAE) were proposed
by Kingma and Welling (2014) based on the idea
of autoencoding, which has been used for noise
reduction (Vincent et al., 2008, 2010). VAEs have
been studied extensively in a variety of language
generation tasks, including text summarization (Li
et al., 2017a) and dialogue generation (Serban et al.,
2017; Wen et al., 2017; Zhao et al., 2017). A
VAE maximizes the mutual information between
the input and latent variables (Barber and Agakov,
2003; Alemi et al., 2017), requiring the network
to retain the information content of the input data
to the extent possible (Shwartz-Ziv and Tishby,
2017). Hence, VAEs are qualified to overcome
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Figure 2: Overview of the Proposed Model.

the overly generic explanations caused by unin-
formative noisy input embeddings and prompt the
construction of more meaningful outputs.

3 Proposed Model

An overview of our model is given in Fig. 2. The
recognition network encodes the explanations and
generates fine-grained information for the recon-
struction network. The prior network encodes the
input embeddings and generates essential informa-
tion for the reconstruction network. The essential
information here refers to the general semantics of
a reason, which can be described in multiple ways,
while the fine-grained information here refers to
information that determines the details in the expla-
nations, thus narrowing down and customizing the
essential information to a specific form.

Finally, the reconstruction component decodes
the given information and generates explanations.
Additionally, the proposed MLF employs KL diver-
gence at multiple different scales, which improves
the optimization of the prior network. The TKL ap-
plied in every KL divergence can aid the learning of
the prior network even further. We will present the
details of each network in the following sections.

3.1 Input Encoding

To achieve a suitable transformation for compres-
sion and reconstruction of information, we design
a basic component called the representation trans-
formation module, which is used repeatedly in our

model. Formally, it can be defined as follows:

fdx,dy(x) =SN(Wdx×dyGELU(x) + bdx)

Td1,d2,d3(x) =fd2,d3 ◦ fd2,d2 ◦ fd1,d2 ◦ fd1,d1
x′ =LayerNorm(Td1,d2,d3(x) + x)

y = fd3,d4(x
′)

(1)
Here, x ∈ Rdx is the input and y ∈ Rdy is the
output of this module. The subscripts dx, dy of f
and d1, d2, d3 of any F are the dimensionalities of
the matrices or vectors used in the corresponding
function. T is a composite module consisting of
four different f , where ◦ denotes composition, SN
is the spectral normalization introduced by Yoshida
& Miyato (2017). GELU (Hendrycks and Gim-
pel, 2016) is an activation function based on the
cumulative distribution function for a Gaussian Dis-
tribution.

For simplicity, we denote this module as
Block(·). Moreover, our notation assumes that its
output is split into equal-sized partitions if the out-
put is assigned to more than one variable.

Recognition Network The recognition network
serves to provide guidance to the prior network
to enable it better generate fine-grained informa-
tion, while supplying fine-grained information to
the reconstruction network in training, as shown
in Fig. 2(a). With the ground-truth explanations
as input, the recognition component can generate
valuable guiding information.

We first employ Transformer (Vaswani et al.,
2017) encoder layers to encode input tokens vi ∈
Rdv into compact hidden states. The two special
tokens C1 and C2 represent the overall input. The
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encoders are represented by Bb and the encoding
process can be described as follows:

O1, O2, . . . , On+2 = Bb(C1, C2, v1, . . . , vn)
(2)

Here, Oi is the i-th output of Bb. We concatenate
O1 and O2 as the initial sentence-level representa-
tion C ′

0 = [O1, O2]. Then the input information
is compressed and the distributions of fine-grained
information can be obtained as follows:

C ′
i = BlockRdi(C

′
i−1)

µrzj , σrzj , C
′
j = BlockRsj(C

′
j−1)

(3)

Here, i ∈ {1, 2, . . . , nrd}, j ∈ {nrd+1, . . . , nrd+
nrs}, while nrd and nrs are the number of BlockRd
and BlockRs instances in the recognition network,
respectively. Further, µrzj ∈ Rdzj is the mean and
σrzj ∈ Rdzj is the variance of the posterior distri-
bution qθj (z|x), where θ denotes the parameters of
the recognition network. The reparameterization
trick (Kingma and Welling, 2014) is used to sample
a rzj from qθj (z|x).

