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Abstract

We introduce a method for improving the struc-
tural understanding abilities of language mod-
els. Unlike previous approaches that finetune
the models with task-specific augmentation,
we pretrain language models on a collection
of task-agnostic corpora to generate structures
from text. Our structure pretraining enables
zero-shot transfer of the learned knowledge
that models have about the structure tasks. We
study the performance of this approach on 28
datasets, spanning 10 structure prediction tasks
including open information extraction, joint en-
tity and relation extraction, named entity recog-
nition, relation classification, semantic role la-
beling, event extraction, coreference resolution,
factual probe, intent detection, and dialogue
state tracking. We further enhance the pretrain-
ing with the task-specific training sets. We
show that a 10B parameter language model
transfers non-trivially to most tasks and ob-
tains state-of-the-art performance on 21 of 28
datasets that we evaluate.1

1 Introduction

Pretrained language models (LMs) have revolu-
tionized NLP over the last few years (Peters et al.,
2018; Devlin et al., 2019; Radford et al., 2019b),
increasingly adept in performing the flexible and
task-agnostic downstream transfer. Their transfer
performance is less studied in structure prediction
tasks, however. Well-studied tasks mainly focus
on understanding one particular aspect of the text,
such as predicting the next word that comes after
as in language modeling. Unlike those downstream
tasks, structure prediction requires the structural un-
derstanding of the text for further integrating multi-
ple relevant aspects into a structure. For instance,
a typical structure prediction task, called open in-
formation extraction, seeks the entire structural in-

†
Equal contribution.

1The code and datasets are available at https://
github.com/cgraywang/deepstruct.
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(Japan; instance of; location) (art exhibit; located in; Haka Theatre) 

(Iago; is a; Georgian artist) 

Born in 1951 in Tbilisi, Iago is a Georgian artist

DeepStruct

input:  triple: The couple have a daughter      output:  (couple; have; a daughter)  
Task-agnostic corpora

......
input:  entity: He played for FIFA      

(Structure pretraining)

input:  relation: The book Fly is in English    output:  (Fly; language; English)
output:  (He; instance of; human)

(FIFA; instance of; club)  

......

Figure 1: Summary of our approach and results. Upper: an
overview of DEEPSTRUCT and the proposed structure pretrain-
ing. Lower: performance of our 10B DEEPSTRUCT zero-shot
and multi-task, compared with 175B GPT-3 zero-shot.

formation in a sentence (Figure 2). Different from
traditional NLP tasks, structure prediction takes
one step further and serves as a natural testbed for
the structural understanding competence of LMs.

It is non-trivial to transfer LMs to downstream
structure prediction tasks. While the structure pre-
diction requires structural understanding, the LMs
are pretrained to understand an independent aspect.
For example, GPT-3 (Brown et al., 2020) is trained
to predict the next word, and BERT (Devlin et al.,
2019) is trained to recover the masked tokens. Re-
cent work has made efforts in bridging the gap
in transferring pretrained models to structure pre-
diction tasks with a focus on two directions. As
shown in Figure 3, first, task-specific architectures
are proposed to model the structures for different
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structure prediction tasks (Stanovsky et al., 2018;
Soares et al., 2019). Second, task-specific data aug-
mentation (Paolini et al., 2021; Wang et al., 2021;
Wei et al., 2021) is introduced, aiming to enrich
text format with structure information. These ap-
proaches involve custom-designed task augmenta-
tions, impeding their usability in general structure
prediction tasks.

(1) 
Born in 1951 in Tbilisi, Iago is a Georgian artist

Structural 
Understanding

Iago
Born in

1951

city_of_birth

instance of

person is a

Georgian artist

(2) 

Traditional 
Understanding

artist

Born in 1951 in Tbilisi, Iago is a Georgian

Predicts an independent aspect 
(e.g., word(s) and label(s))Predicts a structure that integrates multiple relevant aspects

Figure 2: Comparison between structural understanding and
traditional understanding of text.

In this paper, we improve the structural under-
standing capabilities of LMs. In contrast to previ-
ous approaches relying on task augmentations, we
introduce structure pretraining, which systemati-
cally teaches LMs to better understand structures
of text beyond independent aspects in a pretraining
phase (Figure 1). This enables the zero-shot trans-
fer of knowledge that LMs learned about structures
during our pretraining to downstream structure pre-
diction tasks. For example, our zero-shot 10B pa-
rameter LM significantly outperforms the zero-shot
GPT-3 (175B) on a structure prediction benchmark
dataset (Figure 1). We accomplish this by reformu-
lating structure prediction as a series of unit tasks–
triple prediction tasks. We then train LMs on a col-
lection of task-agnostic structural corpora to gener-
ate triples from text. The design of triple represen-
tation is important: it unifies a wide set of standard
structure prediction tasks into the same task format.
We apply our pretrained model DEEPSTRUCT to
27 datasets spanning 10 structure prediction tasks,
including open information extraction, joint entity
and relation extraction, named entity recognition,
relation classification, semantic role labeling, event
extraction, coreference resolution, factual probe,
intent detection, and dialogue state tracking. We
further enhance the pretraining with multiple down-
stream structure prediction training sets and obtain
state-of-the-art performance on 20 of 27 datasets.
Our contributions are as follows:

• We improve structural understanding abilities of

pretrained LMs. Compared to traditional NLP
tasks that only consider the understanding of an
independent aspect of the text, structural under-
standing takes a step further that requires the
ability to integrate multiple relevant aspects into
a structure. We argue that it is important for LMs
to go beyond traditional understanding towards
structural understanding, as it requires a higher
level of intelligent competence and is more chal-
lenging. It can also benefit a wide spectrum of
NLP tasks that require structure-level understand-
ing capability.

• We propose structure pretraining, which further
pretrains the LMs to understand structures in the
text. The basic intuition is that the standard pre-
training helps LMs to understand individual as-
pects of the information in the text, our method
learns to integrate those individual aspects into
structures. Compared to existing approaches, this
method enables the zero-shot transfer of LMs to
structure prediction tasks. For instance, our 10B
LM produces superior zero-shot performance
compared to 175B GPT-3 on a representative
structure prediction task.

• We further equip our pretraining with multi-task
learning and apply our method to 27 structure
prediction datasets across 10 tasks. We achieve
state-of-the-art performance on 20 of 27 datasets
that we evaluate. We hope this can help facilitate
the structural understanding research in the NLP
community.

2 Structure Pretraining

Pretrained 
LM

(1) Task augmented pretrain-finetune

Task augmentation
Finetune on

task 0
Inference on

task 0

Pretrained 
LM

Structure-pretrain on
task-agnostic tasks

Inference on
task 0,1,2,3,...

(2) Structure pretraining (ours)

Requires task-specific
architectures or data
augmentation

Requires task-specific
examples
A task-specific model
for each task

LM learns to generate
structural triples from text

Inference on
multiple tasks

Zero-shot

Pretrained 
LM

Structure-pretrain on
task-agnostic tasks and
multiple tasks: 0,1,2,3,...

Inference on
task 0,1,2,3,...

LM learns to generate structural
triples from text with additional
task-specific examples

Multi-task

Inference on
multiple tasks

Figure 3: Comparing structure pretraining with standard
pretrain-finetune paradigm.
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The goal of our method is to improve the struc-
tural understanding capabilities of language models
(LMs), i.e., understanding the structures of text. As
shown in Figure 3, instead of using the standard
pretrain-finetune paradigm for each task, we intro-
duce structure pretraining that aims to teach LMs
to correspond to structures in a wide spectrum of
tasks at the same time. We evaluate their struc-
tural understanding ability on multiple structure
prediction tasks.

2.1 Generative Pretraining

While the LM is pretrained to understand a single
aspect of the text, structural understanding aims to
recover the entire structure in the text (Figure 2).
Structure pretraining is designed to bridge the gap
via guiding LMs to produce structures from the text.
It is ideal to generate arbitrary structures as needed.
However, this is infeasible due to the highly com-
plex nature of such structures.

As an alternative, we reformulate the structure
prediction as a combination of triple generation
tasks. We refer to a triple as (head entity; relation;
tail entity) describing relations between entities.
We design three pretraining tasks with a focus on
predicting the entities, relations, and triples respec-
tively. As shown in Figure 1, (i) Entity prediction
aims to output triples regarding the entities and
their types in an input sentence. We implement
this via prepending “entity:” as a prefix in the
input. (ii) Relation prediction aims to recover the
relations and corresponding types in the input as
a triple. Similarly, we add “relation” followed
by a task separator “:” to each input. (iii) Triple
prediction outputs the entire triple structure from
the input. We attach “triple:” to indicate this
task. These pretraining tasks are task-agnostic to
downstream tasks, enabling the zero-shot down-
stream transfer (Sec. 2.3).

Although the triple formulation is straightfor-
ward, we find that it is very flexible and able to
model all structure prediction tasks we consider.
A structure prediction task can be generally de-
composed into generating the entities, relations,
or triples. For example, named entity recognition
predicts the entities and their types. It can be nat-
urally represented as an entity prediction problem.
Besides, traditional structure prediction tasks fo-
cusing on relations (e.g., relation classification) or
triples (e.g., open information extraction) can be
formulated as relation or triple prediction task re-

Dataset #Sent. #Ent. #Rel.
(#Tri.) Task

T-REx (ElSahar et al., 2018) 6.2M 8.8M 11M entity, relation
TEKGEN (Agarwal et al., 2021) 18M 23.5M 45M entity, relation
KELM (Agarwal et al., 2021) 15.7M 54.5M 35.7M entity, relation
WebNLG (Gardent et al., 2017) 88K 348K 261K relation
ConceptNet (Speer and Havasi, 2012) 610K 3.1M 610k relation
OPIEC (Gashteovski et al., 2019) 10.7M 43.0M 21.5M triple

Table 1: Pretraining dataset statistics.

