Debiasing Event Understanding for Visual Commonsense Tasks
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Abstract

We study event understanding as a critical step
towards visual commonsense tasks. Meanwhile,
we argue that current object-based event under-
standing is purely likelihood-based, leading to
incorrect event prediction, due to biased corre-
lation between events and objects. We propose
to mitigate such biases with do-calculus, pro-
posed in causality research, but overcoming
its limited robustness, by an optimized aggre-
gation with association-based prediction. We
show the effectiveness of our approach, intrin-
sically by comparing our generated events with
ground-truth event annotation, and extrinsically
by downstream commonsense tasks.

1 Introduction

Recently, commonsense reasoning tasks on visio-
linguistic input have been actively studied in both
vision and language communities, with the goal of
commonsense reasoning. For example, in Visual
COMET (Park et al., 2020), given an image X and
event e as input, we are tasked to predict intent
(or, events before/after), known as intent predic-
tion. Similarly, Visual Commonsense Reasoning
(VCR; Zellers et al. 2019), given image and ques-
tion (), requires to provide an answer A or provide
a rationale for A, known as justification task.

For such tasks, understanding event e plays a
crucial role, either required as input or expected as
output—for example, 41% of rationales from VCR
are related to e. However, assuming the availabil-
ity of e for new images at test time is considered
impractical, for which Park et al. (2020) consider
two baselines: 1) setting input e as NULL, and 2)
generating e by training generator GEN. However,
according to Park et al. (2020), empirical results
reported GEN performs even worse than NULL,
or, shows a negative transfer, which is counter-
intuitive.
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Figure 1: An actual example of event generation. By
removing the chair (confounder), the biased gen-
eration (B—GEN) can be corrected to the true event
(D-GEN).

Our goal is robustifying event understanding, or,
event generator GEN with a higher transferability
to the downstream tasks of visual commonsense
reasoning. Our hypothesis is that object-event bias
in the dataset hinders transferability: In Figure 1,
while the image and human-annotated e, denoted as
GOLD, are not related to an event “sitting”, existing
GEN, denoted as B—GEN for Biased GENeration,
generates an event “‘sitting”’, even when no one is
sitting on the chair. We argue that the generation is
biased by the frequent association of chair-sitting
in the dataset.

In contrast, we propose D-GEN for Debiased
GENeration. Contrary to association-based estima-
tion, which fails to distinguish spurious correlation
P(sitting|chair), do-calculus collectively considers
other observations, such as “sitting" on other ob-
jects (e.g., bed or table), to lower the likelihood of
such spurious correlations as humans do. However,
while do-calculus has been successful at debias-
ing other types of biases, e.g., between word and
visual word (Zhang et al., 2020), we find a lim-
itation for object-event debiasing as in Figure 2:
Though do-calculus can find a causal relation, i.e.,
diningtable-sit, with high P(sit|do(diningtable)),
the same logic does not apply to rarely observed ob-
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Figure 2: Comparative example of P(Y|X),

P(Y|do(X)), and ours in Visual COMET dataset.
These are actual estimation results from our model.

ject ‘bench’. In other words, P(sit|do(bench)) and
P(sit|do(refrigerator)) are similar, where we can-
not easily distinguish the true causal relation, i.e.,
bench-sit, from non-causal one, i.e., refrigerator-sit.

To motivate the needs to robustify do, Fig-
ure 2 enumerates four representative classes, where
P(Y|X) (and P(Y|do(X))) is high/low respec-
tively: the first two objects (diningtable and bench)
have a causal relation with event ‘sit’. While do
(pink bar in the figure) can only identify the first
object, we propose an ensemble (green bar) of both
probabilities, which can distinguish the first two
from the rest. Specifically, we search over a space
Q) of possible aggregations of the two, from which
we identify a robust causality scoring fr. Contrary
to do-calculus, our estimation better distinguishes
frequent-causal correlation, i.e., diningtable-sit, as
well as rare-causal correlation, such as bench-sit,
from the remaining two.