Prior Network As for the prior network, its key
aim is to filter out uninformative noise in the given
input embeddings while retaining the essential sig-
nals for later reconstruction. The given user ID,
item ID and rating are first mapped to their rep-
resentation embeddings Eu, Ei, Er and are then
concatenated. After that, we employ a compres-
sion block BlockPd to filter out noise in the input
and an additional BlockPs to generate fine-grained
information:

E′
0 = [Eu, Ei, Er]

E′
i = BlockPdi(E

′
i−1)

µpzj , σpzj , E
′
j = BlockPsj(E

′
j−1)

(4)

Here, i ∈ {1, 2, . . . , npd}, j ∈ {npd+1, . . . , npd+
nps}, while npd, nps refer to the number of BlockPd
and BlockPs instances in the recognition network,
respectively. Further, µpzj ∈ Rdzj and σpzj ∈ Rdzj

are the mean and variance of qϕj
(z|E′), where ϕ

denotes the parameters of the prior network.
After suitable training, the prior network will be

able to replace the recognition network to supply
fine-grained signals to the reconstruction network
in the testing phrase, as illustrated in Fig. 2(b).

3.2 Multi-Scale Learning
In our model, it is crucial to ensure that the prior
network can learn suitable fine-grained information

at different scales from the recognition network
effectively. To this end, we further propose the
MLF and TKL techniques.

Target Tracking KL Regularizations (TKL)
Our TKL mechanism serves to improve the repre-
sentation of the output latent variable z with regard
to fine-grained information and thus ease the dif-
ficulty of learning a prior network for generation
of specific fine-grained information. For simpli-
ficity, the subscripts to represent the index of layers
are omitted here, but this mechanism is applied
to every pair of distributions of prior network and
recognition network with the same input variable
scale. The TKL consists of two KL divergences:
the first is KL(qθ(z|x) ∥ qϕ(z|E′)) and the second
is KL(N (0, Idz)∥qθ(z|x)). Here, Idz denotes a
diagonal matrix. Traditionally, VAE models di-
rectly apply KL divergence KL(p(z|x)∥N (0, I))
on the final posterior distribution (qϕ(z|E′) in our
model), which is not suitable for our case, as the
distribution qϕ(z|E′) is learnt with qθ(z|x) dur-
ing the training phase. If we directly apply KL
regularization between N (0, Idz) and qϕ(z|E′),
the lagging problem (He et al., 2019) would
cause posterior collapse. To resolve this prob-
lem, we use KL(N (0, Idz) ∥ qθ(z|x)) to improve
the quality of representation of latent variables
z, as we find if both KL(qθ(z|x) ∥ qϕ(z|E′)) and
KL(N (0, Idz) ∥ qθ(z|x)) are small enough, we can
then obtain a small KL(N (0, Idz) ∥ qϕ(z|E′)). Fi-
nally, we can obtain:

KL(N (0, Idz ) ∥ qϕ(z|E
′)) ≈ KL(N (0, Idz ) ∥ qθ(z|x))

(5)

Therefore, the first KL divergence term supports
the second KL divergence term to implicitly apply
disentangled regularization to improve the repre-
sentation of fine-grained cues (Shao et al., 2020).
Overall, the TKL mechanism applied to pairs of
distributions can be expressed as

TKL(N (µrz, σrz) ∥N (µpz, σpz)) =

βKL(N (µrz, σrz) ∥N (0, Idz))

+ KL(N (µrz, σrz) ∥N (µpz, σpz)),

(6)

where β is a hyperparameter originally from β-
VAE (Higgins et al., 2017) to balance between re-
construction and disentangled regularization.

Multi-Scale Learning Framework (MLF) The
multi-scale distributions are originally proposed by
Sønderby et al. (2016) to improve the flexibility of
prior distribution and thus improve the generation
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Figure 3: Multi-Scale Learning Framework. The Rec-
Block represents the BlockRs in the recognition network
and Pri-Block represents the BlockPs in the prior net-
work.

quality of a VAE. We extend this architecture and
the overall structure is shown in Fig. 3. Our MLF
can also improve the flexibility of prior distribu-
tions and controls the fine-grained information to
aid the reconstruction network. During training,
rzj from the recognition network is provided to
the reconstruction network, delivering fine-grained
information to assist the latter in achieving the re-
construction. During testing, the µpzj from the
prior network come into play. For simplicity and
consistency, we refer to both with the same symbol
zj in the following.