Deepstruct

Iago is<s> born in 1951 (Iago; instance of;entity: person)

Iago is <e>born in 1951 (Iago; instance of;entity: person)

Figure 4: Summary of training procedure.

spectively. A summary of all downstream tasks is
described in Sec. 2.2.

We frame the pretraining as a conditional genera-
tion task where the input corresponds to text x, and
the output y is a sequence of triples. Our pretrain-
ing can be expressed as estimating a conditional
distribution p(y|x) in a probabilistic framework.
We use an autoregressive LM to model p(y|x).

Pretraining Data We train the model on a col-
lection of task-agnostic corpora including pre-
built large-scale alignments between text and
triples. In particular, we use T-REx (ElSahar
et al., 2018), TEKGEN and KELM (Agarwal et al.,
2021), WebNLG (Gardent et al., 2017), Concept-
Net (Speer and Havasi, 2012). These corpora align
text to triples consisting of high-quality entities
and relations in knowledge graphs (e.g., Wikidata),
which are used for entity and relation prediction
tasks. In addition, for triple prediction tasks, we
use OPIEC (Gashteovski et al., 2019) that provides
open schema triples. The pretraining data statistics
and the corresponding pretraining tasks are shown
in Table 1.

Figure 4 shows an example of the training pro-
cedure for the entity prediction task based on the
input/output sample below.

Input entity: Iago is born in 1951
Output (Iago; instance of; person)

where the input text and output triple are aligned,
provided by our pretraining data. Tokens are pre-
dicted autoregressively starting with <s> token
and ending with <e> token. The head entity (i.e.,
Iago) and the tail entity (i.e., person) of the output
triple then serve as the predictions of named entity
recognition.
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Open information extraction
(4 datasets)

oie  oie2016: Born in 1951 in
Tbilisi, Iago is a Georgian artist 

OIE2016 WEB NYT PENN

input

(Iago; Born in; 1951)
output

(Iago; is a; Georgian artist) 

Relation classification
(2 datasets)

rc  tacred: Alice is Bob's
mother. The relationship
between Alice and Bob is 

TACRED

input

(Alice; mother; Bob) 
output

FewRel 1.0

Factual probe
(2 datasets)

fp  t-rex: Daniel, born in
1970, is an Astralian author 

Google-RE

input

output

T-REx

(Daniel; date_of_birth; 1970) 

Semantic role labeling
(3 datasets)

srl conll05: Scotty [accepted] the
decision with indifference and did not

enter the arguments 

CoNLL05 WSJ
input

output

(Scotty; instance of; subject) 

CoNLL05 Brown CoNLL12

(decision; instance of; object) 

Event extraction
(4 datasets)

ee ace2005: Barack Obama won the 44th
President of the United States 

ACE2005 Trigger Id

input

output

(Obama; instance of; president)

Joint entity and relation extraction
(4 datasets)

CoNLL04 ADE NYT ACE2005

Coreference resolution
(1 datasets)

CoNLL12

Dialogue state tracking
(1 datasets)

MultiWOZ 2.1

Intent detection
(2 datasets)

ATIS SNIPS

Named entity recognition
(4 datasets)

CoNLL03OntoNotes GENIA ACE2005

cr conll12: Deterrents
doesn't work terribly well

when an enemy values your
death more than his life 

input

output
(an enemy; refer to; his) 

jer ade: The Davao Medical Center
is a regional government hospital 

input

output

(hospital; part of; government) 

(Davao Medical Center; instance of; hospital)

dst multiwoz: [User]: I am looking
for a place to to stay that is cheap
in a type of hotel. [Agent]: Okay 

input

output
([User]; hotel price range; cheap)

([User]; hotel type; hotel)

ner genia: Japan began the
defence of their Asian Cup title 

input

output

(Japan; instance of; location)

(Asian Cup; instance of; race)

id atis: Play the song
little robin redbreast 

input

output

(intent; is; play music)

ACE2005 Trigger CI

ACE2005 Argument Id

ACE2005 Argument CI

Figure 5: Summary of tasks and datasets. Blue: entity prediction task; Red: relation prediction task; Purple: entity and relation
prediction task; Yellow: triple prediction task.

2.2 Tasks

It is resource-intensive to create large-scale struc-
tural understanding datasets from scratch. There-
fore, we collect existing datasets in the field of
structure prediction for the evaluation. We consider
27 datasets spanning across 10 structure prediction
tasks as shown in Figure 5. Detailed descriptions
and sizes are shown in Appendix A.

2.3 Zero-Shot

The zero-shot DEEPSTRUCT refers to the setting
where the pretrained model is used without any
task-specific training at inference time. This differs
from prior fully supervised methods. This setting
is challenging as it might be difficult for humans to
understand the tasks without prior examples. For
example, if we are asked about “semantic role la-
beling” that aims to recover the predicate-argument
structure, it is hard to understand what this really
means. Nevertheless, for at least some settings,
zero-shot is closest to how humans perform tasks.
For example, for named entity recognition, a hu-
man would likely know what to do.

We enable the zero-shot transfer to structure
prediction tasks via converting the downstream
tasks to one or a combination of the pretraining
tasks. As shown in Figure 5, at inference time,
seven structure prediction tasks are formulated as
entity prediction with the prefix “entity:” at-
tached to the input example (in blue), while one
task is cast as relation prediction with the prefix
“relation:” (in red). In addition, open infor-
mation extraction is a triple prediction task with
the prefix “triple:” (in yellow), and joint en-
tity and relation extraction (JER) is a combination
of entity and relation prediction (in purple). For

the entity and relation prediction, we use the pre-
fix “entity:” and “relation:” respectivley.
Besides, for each dataset, we build a schema align-
ment between pretraining and downstream dataset
(details are described in Sec. 5). The output triples
are then decoded as corresponding structure predic-
tions based on the pre-built schema alignment.

2.4 Multi-Task

However, the distribution of the pretraining data is
not perfectly aligned with the distribution of down-
stream datasets. This results in a shift in the output
distribution of the model. The zero-shot setting can-
not perform at its best on several out-of-distribution
tasks including dialogue state tracking. The reason
is that its desired output is a dialogue state, which
is lacking in our task-agnostic pretraining corpora.
To mitigate this, we integrate multiple structure pre-
diction datasets into the pretraining corpora, and
train our method on the mixture of the datasets. We
list an example input and output format for each
task in Figure 5. For all datasets of a particular task,
we adopt the same input and output format. We
also add task name and dataset name followed by
the separator “:” as a prefix to each input example.
For example, we add “jer ade:” to indicate one
of the JER datasets, ADE. More examples of each
task and dataset are shown in Table 16. In con-
trast to fully pretrain-finetuned models that store a
copy of parameters for each task, this setting is a
lightweight alternative and produces a single model
for all tasks, improving parameter sharing.

After multi-task training, for each task, we
further finetune our method on the task-specific
dataset. The intuition is that finetuning is the de
facto way to leverage pretrained LMs to perform
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downstream tasks. We aim to test an upper bound
of the transfer performance of our structure pre-
training via the additional finetuning phase. For
both multi-task settings, we use the same data for-
mat with the training at test time. Basically, we add
the task name and dataset name followed by the
separator to the input example.

3 Experiments

In this section, we show that DEEPSTRUCT suc-
cessfully transfers to the structure prediction tasks
considered and obtain state-of-the-art results on 21
of 28 datasets we evaluate. All results are obtained
via structure pretraining a pretrained 10B param-
eter LM, GLM (Du et al., 2021). The details of
the experimental setup, datasets, and comparison
methods are described in Appendix A.

3.1 Main Results

We have two settings as described in Sec. 2: zero-
shot and multi-task. We also finetune the multi-
task version on each downstream dataset. In total,
we have three versions of DEEPSTRUCT (Cf. Ta-
ble 2). For comparison: we report the performance
of TANL (Paolini et al., 2021) when available. We
also show the best performance among the task-
specific models that are described in Appendix A.

With the zero-shot setting, a single model is
used to perform on multiple tasks without the need
of any task-specific training. This is in contrast
to previous approaches that rely on task-specific
models and datasets for each task. In Table 3,
we also report the zero-shot performance of GPT-
3 175B (Brown et al., 2020) on CoNLL04 and
ADE (JER) via formulating the task as a ques-
tion answering problem via prompting (details of
the formulation are described in Sec. 5). JER re-
quires the model to extract a set of entities and
a set of relations between pairs of entities from
the input text. Each predicted entity or relation
has to be also assigned to an entity or a relation
type. Zero-shot DEEPSTRUCT 10B outperforms
zero-shot GPT-3 175B by a large margin without
any prompt engineering. As shown in Table 2,
overall, DEEPSTRUCT’s zero-shot performance is
still far from that of task-specific supervised mod-
els on most tasks. The only exception is that the
zero-shot setting obtains the new state-of-the-art
performance on the factual probe with averaging
20% P@1 improvement. This is because the task-
specific method is also zero-shot. Note that we

have removed the overlapped sentences with the
T-REx test sets (factual probe) from our pretrain-
ing data. The result indicates that the structure
pretraining is able to adapt the LM knowledge to
the tasks by making LM aware of symbolic knowl-
edge in the pretraining corpora. Besides, the zero-
shot approach generalizes well to all task-agnostic
pretraining tasks including entity prediction (e.g.,
named entity recognition), relation prediction (e.g.,
relation classification), and triple prediction (e.g.,
open information extraction).