To apply the robust estimator trained as above for
a test image without event, we deliberately instill
the biases by biased event generation, which we are
trained to remove, as inspired by Qian et al. (2021).
We then mitigate biases in the testing time, by gen-
erating counterfactual image Xn, eliminating the
confounder identified from fgr.

Experimental results on VisualCOMET and
VCR show that our method significantly improves
the robustness of visual commonsense models and
our codes can be found from supplementary mate-
rial.

2 Methodology

Figure 3 overviews our framework in three steps:
(1) probability estimation, (2) probability optimiza-
tion, and (3) test-time debiasing.

vig | [loperen
fa(x,y) ]
Maximize 5
R(‘Da o CDL) fR(x'y)
DeVLBert t {0, person,
fixy) cwr, bed}
Probability Probability Test-Time
Estimation Optimization Debiasing

Figure 3: Framework overview.

2.1 Probability Estimation

As discussed above, we propose a new estimation
of causality by combining both P(Y'|do(X)) and
P(Y'|X). For this purpose, we first leverage DeVL-
Bert (Zhang et al., 2020) to estimate P(Y |do(X)),
whose pre-training task, of leveraging 3.04 million
<image, caption> to debias spurious correlations
between image and words, is relevant to our ob-
jective of debiasing object-event. We thus aim to
transfer the pre-trained DeVLBert to fit in our prob-
lem, by a fine-tuning task that can adapt to words
that are important for event debiasing, e.g., verb.
Specifically, we train DeVLBert with a classifica-
tion task of matching image X with the right event
description Y, generating a high score for a match-
ing X — Y pair.

In our classification task, DeVLBert takes the
image X and the textual event description Y
separately. Specifically, for textual input, it fol-
lows Bert convention (Devlin et al., 2018), where
each token is represented as a sum of its cor-
responding token/position/segment embeddings,
yielding a sequence of embeddings, ie., y =
{wicrs), w, ..., wyy|}. The special token [CLS]
is used to capture the global information in the
text. For visual input, by viewing the sub-regions
of interest as visual words, the image is represented
as a sequence of visual words, where each visual
word (object) is detected by Faster-RCNN (Ander-
son et al., 2018) and the features of visual words
{0i}i=1, .. are extracted by ResNet101 (He et al.,
2016). Similarly with textual input, a global rep-
resentation for the whole image o = % Zle 0;
is added at the beginning of the sequence, result-
ing * = {og),01,...,0¢}. By finally feeding =
and y into co-attentional transformer layers (Lu
et al., 2019), DeVLBert is trained to predict the
gold event description y among candidate event de-
scriptions that are randomly sampled as negative.
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Once this training is done, we can reconstruct
P(Y|do(X)) by computing the fine-tuned DeVL-
Bert scores f;(z,y) for event candidates, and nor-
malizing the scores into a probability distribution.

Then, we adopt ViLBert (Lu et al., 2019) to es-
timate P(Y|X), which we denote as f,, follow-
ing the same protocol described above. We stress
that our proposed solution, building upon ViL-
Bert/DeVLBert, is orthogonal to other task mod-
els using Faster-RCNN features (Anderson et al.,
2018) such as UNITER and VILLA (Chen et al.,
2020; Gan et al., 2020).

2.2 Probability Optimization

As we claimed above, it is important to distin-
guish rare-but-causal correlations from frequent-
but-spurious correlations, for which we propose a
more robust estimation fr by aggregating P(Y | X)
and P(Y|do(X)). In this work, we formalize
it as an optimization problem, searching over a
space €2 of possible aggregations of P(Y|X) and
P(Y|do(X)), for the goal of maximizing an objec-
tive function R.