More importantly, MLF decides how the prior
block network is optimized according to the recog-
nition network. Since multi-scale information is
leveraged, the prior network can be better opti-
mized. The sampling process from the distribu-
tions of the recognition network add appropriate
noise into the supplementary information during
training, which improves the denoising ability of
the reconstruction network. Therefore, when the
µpz without sampling noise but with noise from
the input signals are used in testing, the reconstruc-
tion network can better cope with the situation of
noisy supplementary information. This results in a
reduction of the performance gap between training
and testing. The overall regularization loss can be
represented as:

LMLF =

nps∑
npd+1

TKL(N (µrz, σrz)j ∥N (µpz, σpz)j) (7)

3.3 Reconstruction Network

Reconstruction Network The reconstruction
network is responsible for explanation generation
according to received fine-grained information and
essential information. The mechanism of the re-
construction network can be described as follows:

H ′
0 = E′

npd+nps

H ′
j = BlockDj (H

′
j−1 + zk)

H ′
i = BlockDi (H

′
i−1)

T1, T2 = chunk(Hnps+npd
)

(8)

where j ∈ {1, . . . , nps}, i ∈ {nps +1, nps +npd},
k = nps + npd + 1 − j. BlockD∗ are used to re-
construct the information. The sentence representa-
tions T ∈ Rdv are fed into a GPT decoder (Floridi
and Chiriatti, 2020) as initial tokens. chunk(·) de-
notes splitting the input into two equal-sized parts.

The negative log-likelihood function is used as
the objective function, which can be expressed as

Lrec = −
n∑

t=1

log(p(r∗t )), (9)

where r∗t is the ground-truth review word at step
t and n is the total length of the output token se-
quence.

3.4 Overall Objective Function

Ultimately, the optimization of our model is
achieved using the following overall objective func-
tion:

L = Lrec + LMLF (10)

4 Experiments

4.1 Dataset

For the evaluation, we use three large-scale
datasets, including Yelp1 for restaurants, Amazon
5-core Movie & TV2 for movies, and TripAdvisor3

for hotels. In contrast to prior work, we only select
and use challenging samples where related users
or items have fewer than 15 reviews for Yelp and
TripAdvisor, 20 reviews for Amazon movies. Our
setting is suitable for advancing the research on this
task. The statistics of the resulting Yelp, Amazon,
and TripAdvisor datasets are given in Table 1.

1http://www.yelp.com/dataset
2http://www.jmcauley.uscd.edu/data/amazon
3http://www.tripadvisor.com
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Entries Amazon Yelp TripAdvisor

# of users 161,434 451,937 333,409
# of items 118,862 154,951 304,954
# of reviews 653,568 1,033,823 1,311,676
Avg. # of reviews/user 4.04 2.28 3.93
Avg. # of reviews/item 5.49 6.67 4.30
Avg. # of words/explanation 14.81 15.03 14.84

Table 1: Statistics of three processed datasets.

4.2 Evaluation Metrics

We employ five metrics to evaluate the quality of
generated explanations, including BLEU-1, BLEU-
4, ROUGE-1, ROUGE-L, and METEOR. BLEU-
1 and BLEU-4 are BLEU (Papineni et al., 2002)
scores with 1-grams and 4-grams, respectively.
ROUGE-1 refers to ROUGE (Lin, 2004) scores
with 1-grams, while ROUGE-L finds the longest
common subsequence and takes the sentence level
structure similarity into account. METEOR (Baner-
jee and Lavie, 2005; Sharma et al., 2017) is a metric
that correlates better at the sentence level with hu-
man evaluations. For all metrics, higher scores
indicate better results.

4.3 Baselines

Various recent approaches serve as strong base-
lines in our experiments4. In addition, we consider
several variants of our model to ascertain the effec-
tiveness of our proposed techniques.

NRT (Li et al., 2017b): In this model, a multi-
layer perceptron (MLP) is used to predict a rating
based on the given user ID and item ID. It formu-
lates the explanation generation task as a text sum-
marization task and trains in a multi-task learning
framework. In our case, the explanation sentence
is used as the tip.

Att2Seq (Dong et al., 2017): This model em-
ploys a MLP to encode three attributes and adopts
a two-layer LSTM to decode representations for
generating textual explanations.