Similar to the zero-shot setup, we only train a
single model to conduct all the downstream tasks
under the multi-task setting. This is different from
the supervised models that use task-specific models
and parameters. We achieve state-of-the-art perfor-
mance on three datasets. For the other datasets,
we obtain a competitive performance within a few
points of the best-compared methods. Notably,
most structure prediction tasks show a large gain
from zero-shot to multi-task. This suggests that
most tasks are out-of-distribution of our structure
pretrained model. Nevertheless, our method ap-
pears to be able to adapt to the downstream distribu-
tions, recovering strong performance in the multi-
task setting. Another explanation is that multi-
task examples help the model better understand
the downstream tasks, such as the output format
of each task. We also observe strong multi-task
performance on FewRel, which is a low-resource
structure prediction benchmark. This suggests that
the multi-task setting is beneficial in low-resource
regimes via transferring knowledge from similar
tasks. For our multi-task training, we leave out the
ACE2005 named entity recognition dataset due to
the overlap between train and test splits for differ-
ent tasks. After finetuning, we obtain state-of-the-
art performance on 21 datasets. For instance, we
obtain a +8.0 absolute improvement and a +2.9 ab-
solute improvement on CoNLL05 Brown (semantic
role labeling) and TACRED (relation classification)
compared to the state-of-the-art methods.

All above results are based on a pretrained 10B
parameter LM, GLM. GLM is an autoregressive
LM. In addition, the context x is encoded by a
bidirectional encoder. In principle, generative LMs,
such as T5 (Raffel et al., 2019), BART (Lewis et al.,
2020) and GPT-3 (Brown et al., 2020), can also be
used with the proposed structure pretraining for the
structure prediction tasks as well. We leave this as
one of the future investigations.
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Task Dataset Metric Task-specific model
(w/o extra data) TANL

DEEPSTRUCT

zero-shot multi-task
w/ finetune

Open
information
extraction

OIE2016

F1

67.0 (Stanovsky et al., 2018) - 28.1 71.2 71.3
WEB 58.9 (Stanovsky et al., 2016) - 43.8 50.8 49.1
NYT 38.3 (Saha and Mausam, 2018) - 28.9 43.6 45.0
PENN 42.6 (OpenIE4 3) - 51.0 54.5 45.1

Relation
classification

TACRED

F1

73.9 (Sainz et al., 2021) 71.9 36.1 74.9 76.8

FewRel 1.0

5-way 1-shot 90.1 (Soares et al., 2019) 93.6±5.4 72.4±6.9 93.6±6.0 98.4±2.8
5-way 5-shot 89.5 (Gao et al., 2019) 97.6±3.2 70.8±8.0 96.4±4.2 100.0±0.0
10-way 1-shot 83.4 (Soares et al., 2019) 82.2±5.1 67.6±4.5 92.2±6.4 97.8±2.0
10-way 5-shot 81.8 (Gao et al., 2019) 89.8±3.6 66.4±6.3 94.6±3.6 99.8±0.6

Joint entity
and relation
extraction

CoNLL04

F1
(Ent.
Rel.

)

88.9 (Zhao et al., 2020) 90.3 48.3 87.4 90.7
71.9 71.4 25.8 69.6 78.3

ADE 89.3 (Eberts and Ulges, 2020) 91.2 60.7 90.2 91.1
78.8 83.8 10.6 83.7 83.8

NYT - (Yuan et al., 2020) 94.9 60.5 95.4 95.9
84.6 90.8 28.6 93.9 93.3

ACE2005 88.4 (Luan et al., 2019) 88.9 31.8 87.8 90.0
63.2 63.7 5.3 54.0 66.8

Event
extraction ACE2005

Trigger Id

F1

72.5 (Nguyen and Nguyen, 2019) 72.9 - 71.7 73.5
Trigger Cl 69.8 (Nguyen and Nguyen, 2019) 68.5 - 67.9 69.8
Argument Id 59.9 (Nguyen and Nguyen, 2019) 50.1 - 54.9 59.4
Argument Cl 52.5 (Wadden et al., 2019) 48.5 - 52.7 56.2

Coreference
resolution CoNLL12

MUC 86.3
(Wu et al., 2020)

81.0 - 63.9 74.9
B3 77.6 69.0 - 57.7 71.3

CEAFϕ4 75.8 68.4 - 60.2 73.1
Ave. F1 79.9 72.8 - 60.6 73.1

Intent
detection

ATIS F1 97.8 (E et al., 2019) 97.6 - 66.6 97.8
SNIPS 97.4 98.7 - 78.4 97.3

Semantic
role

labeling

CoNLL05 WSJ
F1

88.8
(Shi and Lin, 2019)

89.3 - 95.6 95.2
CoNLL05 Brown 82.0 84.1 - 92.0 92.1
CoNLL12 86.5 87.7 - 97.6 96.0

Named
entity

recognition

CoNLL03

F1

93.5 (Yu et al., 2020b) 91.7 44.4 93.1 93.0
OntoNotes 90.4 (Yan et al., 2021) 89.9 2.5 87.6 87.8
GENIA 80.5 (Yu et al., 2020b) 76.4 47.2 80.2 80.8
ACE2005 86.9 (Li et al., 2020a) 84.9 28.1 - 86.9

Dialogue state
tracking

MultiWOZ 2.1 Joint
Acc. 55.7 (Hosseini-Asl et al., 2020) 51.4 - 53.5 54.2

Factual probe Google-RE P@1 78.0 (Petroni et al., 2020) - 97.9 90.3 -
T-REx 62.6 - 85.0 71.0 -

Table 2: Results on all tasks. All evaluation scores are higher the better. TANL is introduced in (Paolini et al., 2021).
The bold denotes the best, and the underline indicates the second best. Detailed results are included in Appendix A.

Model CoNLL04 ADE

Ent. Rel. Ent. Rel.

GPT-3 175B zero-shot 34.7 18.1 5.8 1.3

zero-shot 48.3 25.8 60.7 10.6
DEEPSTRUCT multi-task 87.4 69.6 90.2 83.7

w/ finetune 90.7 78.3 91.1 83.8

Table 3: Compare DEEPSTRUCT to GPT-3 (Brown et al.,
2020) 175B zero-shot on CoNLL04 and ADE datasets
(joint entity and relation extraction). Ent. and Rel.
denote entity F1 and relation F1 respectively.

3.2 Ablation Studies

Pretraining Strategies As the key question of
our work is to investigate how structure pretrain-
ing improves the structural understanding ability of
LMs, we examine how different pretraining strate-
gies impact the downstream performance. We eval-
uate the below settings on the CoNLL04 (JER). The
first two settings examine the relative importance of

the pretraining data: (i) With example-proportional
mixing: We follow (Raffel et al., 2019) with a mix-
ing rate maximum of 10K to balance the different
sizes of datasets. All other components are kept the
same with DEEPSTRUCT multi-task with finetun-
ing. (ii) With entity and relation augmentation: We
add special tokens “[]” to indicate the positions
of the entities and relations in a sentence. Addi-
tional details are shown in Appendix A.5. (iii) No
pretrain, finetune: We remove structure pretrain-
ing, and only finetune the LM on CoNLL04. (iv)
Zero-shot: We only use the task-agnostic datasets
and exclude the multi-task datasets in the pretrain-
ing. (v) Multi-task: We use the multi-task model
without finetuning. (iv) and (v) are the same with
the zero-shot and multi-task settings in Sec. 2. (vi)
Finetune: The multiple downstream datasets are
excluded in the structure pretraining, but the model
is finetuned on CoNLL04.
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Method Ent. Rel.

DEEPSTRUCT 220M multi-task finetune 90.7 75.7
With example-proportional mixing 88.0 73.1
With entity and relation augmentation 88.6 74.9

No pretrain 220M, finetune 84.7 63.5
DEEPSTRUCT 220M zero-shot 51.5 22.9
DEEPSTRUCT 220M multi-task 76.9 55.2
DEEPSTRUCT 220M finetune 87.4 70.4

Table 4: Ablation over different facets of structure pretraining
on CoNLL04 test set (joint entity and relation extraction). Ent.
and Rel. indicate entity F1 and relation F1 respectively.

Table 4 shows the results. First, the distribu-
tion of pretraining data does not significantly shift
from that of most tasks. This limits the impact
of the balanced strategy ((i)). The data augmen-
tation ((ii)) does not bring additional benefits to
the downstream performance. This confirms that
the key to the success of structure prediction is our
formulation that narrows down a complex struc-
ture to a set of triple prediction tasks. This allows
the pretraining to capture the entities and relations
that are important for tasks. Second, removing
the structure pretraining ((iii)) provides the most
direct ablation of how much structure pretraining
helps. Structure pretraining significantly improves
the LM in structure prediction. This is due to the
gap between LM pretraining and downstream struc-
tural understanding. For example, the distribution
of structure prediction datasets is different from
or is considered as out-of-distribution for the pre-
training data. Structure pretraining improves the
adaptation to those datasets. Next, similar to the
findings in Table 2, we find that both task-agnostic
training sets ((iv)) and multi-tasks datasets ((v))
contribute to the strength of structure pretraining.
In particular, finetuning is still very important to
improve the downstream performance (IV et al.,
2021). However, it produces a task-specific model
for each dataset instead of a unified model for all
tasks as in our zero-shot or multi-task setup. Com-
pared to only finetuning the model on a downstream
dataset ((vi)), the multi-task setting obtains sizable
improvements. This is because if the downstream
dataset sizes are small such as of CoNLL04, multi-
task learning can be extremely helpful in the low-
resource regimes (Paolini et al., 2021). We conduct
the above ablation studies using a base version of
DEEPSTRUCT with 220M parameters.