We thus aim to enumerate the search space (2
to maximize the objective function R. However,
as exhaustively enumerating the search space ()
is infeasible, we consider the following two de-
sired properties for fr that can reduce the search
space: 1) Positive correlation with f; to preserve the
strength of P(Y'|do(X)) for identifying frequent-
and-causal correlations, and 2) Negative correla-
tion with f, to prevent the over-estimation problem
of P(Y'|X) for frequent-but-spurious correlations,
where the optimization process for the robust esti-
mation of causality fr can be written as follows:

maximize R(Pu(fa) © ®i(fi)), (D
st ®u(fa) = X O fa, @)
Qi(fi) = \i @ fi, 3)

Aas i € {=1,0,1},® € {+,*}, 4
ce{-/hadoe{+x}, 6

where the objective function R, to directly exam-
ine the effectiveness of fr regarding its capabil-
ity of identifying causal correlations, is defined as
the number of correctly identified spurious correla-
tions, which can be validated with human-selected
confounders (Section 3).

2.3 Test Time Debiasing

Now that we trained a robust confounder identifier
fr, the next step is applying fr on the test images
to explicitly eliminate confounders. However, as
the event y is missing for test image, we predict
an event ¢ by employing “poisonous" model with
the same bias, namely f,, such that we use § =
argmax, ¢ fo(, y)'. As fg is trained to distill
biases from association-based prediction, with the
predicted event ¢, we can identify the confounder
object o, with the lowest causality, likely spurious:
o, = argmin, fr(w,,,7), where z,, denotes a
constrained input for measuring the causality of a
single object o0y, i.e., ¥o, = {0[q],0;}. Note that
this selection can be iterated with a score threshold
(tuned from validation set) for multi-confounder
cases. Without loss of generality, we consider o, as
a single object in this section.

With the identified confounder o, our final goal
is to obtain a debiased image X, for the purpose of
robust event understanding, or event generator GEN
with high transferability. To this end, we propose
to remove all the visual features of objects that are
of the same class with the identified confounder:
Xp=X \ {0i|o; = o.}. By feeding the debiased
input X for downstream tasks, our method will
mitigate the spurious correlations in task models.

3 Experimental Settings

Dataset Train Valid Test
Visual COMET | 47.5K 59K 59K
VCR 804K 99K 9.5K

Table 1: Statistics for datasets.

To evaluate the effectiveness of our framework,
we conduct experiments on Visual COMET and
VCR datasets, by training model on the former, and
study out-of-domain generalization for the latter.
We report results for event, intent, and rationale pre-
diction tasks from each dataset, respectively. The
statistics of the datasets are presented in Table 1.

To adopt ViLBert/DeVLBert for f, and f;, we
trained ViLBert/DeVLBert with our classification
task for 20 epochs with a batch size of 64, and the
initial learning rate is set as 2e-5. We adopt standard
models for each tasks. For event understanding
and intent inference tasks, We adopt GPT-2 based

"We constraint £ the 111,796 training set events provided
in (Park et al., 2020).
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single-stream Transformer architecture, introduced
in Park et al. (2020). Following the convention in
Park et al. (2020), the parameters are optimized
by Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 5e-5 and batch size of 64. For the
VCR-justification task, we adopt ViLBert (Lu et al.,
2019), which takes the concatenated question and
correct answer as query to predict rationales. Fol-
lowing the settings of ViL.Bert, we fine-tuned ViL-
Bert by Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 2e-5 and batch size of 64.
For both tasks we used the maximum number of
detected objects k is set as 15.

To build human-selected confounders for the val-
idation purpose (Section 2.2), we first present the
objects to human workers in the order of frequency,
then ask them to filter out the objects with causal-
ity, so that confounders, or, spurious object-event
pairs remain. We stress that the annotation process
is efficiently guided by machine selections, such
that humans are not exposed to all pairs, but only
the surviving pairs from the first-phase machine
selection, to filter out objects with causality, such
that only the spurious object-event pairs remain
after the second phase. We also found causality
can be reliably annotated among multiple annota-
tors, from a substantial inter-annotator agreement:
Human-selected confounders agreement was mea-
sured to be 0.689 in Cohen’s Kappa coefficient.