NETE (Li et al., 2020): A neural template expla-
nation generation framework design with a gated
fusion recurrent unit (GFRU) to generate neural
templates and explanations in parallel. It combines
advantages of both templates and neural networks.

PETER (Li et al., 2021): PETER is a
Transformer-based model that reforms the atten-

4Note that our model can be adapted to arbitrary recom-
mender systems, while some explainable recommendation
baselines require access to specific internal information of the
recommender system and are thus omitted for a fair compari-
son.

tion mask to combine different kinds of input em-
bedding and finally be able to generate natural lan-
guage explanations, which resulted in the previous
state-of-the-art.

MVAE-NoKL: The second KL divergence reg-
ularization in TKL is removed, in order to investi-
gate whether TKL can effective apply disentangled
regularization to latent variables for helping the re-
constructing network to decode latent variable and
easing the difficulty with which the prior network
learns from the recognition network.

MVAE-NoMLF: In this variant, distributions
of all scales of MLF are removed except for the
smallest one. This allows us to investigate whether
MLF can promote the learning of the prior net-
work and supply suitable amounts of fine-grained
information to the reconstruction network.

4.4 Implementation Details

Following common practice in recommender sys-
tems, we map a rating greater than or equal to 3 to
positive sentiment, and consider it a negative sen-
timent otherwise. The final results are the average
of 5 experiments with different random data splits.
In the training phase, if the decrease ratio of the
validation loss is larger than 0.98, we decrease the
learning rate by a factor of 0.8. We set the longest
generation length to 20, while the average length of
sentences is about 15. For all of the models, we set
a fixed vocabulary size of 20,000. For the hyper-
parameters of other models in the experiments, we
adopt the default settings in their published code to
ensure the proper performance.

For our model, we set the hidden sizes of the
Transformer encoder and decoder layers to 768
and each consist of two layers. For the prior and
recognition networks, we stack 6 Block units to
compress the input by a factor of 0.5 in each Block.
Another 6 layers of Block units are stacked for
reconstruction in the reconstruction network. We
use AdamW optimization (Kingma and Ba, 2015).

The β used in our TKL is set to 0.001 with the
following annealing schedule:

β′ = β · 1

1 + exp(−k (nstep − a0))
(11)

To select suitable hyperparameters for the anneal-
ing function, we first disable the second KL regular-
ization and record how many steps our model needs
to reach convergence. Then half of this amount of
steps is chosen as a0. The weight k = 0.0025
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BLEU (%) ROUGE-1 (%) ROUGE-L(%) METEOR(%)

BLEU-1 BLEU-4 Precision Recall F1 Precision Recall F1 METEOR

Yelp

NRT 5.90 0.41 7.36 5.71 6.43 5.51 4.68 5.06 2.43
Att2Seq 11.95 0.83 14.90 11.56 13.02 11.17 9.48 10.25 4.92
NETE 14.76 1.02 18.40 14.27 16.07 13.79 11.70 12.66 6.08

PETER 16.58 1.15 20.67 16.03 18.06 15.49 13.15 14.22 6.83
MVAE 21.42 2.25 21.07 16.93 18.77 17.17 13.76 15.28 7.26

Improvement (%) 29.19 95.91 1.94 5.61 3.98 10.85 4.64 7.40 6.30

Amazon

NRT 5.61 0.39 6.99 5.42 6.11 5.24 4.45 4.81 2.31
Att2Seq 11.35 0.79 14.16 10.98 12.37 10.61 9.01 9.74 4.68
NETE 14.02 0.97 17.48 13.55 15.27 13.10 11.12 12.03 5.77

PETER 15.75 1.09 19.64 15.23 17.15 14.72 12.49 13.51 6.49
MVAE 19.35 2.10 20.12 15.98 17.81 16.71 13.27 14.79 7.24

Improvement (%) 22.84 92.70 2.44 4.96 3.84 13.56 6.24 9.48 11.61

TripAdvisor

NRT 7.08 0.49 8.83 6.86 7.71 6.62 5.62 6.08 2.92
Att2Seq 14.34 0.99 17.88 13.87 15.62 13.40 11.38 12.31 5.91
NETE 17.71 1.23 22.08 17.12 19.28 16.54 14.04 15.19 7.29

PETER 19.90 1.38 24.90 19.24 21.67 18.59 15.78 17.07 8.20
MVAE 23.70 2.94 25.18 20.62 22.67 19.97 16.51 18.08 10.03

Improvement (%) 19.14 113.32 1.53 7.17 4.63 7.46 4.64 5.91 22.40

Table 2: Performance comparison of explanations generation of different methods on three datasets. Improvements
are computed as relative gains compared with the previous state-of-the-art method. Best results are highlighted in
boldface, and the statistical significance over the best baseline is p < 0.05 via a t-test.

is selected without any tuning. The learning rate
warm-up step count is set to 5,000 for all datasets.