Scaling Laws As it is often the case that larger
models substantially improve the transferring ca-
pabilities of LMs (Brown et al., 2020; Wei et al.,

2021), we explore how model scaling benefits the
structure pretraining. We evaluate the effect on
models with 110M, 220M, 2B, 10B parameters on
JER datasets with multi-task and multi-task fine-
tuned DEEPSTRUCT (Cf. Figure 6).

As expected, average performance across the
datasets improves as models grow larger. We find
that when the models reach the order of 10B pa-
rameters, structure pretraining obtains the best per-
formance. The 10B parameter model significantly
improves the results compared to the 110M param-
eter model. One reason is that for small-scale mod-
els, learning across 28 structure prediction datasets
during the structure pretraining may exceed the
model capacity. For larger models, structure pre-
training fully utilizes the model capacity and also
teaches the models to generate triples according
to the downstream tasks, allowing them to gener-
alize well to most tasks with the rest capacity. It
is also interesting that the performance does not
seem to significantly saturate, indicating that the
performance may further improve with larger-scale
models. Under both setups, we observe similar
trends. We also see that the model size matters
more to the multi-task setting than to the finetuned
version, suggesting finetuning is able to specifically
adapt to a task given a limited model size. The main
pitfall is its generalization to more tasks.

4 Related Work

Pretrained LMs (Devlin et al., 2019; Radford et al.,
2019b; Yang et al., 2019) are the key ingredi-
ents in contemporary NLP. Sequence-to-sequence
(seq2seq) LMs target conditional generation, such
as T5 (Raffel et al., 2019), BART (Lewis et al.,
2020) and GLM (Du et al., 2021). These models
have benefited a wide range of nature language gen-
eration tasks such as summarization (Zhang et al.,
2020) and text infilling (Zhu et al., 2019; Shen
et al., 2020). Recent attempts of generative pre-
diction (Paolini et al., 2021; Schick and Schütze,
2021; Lester et al., 2021) have found that seq2seq
models are able to provide a unified solution for
modeling a wide set of NLP tasks. While existing
approaches focus on text-to-text generation, DEEP-
STRUCT aims to perform text-to-triple generation.

Multi-task learning (Caruana, 1997) aims to train
a model for multiple tasks simultaneously. For
deep learning, it is usually categorized into hard
weight sharing and soft weight constraint (Ruder,
2017). In the context of NLP, weight sharing has
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Figure 6: Model scaling results on joint entity and relation extraction (JER) datasets. Left: entity F1; Right: relation F1.

been adopted in (Collobert and Weston, 2008; Yang
et al., 2016; Liu et al., 2020). Since the emerging of
large pretrained LMs (Radford et al., 2019a; Devlin
et al., 2019; Yang et al., 2019), multi-task training
has been shown effective to enhance LMs’ trans-
ferability to downstream tasks (Raffel et al., 2019).
Recent studies (Wei et al., 2021) also show that
pretrained models finetuned with abundant down-
stream tasks can conduct effective zero-shot learn-
ing. The main difference is that DEEPSTRUCT

trains across multiple structure prediction datasets
in structure pretraining with task-agnostic corpora,
where we cast all datasets into triple formats.

Structure prediction is a long-standing challenge
that relates to many NLP applications such as open
information extraction (Gashteovski et al., 2019),
named entity recognition (Sang and Meulder, 2003;
Weischedel et al., 2013), and relation classifica-
tion (Zhang et al., 2017; Han et al., 2018; Gao
et al., 2019). To handle different structure pre-
diction problems, prior work present a variety of
task-specific models in the form of sequence tag-
ging (Stanovsky et al., 2018; Li et al., 2019), ma-
chine reading comprehension (Zhao et al., 2020)
and text classification (Soares et al., 2019), which
hinders the knowledge transfer across different
tasks. TANL (Paolini et al., 2021) proposes a
translation-based approach to unify different struc-
ture prediction tasks with task-specific data aug-
mentation. By contrast, our DEEPSTRUCT unifies
more structure prediction tasks via a single model
and an uniform data format.

5 Discussion

Related Models Recent studies have provided
unified solutions for structural prediction tasks.
We focus on the comparison between our DEEP-

STRUCT to the state-of-the-art TANL (Paolini
et al., 2021) and DeepEx (Wang et al., 2021).
TANL (Paolini et al., 2021) proposes task-specific
data augmentation (i.e., augmented natural lan-
guage) that annotates task information and predic-
tions in the input and output respectively for each
structure prediction task. The main difference is
that DEEPSTRUCT decomposes the structure pre-
diction tasks into a collection of triple generation
tasks. The triple format serves as the unified rep-
resentation for all considered structure prediction
tasks without the need of introducing new data aug-
mentation as in TANL. While TANL mainly works
in the multi-task setting, we additionally enable the
zero-shot transfer via the task-agnostic structure
pretraining. DeepEx (Wang et al., 2021) explores
the attention matrices of pretrained LMs via beam
search to generate triples for information extraction
tasks. Following the search, DeepEx introduces an
extra ranking stage to improve the quality of the
triples. Differently, DEEPSTRUCT aims to generate
the triples for a wide set structure prediction tasks
in an end-to-end fashion thanks to the proposed
structure pretraining.

Besides, both TANL and DeepEx explore rela-
tively small-scale pretrained LMs. Instead, DEEP-
STRUCT scales up to 10 billion parameters. Fig-
ure 6 shows that the performance improvements
follow the scaling law (Raffel et al., 2019; Lester
et al., 2021; Wei et al., 2021; Sanh et al., 2021; Liu
et al., 2021). Based on our results, DEEPSTRUCT

generalizes better to more structure prediction tasks
compared to TANL and DeepEx.

Zero-Shot Setup For our zero-shot setup, we fol-
low the zero-shot usage in recent pretrained LM
studies (Brown et al., 2020; Wei et al., 2021; Sanh
et al., 2021). It refers to the setting where a pre-
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query entity: 
(Iago; instance of; person)

Born in 1951 in Tbilisi , Iago is a Georgian artist .

Q: Does the entity "Iago" in the above sentence
belongs to type "person"?
A: Yes.

Q: Does the relation between "Iago" and "Tbilisi" in
the above sentence  belongs to type "lives in"?
A: Yes.

query relation: 
(Iago; lives in; Tbilisi)

predict entity: 
person

predict relation: 
lives in

Figure 7: An example of GPT-3 zero-shot setting. To predict
entities, we convert the gold entity triple (Iago; instance of;
person) to an entity based true-or-false question. Similarly, to
predict relations, the gold relation triple (Iago; lives in; Tbilisi)
is turned into a relation based true-or-false question. The task
predictions are correct if the answers are “yes”.

trained model is used to directly perform down-
stream tasks without including downstream train-
ing sets in its own pretraining data. For DEEP-
STRUCT our pretraining data is task-agnostic. For
each task, we build an offline alignment between
the schema of the pretraining data and the task
dataset based on co-occurrence information in the
pretraining data and downstream data (Angeli et al.,
2015). We then manually curate the alignment.
The resulting schema alignment is part of our re-
lease 1. At test time, we convert each task to one or
a combination of the pretraining tasks based on Fig-
ure 5: entity, relation, and triple prediction. After
producing the triples, we use the pre-built schema
alignment to obtain the task predictions.

For GPT-3 zero-shot setting, we follow the
prompting method in the GPT-3 paper (Brown
et al., 2020). In more detail, we aim to test the
upper bound performance of GPT-3 for structure
prediction, in particular the JER task. Therefore, in-
stead of using standard prompts in the form of ques-
tion answering, we design the prompts for “true-
or-false” questions based on the ground truth. In
this case, GPT-3 only answers with “yes” or “no”
to produce a task prediction (Cf. Figure 7).

6 Conclusion

We improve structural understanding capabilities
of language models. We evaluate it on a wide set of
structure prediction tasks including 10 tasks and 28
datasets, and successfully transfer pretrained lan-
guage models to them through the proposed struc-
ture pretraining, which teaches language models to
output triples from text. We enable both zero-shot
and multi-task transfer learning. DEEPSTRUCT ob-
tains state-of-the-art results on 21 of 28 datasets.
The result shows that pretrained language models
can master higher-level understanding (e.g., struc-
tural understanding), which may benefit more NLP

tasks. We hope it will foster future research along
the language structural understanding direction.

7 Ethical Considerations

We hereby acknowledge that all of the co-authors
of this work are aware of the provided ACM Code
of Ethics and honor the code of conduct. This
work is mainly about the pretraining and multi-
task learning of LMs for structural prediction. The
followings give the aspects of both our ethical con-
siderations and our potential impacts to the com-
munity. This work uses LMs, for which the risks
and potential harms are discussed in (Brown et al.,
2020). There are potential undesirable biases ex-
isted in task-agnostic data (e.g., from Wikipedia)
and multi-task downstream datasets (mostly cre-
ated from news articles). We do not anticipate
production of harmful outputs, especially towards
vulnerable populations, after using our model or
training NLP models on our datasets.

8 Environmental Considerations

We use the same pretrained LMs as in (Du et al.,
2021). The energy cost and carbon footprint for the
pretrained models were 80.6 MWh and 4.6 tCO2e,
respectively. The additional structure pretraining
gradient-steps is less than 1.5% of the number of
pretraining steps of LMs, and so the estimated ad-
ditional energy cost is comparatively smaller. In
addition, training and tuning pretrained LMs on a
wide range of tasks and datasets consume plenitude
of energy and increase emissions of carbon dioxide.
To alleviate the problem, in this work we make
efforts to study the multi-task training, which only
involves training on a combination of all datasets
once. Our results (e.g., Figure 6) show that, despite
the gap between multi-task and multi-task finetune
on smaller models, the performance gap becomes
minor when the model size scales up to 10 billion
parameters. This indicates that we can reduce en-
ergy consumption when training large pretrained
models via employing the multi-task training.
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A Experimental Setup

A.1 Implementation Details
Model Architecture We leverage the General-
ized Language Model (GLM) as our base language
model, which is pre-trained on autoregressive blank
infilling objectives. It improves the pre-train – fine-
tune consistency via cloze-style fine-tuning, and
naturally handles variable-length blank infilling
which is crucial for many downstream tasks. To
some extend, GLM can be viewed as an adaptive
encoder-decoder architecture.

GLM has the same vocabulary as GPT2 series
models’, covering 50257 tokens. In this work, we

leverage its models in four different scales: 110M,
220M, 2B, and 10B, in which 110M is pre-trained
over English Wikipedia and Book-corpus and the
others are pre-trained over the Pile corpora (Gao
et al., 2021) (approximately the same corpora for
training GPT-3). GLM has been reported to out-
perform T5 over text summarization challenges2,
which is a task that accords with structural predic-
tion. Compared to GPT-3, GLM is a bidirectional
model but can conduct autoregressive generation.

Structure Pretraining Procedure

• Pretraining for zero-shot: we conduct the pre-
training on 8 NVIDIA DGX-A100 machines
using an Adam optimizer with 5e-6 learning
rate and 0.1 learning rate decay. We train the
model with batch size 4 per GPU for 3 epochs.
We select the last iteration checkpoint.

• Downstream multi-task training: we conduct
the multi-task training on 8 NVIDIA DGX-
A100 machines using an Adam optimizer with
5e-6 learning rate and 0.1 learning rate decay.
We train the model with batch size 4 per GPU
for 6 epochs and select the best checkpoint
for each task based on their development set
performance.

• Inference: In the inference, length penalty
and minimum target length are the most im-
portant hyper-parameters. Length penalty is
a float between 0 and 1 to control the GLM’s
generation length (the larger the longer). For
entity-based tasks (e.g., NER, SRL, Event Ex-
traction), a larger length penalty is preferred
(e.g., 0.8-1.0); for triple-based tasks (e.g., JER,
OIE, DST), a smaller one is preferred (e.g.,
0.3-0.5); for other tasks that require a spe-
cific number of predicted triples (e.g., Rela-
tion Classification, Intent Detection, Factual
Probe), we will trim the generation result in
the postprocessing.

Pretraining data We apply the task-agnostic pre-
training data presented in Table 1 as described in
Section 2.1. An exception was for T-REx (ElSahar
et al., 2018), where there is an overlap between
itself and the Factual Probe task dataset T-Rex used
in (Petroni et al., 2020). To avoid the leak, we only
sample a portion of the T-REx as our pretraining
data to exclude samples appeared in Factual Probe.

2https://github.com/THUDM/GLM
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Task Dataset #Sents
Train Dev Test

Open information extraction

OIE2016 2,278 571 589
WEB - - 920
NYT - 300 149
PENN - - 51

Relation classification
TACRED 68,124 22,631 15,509
FewRel 1.0 56,000 1,120 –

Joint entity and relation extraction

CoNLL04 922 231 288
ADE 3,845 – 427
NYT 56,195 5,000 5,000
ACE2005 7,477 1,789 1,517

Event extraction
ACE2005 Trigger 11,178 649 642
ACE2005 Argument 4,450 531 612

Coreference resolution CoNLL12 3,991 2,359 2,421

Intent detection
ATIS 4,478 500 893
SNIPS 13,084 700 700

Semantic role labeling

CoNLL05 39,832 3,206 –
CoNLL05 WSJ 39,832 3,206 5,221
CoNLL05 Brown 39,832 3,206 779
CoNLL12 89,549 32,397 21,499

Named entity recognition

CoNLL03 14,041 3,250 3,453
OntoNotes 59,924 8,528 8,262
GENIA 14,824 1,855 1,854
ACE2005 7,299 971 1,060

Dialogue state tracking MultiWOZ 2.1 62,367 7,371 7,368

Factual probe
Google-RE - - 552
T-REx - - 3,403

Table 5: Statistics of downstream datasets.

In the following sections, we introduce the
dataset formats, comparison methods and training
details for all 10 structural prediction tasks.

A.2 Open Information Extraction

For OIE, we are given a sentence and asked to
extract triples.

Input Born in 1951 in Tbilisi, Iago is a Geor-
gian artist.
Output (Iago; Born in; 1951) (Iago; is a;
Georgian artist)

Datasets We evaluate the performance of
the open information extraction (OIE) sys-
tems on OIE benchmark datasets consisting of
OIE2016 (Stanovsky and Dagan, 2016), a dataset
from Newswire and Wikipedia automatically con-
verted from QA-SRL (He et al., 2015); three
news datasets NYT (de Sá Mesquita et al., 2013),
WEB (de Sá Mesquita et al., 2013), PENN (Xu
et al., 2013). The statistics of the benchmark are
shown in Table 5. The preprocessed datasets are
obtained from Supervised OIE (Stanovsky et al.,
2018).

Comparison Methods We compare our method
DEEPSTRUCT to the following prominent OIE sys-
tems recently evaluated in (Stanovsky et al., 2018):
ClausIE (Corro and Gemulla, 2013), Open IE4 3,
PropS (Stanovsky et al., 2016), RnnOIE (Stanovsky
et al., 2018). We also compare to MAMA with

3
https://github.com/dair-iitd/OpenIE-standalone

BERTLARGE recently introduced in (Wang et al.,
2020) that also leverages pre-trained LMs to extract
open triples. See results in Table 6.

Training Details During multi-task fine-tuning,
we train our model on OIE2016 training set for
10 epochs, with a per GPU batch size 4. During
inference, for oie2016, we choose a length penalty
of 0.8. For WEB, NYT, and PENN, they only
contain the test sets, and during the inference, we
use a length penalty of 0.5 and trim the prediction
to reserve only one triple.

A.3 Relation Classification

For this task, we are given an input sentence with
gold head and tail entities aiming to classify the
relation type in a pre-defined category.

Input The 1976 Thomas Cup was the tenth
edition of Thomas Cup, the world cham-
pionship of men’s international team bad-
minton (its female counterpart is the Uber
Cup). The relationship between Uber Cup
and badminton is
Output (Uber Cup; sport; badminton)

Datasets We evaluate on FewRel (Han et al.,
2018) and TACRED (Zhang et al., 2017).

• FewRel contains 100 relations with 7 in-
stances for each relation. The standard evalua-
tion for this benchmark uses few-shot N-way
K-shot settings. The entire dataset is split into
the train (64 relations), validation (16 rela-
tions), and test set (20 relations). We report
the same results on the dev set for all the set-
tings because of our zero-shot setting.

• TACRED is a large-scale relation classifica-
tion benchmark that consists of 106,344 ex-
amples and 41 relation types including 68,164
for training, 22,671 for validation, and 15,509
for testing. We do not use train and validation
sets and report the result on the test set.

We use F1 to evaluate the results. We parse every
relation type and the corresponding head and tail
entities from every original sample, and formulate
every sample into the aforementioned input and
output.

Comparison Methods We compare our method
with the following supervised methods. (i) BERT-
PAIR (Gao et al., 2019) is a sequence classification
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model based on BERT, optimizing the score of
two instances expressing the same relation. (ii)
BERTEM + Matching the Blanks (MTB) (Soares
et al., 2019), which uses entity markers (BERTEM)
and additional pre-training of relations on a large-
scale corpus (i.e., MTB). (iii) TANL (Paolini et al.,
2021) is a sequence to sequence model based on
T5 (Raffel et al., 2019) aiming to generate struc-
tured objects from an encoded natural language
format. See results in Table 7.

Training Details During multi-task fine-tuning,
we train our model on TACRED/FewREL-meta
training set for 20 epochs, with a per GPU batch
size of 4. During inference, for TACRED, we pro-
vide the decoder with the prefix “( head; ” and ask
the model to generate the relation and tail. FewRel
dev set results are acquired similarly. We choose a
length penalty of 0.5.

A.4 Factual Probe
Given an input sentence with gold head entity name
and relation name, the task aims to fill in the tail
entity.