In training phase, the teacher-force strategy is
employed for the decoder network to accelerate the
training. The dropout rate used in the encoder net-
work and decoder network is set to 0.3 and gradient
clipping is applied with 5.0. For the multi-scale
learning framework, nrd is equal to npd and nrs

is equal to nps. The nrd is set to 4 and nrs is set
to 3. In both the prior network and recognition
network, the variable is compressed by the ratio
of 0.5. In our model, the dimensionality of the
input variable is 1,536 and the dimensionality of
resulting encoding is 12 after 7-fold compression.
Similarly, in the reconstruction network, the latent
variable is reconstructed from size 16 to size 1,536
after 7 reconstruction blocks. In addition, the word
embedding used in the encoder Transformer layers
and decoder Transformer layers are shared.

4.5 Existence of Initial Noise

To show the existence of initial noise, we first con-
duct an additional experiment on the Yelp dataset.
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Figure 4: Illustration of the existence of initial noise.

Specifically, we randomly sample half of all ex-
amples, then duplicate them and all involved in-
put embeddings to build a new dataset. In this
dataset, there are two different instances of each
user with their corresponding respective examples.
Subsequently, we train a naive VAE model on the
dataset. We sorted the user embeddings based on
the number of their relevant training examples and
calculate normalized cosine similarity between the
two instances of the same user. We cluster them
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into 80 bins to enable a clearer presentation of the
extensive data. The results are shown in Fig. 4.
Intuitively, the difference of two instances of the
same user represents the noise contained in the em-
beddings, and we can see that as increasing the
number of relevant training samples, the noise be-
comes smaller and smaller. We believe that this is
because user embeddings with more training sam-
ples are updated more frequently, while we can see
there is still substantial noise remaining on the em-
beddings with few relevant training samples. This
motivates the necessity of employing our model to
eliminate such noise.

4.6 Explanation Generation Performance
As shown in Table 2, MVAE outperforms all previ-
ous methods across all three datasets, which demon-
strates the effectiveness of our proposed model. In-
specting the samples generated by previous meth-
ods, we discover that their poor BLEU scores stem
mainly from the occasional generation of descrip-
tions without concrete meaning or lack of details,
suggesting that their methods lack the ability to
capture more specific characteristics of users or
items, and corroborating our intuition that noisy
embeddings may cause a model to generate un-
conditional natural language expressions without
concrete meaning, since all the explanations are
generated by the same decoder but different input
embeddings. Moreover, we find that such low-
quality predicted explanations usually correspond
to users or items with fewer pertinent training sam-
ples, demonstrating our assumption that some user
or item embeddings remain insufficiently trained.

We further provide a detailed evaluation assess-
ing the quality of explanations for users with differ-
ent amounts of training samples in Fig. 5. As we
can see, our methods improve the quality of expla-
nations with a larger absolute improvement when
fewer relevant training samples are present (note
the different slope of means of different methods),
which suggests that our model can better handle
less well trained user and item embeddings. This
confirms that our VAE architecture is able to filter
out noise and retain meaningful information for the
decoder to generate more specific explanations.

4.7 Ablation Study
For an in-depth analysis of the effectiveness of our
proposed techniques, as shown in Table 3, we com-
pare our model with two variants introduced earlier.
As we can see, the performance of MVAE-NoMLF
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Figure 5: The mean and 95% confidence interval of
BLUE-1 and ROUGE-L scores of explanantions gen-
erated by PETER and MVAE on the Yelp dataset. The
x-axes represent the count of relevant training samples.

drops substantially. We believe this is because MLF
decides how the prior network can be optimized by
learning from the recognition network. Also, it con-
trols the fine-grained information that is provided
to the reconstruction network. Removing the MLF
significantly harms the effectiveness of learning
the prior network for fine-grained information. For
MVAE-NoKL, with the optimization of represent-
ing fine-grained information removed, it is hard for
the prior network to model the fine-grained infor-
mation from the recognition network. Therefore,
the model may obtain poor results in testing. In
fact, we observe that MVAE-NoKL attains lower
training losses in training but has higher testing
losses, indicating a significant disparity of distribu-
tions between the prior and recognition networks,
which degrades the model performance in testing.