Input Daniel Bowen, born in 1970, is a Mel-
bourne resident best known as the author of
the blog, Diary of an Average Australian.
Output (Daniel Bowen; date of birth; 1970)

Datasets We consider the Google-RE consisting
of 3 relations and 5,527 facts, and T-REx with 41
relations and 34,039 facts of the LAMA bench-
mark (Cao et al., 2021). We evaluate the results
using mean precision at one (P@1), where higher
values are better. We parse every relation type and
the corresponding head and tail entities from every
original sample, and formulate every sample into
the aforementioned input and output.

Comparison Methods We compare to pre-
trained LM-based methods that leverage the output
probabilities of the LM to make predictions given
the sentence known to express the fact. Two meth-
ods are considered: (i) LAMA (Cao et al., 2021)
leverages the input sentence without the tail entity
to query the LMs, and (ii) LAMA-Oracle (Petroni
et al., 2020) enriches the query with (at most) five
gold sentences as additional context. See results in
Table 15.

Training Details During multi-task fine-tuning,
we train our model on TACRED/FewREL-meta
training set for 20 epochs, with a per GPU batch

size of 4. During inference, for TACRED, we pro-
vide the decoder with the prefix “( head; ” and ask
the model to generate the relation and tail. FewRel
dev set results are acquired similarly. We choose a
length penalty of 0.5.

A.5 Joint Entity and Relation Extraction
Given a sentence, this task aims to extract a set
of entities (one or more consecutive tokens) and
a set of relations between pairs of entities. Each
predicted entity and relation has to be assigned to
an entity or a relation type.

Input Blackstone already holds a 50 percent
stake in the two parks that make up Universal
Orlando .
Entity Output (Blackstone; instance of; or-
ganization) (parks; instance of; organization)
(that; instance of; organization) (Universal Or-
lando; instance of; organization)
Relation Output (Blackstone; employer;
parks)

Datasets In the ablation study, we also present
a model variant with entity and relation augmen-
tation (e.g., we asked DEEPSTRUCT to generate
“([Iago]; instance of; person) ([Iago]; city_of_birth;
[Tbilisi])” for the case in Figure 1).We experiment
on the following datasets: CoNLL04 (Roth and
Yih, 2004), ADE (Gurulingappa et al., 2012), NYT
(Riedel et al., 2010), and ACE2005 (Walker and
Consortium, 2005).

• The CoNLL04 dataset: CoNLL04 consists
of annotated named entities and relations on
sentences taken from WSJ, AP, etc. We are
using the same split as what was proposed
(Gupta et al., 2016). We train all models for
200 epochs.

• The ADE dataset: ADE contains annotated
documents aiming at improving automatic ex-
traction of drug-related adverse effects from
medical case reports. We are using the same
10-fold cross-validation split as in (Paolini
et al., 2021). We train all models for 200
epochs and report our test macro-F1 score
across all 10 splits.

• The NYT dataset: NYT is processed from
New York Times corpus automatically labeled
using distant supervision. We are using the
processed version of this dataset (Yu et al.,
2020a). We train all models for 50 epochs.
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• The ACE2005 dataset: ACE2005 is processed
from the ACE 2005 Multilingual Training Cor-
pus held by Linguistic Data Consortium. We
are using the processed version of this dataset
by (Luan et al., 2019), preserving 7 entity
types and 6 relation types as in TANL. We
train all models for 100 epochs.

Comparison Methods We compare our method
DEEPSTRUCT on the four datasets to the following
JER baselines: SpERT (Eberts and Ulges, 2020),
DyGIE (Luan et al., 2019), MRC4ERE (Zhao
et al., 2020), RSAN (Yuan et al., 2020) and
TANL (Paolini et al., 2021). See results in Table 12.

Training Details During multi-task fine-tuning,
we train our model on JER training sets for 5-20
epochs, with a per GPU batch size of 4. Since
we discover that relation extraction and named en-
tity recognition need different length penalties, we
split the training set corresponding to two tasks
separately. During inference, we choose a length
penalty of 0.8 for named entity recognition, and
0.3 for relation extraction.

A.6 Named Entity Recognition
This is an entity-only case of the joint entity and
relation extraction task.

Input What we need to do is to make sure
that state boards, number one, have adequate
funding.
Output (we; instance of; human) (state; in-
stance of; geographical entity) (state boards;
instance of; organization)

Datasets We experiment on the following
datasets: CoNLL03 (Sang and Meulder, 2003),
Ontonotes (Pradhan et al., 2013), GENIA (Ohta
et al., 2002), and ACE2005 (Walker and Consor-
tium, 2005).

• The CoNLL03 dataset: CoNLL03 (English)
data was taken from the Reuters Corpus. We
are using the processed version of this dataset
(Li et al., 2020a). We train all models for 200
epochs.

• The Ontonotes dataset: Ontonotes is pro-
cessed from the OntoNotes Release 5.0 Cor-
pus held by Linguistic Data Consortium. We
are using the preprocessing scripts provided
by (Luan et al., 2019). We train all models for
50 epochs.

• The GENIA dataset: GENIA dataset consists
of compiled and annotated biomedical litera-
ture. We are using the processed version of
this dataset (Li et al., 2020a). We train all
models for 100 epochs.

• The ACE2005 dataset: ACE2005 is processed
from the ACE 2005 Multilingual Training Cor-
pus held by Linguistic Data Consortium. No-
tice that it is also processed from ACE2005
corpus but using data split differently from the
ACE2005 joint entity and relation extraction
dataset. We are using the processed version
of this dataset by (Li et al., 2020a). We train
all models for 50 epochs.

Comparison Methods We compare our method
DEEPSTRUCT on the four datasets to the fol-
lowing NER baselines: BERT-MRC (Li et al.,
2019), BERT-MRC+DSC (Li et al., 2020b), Cloze-
CNN (Baevski et al., 2019), GSL (Athiwaratkun
et al., 2020), BiaffineLSTM (Yu et al., 2020b), and
TANL (Paolini et al., 2021). See results in Table 13.

Training Details During multi-task fine-tuning,
we train our model on NER training sets for 15
epochs, with a per GPU batch size of 4. During
inference, we choose a length penalty of 0.8 for
named entity recognition. Since some datasets may
require null prediction, we set the minimum target
length to 0 to represent the null prediction.

Implementation Details As the conventional
NER’s evaluation is based on extractive span match-
ing, to make a fair comparison on situations where
there are multiple entities with the same surface, we
adopt the following strategy: we match the gener-
ated entities’ spans from left to right in the original
sentence at place where they are first mentioned;
if there are duplicated entities, the first generated
one matches the first mention span, and the second
matches the second mention span, etc.

A.7 Semantic Role Labeling

Here we are given an input sentence along with a
predicate, and seek to predict a list of arguments
and their types. Every argument corresponds to a
span of tokens that correlates with the predicate in
a specific manner (e.g. subject, location, or time).
The predicate is marked in the input, whereas argu-
ments are marked in the output and are assigned an
argument type.
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Input Scotty [ accepted ] the decision with
indifference and did not enter the arguments .
Output (Scotty; instance of; first argument)
(the decision; instance of; second argument)

Datasets We experiment on the following
datasets: CoNLL05 WSJ/Brown (Carreras and
Màrquez, 2005) and CoNLL12 (Pradhan et al.,
2013). Sentences with multiple target predicates
for semantic role labeling are duplicated during pre-
processing so that each sentence will be related to
one and only one target predicate, marked by sym-
bols “[]”. We adopted the same evaluation scripts
as TANL (Paolini et al., 2021).

• The CoNLL05 WSJ/Brown dataset:
CoNLL05 WSJ/Brown dataset shares the
same train and validation split while differing
on the test set. As their names suggest, the
test dataset is taken from WSJ corpus and
Brown corpus, separately. We train all models
for 50 epochs.

• The CoNLL12 dataset: CoNLL12 dataset is
built upon Ontonotes dataset. We train all
models for 50 epochs.

Comparison Methods We compare our method
DEEPSTRUCT on the four datasets to the following
SRL baselines: Dep and Span (Li et al., 2019),
BERT SRL (Shi and Lin, 2019), and TANL (Paolini
et al., 2021). See results in Table 11.

A.8 Event Extraction
This task requires extracting (1) event triggers, each
indicating the occurrence of a real-world event and
(2) trigger arguments indicating the attributes asso-
ciated with each trigger.

Trigger input But the Saint Petersburg sum-
mit ended without any formal declaration on
Iraq .
Trigger output (summit; instance of; meet)
Argument input But the Saint Petersburg [
summit ] ended without any formal declara-
tion on Iraq .
Argument output (Saint Petersburg; instance
of; place)

Datasets We experiment on the following dataset:
ACE2005 (Walker and Consortium, 2005). For
the trigger prediction task, the dataset is handled
similar to named entity recognition fashion. For the
argument prediction task, which is based on trigger

predictions, we generated all trigger predictions
using our 10B model during preprocessing.

• The ACE2005 dataset: ACE2005 is processed
from the ACE 2005 Multilingual Training Cor-
pus held by Linguistic Data Consortium. The
data of event extraction is different from that
of named entity recognition or joint entity and
relation extraction. We train all models for 50
epochs.

Comparison Methods We compare our method
DEEPSTRUCT on the four datasets to the follow-
ing EE baselines: J3EE (Nguyen and Nguyen,
2019), DyGIE++ (Wadden et al., 2019), and
TANL (Paolini et al., 2021). See results in Table 8.

Training Details During multi-task fine-tuning,
we train our model on ACE2005 event trig-
ger/argument training sets for 20 epochs, with a
per GPU batch size 4. During inference, we choose
a length penalty of 0.8. Since the argument dataset
requires assigning a trigger and then doing the pre-
diction, we use a pair of square brackets to wrap
up the trigger. If there is more than one trigger
in a dataset, we will duplicate the sentence with
different marked triggers.

A.9 Coreference Resolution
This is the task of grouping individual text spans
(mentions) referring to the same real-world entity.
For each mention that is not the first occurrence of
a group, we reference with the first mention.

Input And deterrents don’t work terribly well
when an enemy values your death more than
his life.
Output (an enemy; refer to; his)

Datasets We experiment on the following dataset:
CoNLL12 (Pradhan et al., 2013). During prepro-
cessing, the dataset is chopped into chunks of a
fixed size 512. Only intra-chunk coreferences are
preserved, following TANL (Paolini et al., 2021).
Also, we used the same evaluation scripts as TANL.

• The CoNLL12 dataset: CoNLL12 dataset is
built upon Ontonotes dataset. We train all
models for 50 epochs.

Comparison Methods We compare our method
DEEPSTRUCT on the four datasets to the follow-
ing COREF baselines: Higher-order c2f-coref (Lee
et al., 2018), BERT+c2f-coref (Joshi et al., 2019),
CorefQA+SpanBERT (Wu et al., 2020), and
TANL (Paolini et al., 2021). See results in Table 9.
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Training Details During multi-task fine-tuning,
we train our model on CoNLL12 coreference reso-
lution training sets for 40 epochs, with a per GPU
batch size 4. During inference, we choose a length
penalty of 0.8.

A.10 Dialogue State Tracking

Here we are given as input history of dialogue turns,
typically between a user (trying to accomplish a
goal) and an agent (trying to help the user). The
desired output is the dialogue state, consisting of a
value for each key (or slot name) from a predefined
list.

Input [User]: I would like a taxi from
Saint Johns College to Pizza Hut Fen Ditton.
[Agent]: What time do you want to leave and
what time do you want to arrive by? [User]: I
want to leave after 17:15.
Output ([User]; taxi arrive by; not given)
([User]; taxi departure; Saint Johns College)
([User]; taxi destination; Pizza Hut Fen Dit-
ton) ([User]; taxi leave at; 17:15)

Datasets We use the MultiWOZ 2.1
(Budzianowski et al., 2018; Ramadan et al.,
2018; Eric et al., 2020; Zang et al., 2020) task-
oriented dialogue dataset in our experiments. It
consists of 8,420 conversations for training, 1,000
for validation, and 999 for testing. We follow the
pre-processing procedure put forward (Wu et al.,
2019) for dialogue state tracking. In addition, we
remove the “police” and “hospital” domains from
the training set since they are not present in the
test set. Removing these two domains reduces the
training set size from 8,420 to 7,904. We fine-tune
for 100 epochs, with a maximum sequence length
set to 512 tokens. We train a single generative
model that predicts the dialogue state for the entire
dialogue history up to the current turn. Following
prior work, we report the joint accuracy. We parse
every slot name and the corresponding value from
every original sample, and formulate every sample
into the aforementioned input and output.

Comparison Methods We compare our perfor-
mance on MultiWOZ 2.1 against SimpleTOD
(Hosseini-Asl et al., 2020), the current state of the
art for MultiWOZ dialogue state tracking. Sim-
pleTOD uses a sequence to sequence approach
based on the GPT-2 (Radford et al., 2019b) lan-
guage model. Unlike our approach, SimpleTOD is

trained to jointly generate actions and responses as
well as dialogue states. See results in Table 14.

A.11 Intent Detection
Intent detection is the task of interpreting user com-
mands or queries by extracting the intent and the
relevant slots.

Input Show flight and prices from Kansas
City to Chicago next Wednesday arriving in
Chicago by 7 pm.
Output (intent; is; flight and airfare)

Datasets We use two datasets, the ATIS dataset
(Hemphill et al., 1990) and the Snips dataset
(Coucke et al., 2018). The ATIS dataset consists
of 4,478 samples for training, 500 for validation,
and 893 for testing. The Snips dataset consists
of 13,084 samples for training, 700 for validation,
and 700 for testing. We formulate the label of ev-
ery sample to “(intent; is; [label])”. We fine-tune
for 20 epochs, with a maximum sequence length
set to 512 tokens. Following prior work, we re-
port accuracy. We parse every intent from every
original sample, and formulate them into the afore-
mentioned input and output.

Comparsion Methods We majorly compare
our methods to SF-ID (E et al., 2019) and
TANL (Paolini et al., 2021) in this task. See re-
sults in Table 10.

B Dataset Examples

The examples are shown in Table 16.

C Error Analysis

We analyzed recall errors of DEEPSTRUCT 10B
MP on CoNLL04 relation extraction task in Ta-
ble 17. We found that most relation extraction
errors in our method are caused by slight deviation
in entity prediction: either the predicated entity
has almost the same span of the ground truth en-
tity (e.g.: "U.S." and "the U.S.", "America" and
"American"), or the predicated entity has a roughly
similar meaning to the ground truth entity and plays
roughly the same role in the relation (e.g.: "Fair-
banks" and "Alaska"). Besides, we also observed
some interesting errors in which our prediction has
a different focus from the ground truth relation,
and our prediction is also meaningful in terms of
human understanding.
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OIE2016 WEB NYT PENN

ClausIE (Corro and Gemulla, 2013) 58.8 44.9 29.6 34.6
OpenIE 4 59.6 55.7 38.3 42.6
PropS (Stanovsky et al., 2016) 55.6 58.9 37.2 39.1
RnnOIE (Stanovsky et al., 2018) 67.0 58.1 28.3 34.5
MAMA (Wang et al., 2020) 36.6 54.3 32.9 33.0

DEEPSTRUCT
zero-shot 28.1 43.8 28.9 51.0
multi-task 71.2 50.8 43.6 54.5

w/ finetune 71.3 49.1 45.0 45.1

Table 6: Results on open information extraction.

TACRED FewRel 1.0
5-1 5-5 10-1 10-5

BERTEM (Soares et al., 2019) 70.1 88.9 - 82.8 -
BERTEM+MTB (Soares et al., 2019) 71.5 90.1 - 83.4 -
DG-SpanBERT (Chen et al., 2020) 71.5 - - - -
BERT-PAIR (Gao et al., 2019) 85.7 89.5 76.8 81.8
NLI-DeBERTa (Sainz et al., 2021) 73.9
TANL (Paolini et al., 2021) 71.9 93.6±5.4 97.6±3.2 82.2±5.1 89.8±3.6
TANL (multitask) (Paolini et al., 2021) 69.1 - - - -

DEEPSTRUCT
zero-shot 36.1 72.4±6.9 70.8±8.0 67.6±4.5 66.4±6.3
multi-task 74.9 93.6±6.0 96.4±4.2 92.2±6.4 94.6±3.6

w/ fine-tune 76.8 98.4±2.8 100±0.0 97.8±2.0 99.8±0.6

Table 7: Results on relation classification

Trigger Id Trigger Cl Argument Id Argument Cl

J3EE (Nguyen and Nguyen, 2019) 72.5 69.8 59.9 52.1
DyGIE++ (Wadden et al., 2019) 69.7 55.4 52.5
TANL (Paolini et al., 2021) 72.9 68.4 50.1 47.6
TANL (multitask) (Paolini et al., 2021) 71.8 68.5 48.5 48.5

DEEPSTRUCT
multi-task 71.7 67.9 54.9 52.7

w/ fine-tune 73.5 69.8 59.4 56.2

Table 8: Results on event extraction (ACE2005).

CoNLL12

MUC B3 CEAFϕ4 Avg. F1
Higher-order c2f-coref (Lee et al., 2018) 80.4 70.8 67.6 73
BERT+c2f-coref (Joshi et al., 2019) 81.4 71.7 68.8 73.9
CorefQA+SpanBERT (Wu et al., 2020) 86.3 77.6 75.8 79.9
TANL (Paolini et al., 2021) 81.0 69.0 68.4 72.8
TANL (multitask) (Paolini et al., 2021) 78.7 65.7 63.8 69.4

DEEPSTRUCT
multi-task 63.9 57.7 60.2 60.6

w/ fine-tune 74.9 71.3 73.1 73.1

Table 9: Results on coreference resolution.

ATIS SNIPS

SF-ID (E et al., 2019) 97.8 97.4
TANL (Paolini et al., 2021) 97.6 98.7

DEEPSTRUCT
multi-task 66.6 78.4

w/ fine-tune 97.8 97.3

Table 10: Results on intent detection.
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CoNLL05 WSJ CoNLL05 Brown CoNLL12

Dep and Span (Li et al., 2019) 86.3 76.4 83.1
BERT SRL (Shi and Lin, 2019) 88.8 82.0 86.5
TANL (Paolini et al., 2021) 89.3 82.0 87.7
TANL (multitask) (Paolini et al., 2021) 89.1 84.1 87.7

DEEPSTRUCT
multi-task 95.6 92.0 97.6

w/ fine-tune 95.2 92.1 96.0

Table 11: Results on semantic role labeling.