4.8 Analysis of MLF

We further examine in detail the necessity and ra-
tionality of our proposed MLF. In previous meth-
ods, the randomly initialized input embeddings are
leveraged by the model directly. However, noisy in-
puts in the initial training may impede the ability of
the model to leverage them and lead to convergence
to a sub-optimal solution. We suspect the alterna-
tive of simply supplying additional information
directly may facilitate the training of the model but
result in a large performance gap between training
and testing. To confirm our conjecture, we further
propose two variants of our model named MVAE-
NoRN and MVAE-NoKL. For MVAE-NoRN, we
train our model with the testing phase architec-
ture illustrated in Fig. 2(b), i.e., it is trained with-
out the help of ground-truth information directly.
For MVAE-NoKL, we replace the rzj with µrzj to
supply fine-grained information to the reconstruc-
tion network and replace the TKL with the mean
squared error between µrzj and µpzj . Under this
setting, the additional noise injected into ground-
truth information is removed. We compare the re-
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BLEU-1 BLEU-4 ROUGE-1 ROUGE-L METEOR

MVAE-NoKL 21.03 (↓1.82%) 2.02 (↓10.26%) 18.67 (↓0.55%) 15.15 (↓0.82%) 7.01 (↓3.44%)
MVAE-NoMLF 19.12 (↓10.74%) 1.56 (↓30.70%) 17.95 (↓4.38%) 14.57 (↓4.66%) 6.73 (↓7.30%)

MVAE 21.42 2.25 18.77 15.28 7.26

Table 3: Performance comparison of variants of our model on Yelp dataset. Deterioration of the performance is
calculated as the relative drop compared with MVAE.

Reference The staffs are super knowledgeable
and obviously care very deeply about
the needs and preferences of their
customers.

NETE The service is great.

PETER The staffs are very friendly and willing
to help.

MVAE The staffs are knowledgeable and the
customer service is impressive.

Reference The atmosphere is relaxing and
enjoyable and music made people
feel at ease.

NETE The environment is clear.

PETER The food is good and the staffs are
friendly.

MVAE The atmosphere and the music are
pleasant.

Table 4: Examples of generated explanation by various
methods. Fine-grained features are underlined.

sulting training and validation losses in Fig. 6. The
training losses of MVAE-NoRN decrease faster in
the early stage of optimization, but this soon stag-
nates and barely improves any further, suggesting
that external guided signals are necessary to over-
come this plateau, as the prior network without the
guidance of the recognition may be unable to dis-
tinguish meaningful information from noisy inputs.
The MVAE-NoKL model has much lower training
losses but higher validation losses, reflecting a large
performance gap between training and validation.
In contrast, MVAE has reasonable training losses
and the lowest validation losses, which implies that
the MLF in our model narrows the performance
gap between training and validation, proving the
effectiveness of our proposed MLF.

4.9 Qualitative Case Study

To further compare the generation quality of ex-
planations generated by previous work and our
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Figure 6: Loss plots: (a) is the training loss and (b) is
the validation loss of each model on the Yelp dataset.

model, we provide examples in Table4. We ob-
serve that our methods can capture more specific
characteristics, thus generating more concrete ex-
planations. For instance, the generated explanation
of our model describes fine-grained aspects such
as “staff” and “customer service”, which are possi-
ble reasons of a recommendation. In contrast, the
previous state-of-the-art model PETER only em-
phasizes the “staff” without a high-level summary
on “service”.

5 Conclusion

We present MVAE, a novel model for explanation
generation in recommender systems, which has a
prior network that eliminates noise while retaining
meaningful signals in the input and a recognition
network serving as the source of information to
guide the learning of the prior network. Further, we
propose a Multi-scale distribution Learning Frame-
work along with TKL to prompt this process. Ex-
tensive experiments demonstrate the effectiveness
of our method and confirm that it can generate
high-quality explanations.
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