CoNLL04 ADE NYT ACE2005

Ent Rel Ent Rel Ent Rel Ent Rel

SpERT (Eberts and Ulges, 2020) 88.9 71.5 89.3 78.8
DyGIE (Luan et al., 2019) 88.4 63.2
MRC4ERE (Zhao et al., 2020) 88.9 71.9 85.5 62.1
RSAN (Yuan et al., 2020) 84.6
TANL (Paolini et al., 2021) 89.4 71.4 90.2 80.6 94.9 90.8 88.9 63.7
TANL (multitask) (Paolini et al., 2021) 90.3 70.0 91.2 83.8 94.7 90.7 - -

DEEPSTRUCT
zero-shot 48.3 25.8 60.7 10.6 60.5 28.6 31.8 5.3
multi-task 87.4 69.6 90.2 83.7 95.4 93.9 87.8 54.0

w/ fine-tune 90.7 78.3 91.1 83.8 95.9 93.3 90.0 66.8

Table 12: Results on joint entity relation extraction.

CoNLL03 OntoNotes GENIA ACE2005

BERT-MRC (Li et al., 2020a) 93.0 91.1 - 86.9
BERT-MRC+DSC (Li et al., 2020b) 93.3 92.1
Cloze-CNN (Baevski et al., 2019) 93.5
GSL (Athiwaratkun et al., 2020) 90.7 90.2
BiaffineLSTM (Yu et al., 2020b) 93.5 91.3 80.5 85.4
TANL (Paolini et al., 2021) 91.7 89.8 76.4 84.9
TANL (multitask) (Paolini et al., 2021) 91.7 89.4 76.4 -

DEEPSTRUCT
zero-shot 44.4 42.5 47.2 28.1
multi-task 93.1 87.6 80.2 -

w/ fine-tune 93.0 87.8 80.8 86.9

Table 13: Results on named entity recognition.

MultiWOZ 2.1

TRADE (Wu et al., 2019) 45.6
SimpleTOD (Hosseini-Asl et al., 2020) 55.7
TANL (Paolini et al., 2021) 50.5
TANL (multitask) (Paolini et al., 2021) 51.4

DEEPSTRUCT
multi-task 53.5

w/ fine-tune 54.2

Table 14: Results on dialogue state tracking.

Google-RE T-Rex

LAMA-Oracle (Petroni et al., 2020) 74.3 66.0

DEEPSTRUCT
zero-shot 97.9 85.0
multi-task 90.3 71.0

Table 15: Results on factual probe.
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Task Dataset Input Output

Open Information
Extraction

OIE2016 oie oie2016: But for now, at least, Americans are far better at
making PCs and the software that runs them.

(Americans; making; PCs and the software that runs them) (PCs; runs;
software)

WEB oie web: Finally google bought youtube. (google; bought; youtube)
NYT oie nyt: Now in its 58th final, the United States is pursuing a 30th

cup title.
(United States; pursuing; cup)

PENN oie penn: Samsung already owns korea first advertising co., that
country’s largest agency.

( Samsung; owns; korea first advertising co. )

Relation Classifi-
cation

TACRED rc tacred: Donald Wildmon , the founder and head of the American
Family Association , is asking its members to petition Congress to
end all funding for PBS . The relationship between Donald Wildmon
and American Family Association is

( Donald Wildmon; employee of; American Family Association )

FewRel 1.0 rc fewrel: Boott was elected an Associate Fellow of the American
Academy of Arts and Sciences in 1835 . The relationship between
Boott and American Academy is

( Boott; member of; American Academy )

Factual Probe Google-RE fp google-re: Eldon Coombe (born c 1941) is a Canadian curler
from Ottawa, Canada.

(Eldon Coombe; date of birth; 1941)

T-REx fp t-rex: Kurt Schwertsik (born 25 June 1935, Vienna) is an Aus-
trian contemporary composer.

(Kurt Schwertsik; place of birth; Vienna)

Joint Entity and
Relation Extrac-
tion

CoNLL04 jer conll04: An art exhibit at the Hakawati Theatre in Arab east
Jerusalem was a series of portraits of Palestinians killed in the rebel-
lion .

( Hakawati Theatre; instance of; organization ) ( Arab; instance of;
other ) ( Jerusalem; instance of; location ) ( Palestinians; instance of;
other ) ( Hakawati Theatre; organization based in; Jerusalem )

ADE jer ade: Lethal anuria complicating high dose ifosfamide
chemotherapy in a breast cancer patient with an impaired renal func-
tion .

( Lethal anuria; instance of; disease ) ( ifosfamide; instance of; drug )
( Lethal anuria; effect; ifosfamide )

NYT jer nyt: Mary L. Schapiro , who earlier this year became the new
head of NASD , was more amenable to fashioning a deal to the New
York Exchange ’s liking than her predecessor , Robert R. Glauber .

( NASD; instance of; organization ) ( Robert R. Glauber; instance of;
human ) ( Robert R. Glauber; company; NASD )

ACE2005 jer ace2005: The Davao Medical Center , a regional government
hospital , recorded 19 deaths with 50 wounded .

( Davao Medical Center; instance of; organization ) ( government;
instance of; geographical entity ) ( hospital; instance of; organization
) ( 50; instance of; human ) ( hospital; part of; government )

Named Entity
Recognition

CoNLL03 ner conll03: Japan began the defence of their Asian Cup title with
a lucky 2-1 win against Syria in a Group C championship match on
Friday .

( Japan; instance of; location ) ( Asian Cup; instance of; miscellaneous
) ( Syria; instance of; location )

OntoNotes ner ontonotes: Relevant departments from Beijing Municipality
promptly activated emergency contingency plans .

( Beijing Municipality; instance of; country city state )

GENIA ner genia: Human T and B lymphocytes demonstrate an early and
transient hyperpolarization after ligand binding .

( Human T and B lymphocytes; instance of; cell type )

ACE2005 ner ace2005: BEGALA Dr . Palmisano , again , thanks for staying
with us through the break .

( Dr; instance of; human ) ( Dr . Palmisano; instance of; human ) ( us;
instance of; human )

Semantic Role
Labeling

CoNLL05 WSJ srl conll05: But while the New York Stock Exchange did n’t [ fall
] apart Friday as the Dow Jones Industrial Average plunged 190.58
points – most of it in the final hour – it barely managed to stay this
side of chaos .

( the New York Stock Exchange; instance of; second argument ) ( n’t;
instance of; negation )

CoNLL05 Brown srl conll05: His father [ tried ] to make the food a topic . ( His father; instance of; first argument ) ( to make the food a topic;
instance of; second argument )

CoNLL12 srl conll12: Dear viewers , the China News program will [ end ]
here .

( the China News program; instance of; second argument ) ( will;
instance of; modal ) ( here; instance of; location )

Event Extraction ACE2005 Trigger ee ace2005 trg: The European Union held a summit in Brussels. ( summit; instance of; meet )
ACE2005 Argument ee ace2005 arg: The European Union held a [ summit ] in Brussels. ( Brussels; instance of; place )

Coreference Res-
olution

CoNLL12 cr conll12: And deterrents does n’t work terribly well when an
enemy values your death more than his life .

( an enemy; refer to; his )

Dialogue State
Tracking

MultiWOZ 2.1 dst multiwoz: [User]: I am looking for a place to to stay that has
cheap price range it should be in a type of hotel. [Agent]: Okay , do
you have a specific area you want to stay in? [User]: No , I just need
to make sure it s cheap. Oh, and I need parking. [Agent]: I found 1
cheap hotel for you that include parking. Do you like me to book it?
[User]: Yes, please. 6 people 3 nights starting on Tuesday.

([User]; hotel area; not given) ([User]; hotel book day; Tuesday)
([User]; hotel book people; 6) ([User]; hotel book stay; 3) ([User];
hotel internet; not given) ([User]; hotel name; not given) ([User];
hotel parking; yes) ([User]; hotel price range; cheap) ([User]; hotel
stars; not given) ([User]; hotel type; hotel)

Intent Detection ATIS id atis: Please give me a list of all the flights between Dallas and
Baltimore and their cost.

(intent; is; flight and airfare)

Intent Detection SNIPS id snips: Play the song little robin redbreast. (intent; is; play music)

Table 16: Input/output examples for every datasets.

Error type Percentage Input Ground Truth Ours Prediction

Close Entity 65.3% Locations containing suitable federally owned land were listed as : Fort Wainwright annex ,
Fairbanks , Alaska ;

(Fort Wainwright annex ; located in ; Fairbanks) (Fort Wainwright annex ; located in ; Alaska)

Totally Missing 26.4% Judith C. Toth says she returned for a fourth term in Maryland ’s House of Delegates because
she couldn ’t find a better job .

(House of Delegates ; organization based in ; Maryland) (Judith C. Toth ; lives in ; Maryland)

Wrong Relation 4.2% After buying the shawl for $1 , 600 , Darryl Breniser of Blue Ball , said the approximately 2-by-5
foot shawl was worth the money .

(Darryl Breniser ; lives in ; Blue Ball) (Darryl Breniser ; works for ; Blue Ball)

Different Focus 1.7% An architect of President Nixon ’s unsuccessful executive-privilege Watergate defense is a top
prospect for the post of U.S. solicitor in the new Bush administration .

( Bush ; lives in ; U.S. ) ( Nixon ; lives in ; U.S. )

Table 17: Analysis of frequently-occurring recall errors of DEEPSTRUCT on CoNLL04 relation extraction task. For each type
we list the percentage of missing triples caused by this particular type of error, and an example of this type of error taken from
the CoNLL04 corpus.
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