4 Experimental Results

We now proceed to empirically validate the effec-
tiveness of our approach, in three dimensions: 1)
capturing rare-but-causal correlations 2) transfer-
ability and 3) out-of-domain generalization.
Capturing Rare-but-causal: To investigate the
effectiveness of our approach in capturing rare-but-
causal correlations, we perform the event under-
standing task on the Visual COMET dataset. For
the experiment, we split the validation samples
into a frequent set and a rare set, where the latter
requires identifying rarely observed causal correla-
tions. Among the images with the rarely observed
object-verb pairs, i.e., occurrences < 20, we col-
lect the images with an object-verb, where the verb
exists in the ground-truth event description g4,
as rare-but-causal set. A desirable model should
generalize well to the challenging set, or, the gap
between the original and challenging sets should
be small.

We report our results on event understand-

Method Frequent Rare | Total
Egen(X7) 1416 1229 | 13.50
Epen(Xg) 1415 1297 | 13.74

Table 2: Results on event understanding task.

Image Event BLEU-2 METEOR CIDEr
X NULL 2.14 4.51 3.76
X Egen(X) 2.26 4.52 4.40
Xr  Epn(Xp) 290 4.67 5.93
Xr By 2.95 5.63 8.66

Table 3: Results on intent inference task. We compare
each method for randomly sampled 100 validation ex-
amples.

ing in Table 2, reporting METEOR (Denkowski
and Lavie, 2014) between the generated events
(Egen(f( 1)s Egen(f( r)) with the gold event E,4
on frequent set, rare set, and total set respec-
tively. As a baseline, we compare ours with the
intervention-based baseline X 1. In frequent set, X I
and X showed similar results as both are capable
of capturing causal correlations when they appear
frequently. On the contrary, in the case of rare-
but-causal correlations, the gap between ours Xr
and X increases, showing the strengths of ours
at distinguishing rare-but-causal correlations from
frequent-but-spurious correlations. As a validation
of such strengths, we compare the error rate on de-
tecting rare-but-causal correlation of fz and f;. We
confirmed that fr significantly reduces the error
rate from 19% of f; to 15%, verifying that the event
understanding benefits from distinguishing rare-
but-causal correlation out of frequent-and-spurious
correlation.

Transferability: We evaluate how our approach
contributes to transferability, which we define
as the gap between event description as NULL
and GEN, on intent inference task. We report
our results on the intent inference task in Ta-
ble 3, reporting BLEU-2 (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2014), and
CIDEr (Vedantam et al., 2015) between the inferred
intent with the gold intents. Specifically, we extend
the comparisons with input debiasing for the gen-
erated events, i.e., Eger(X) — Egen(Xg). In the
table, we observe that, without input debiasing, gen-
erated event g, (X) is not beneficial, achieving
only a minor improvement in BLEU-2 (2.14 —
2.26), due to its low transferability as Park et al.
(2020) observed a decrease. On the other hand,
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we observe that when Egen(f( r) is equipped with
the debiased input Xp, the model performs best
(performing closely to the oracle case with human
annotation GOLD), showing the effectiveness of
debiasing towards transferability.

Out-of-domain Generalization: A reliable neural
network should be able to generalize across the
distribution shift, i.e., test distribution is different
from the training distribution. To make the point
that our approach can make the model generalize
over distribution shifts, we conduct experiments
on the VCR-justification task, where the linguistic
parts may not overlap with Visual COMET.

X  X; Xg
62.94 6390 64.22

Top-1 Acc (%)

Table 4: Results on justification task in VCR dataset.

The results of the VCR-justification task are pre-
sented in Table 4. In accordance with the result of
former experiments, the proposed debiased input
Xp significantly improves the result without fur-
ther training, achieving 1.28 point accuracy gain
from X — Xp, while baseline input debiasing
X achieving only 0.96 point gain. It demonstrates
that our proposed input debiasing can generalize
on out-of-domain tasks by better distinguishing
confounder objects of spurious correlation.

5 Related Work

Inspired by the success of large-scale pre-trained
language models (Devlin et al., 2018; Radford
et al.), large-scale pre-training on transformers have
shown that it can also benefit visio-linguistic tasks,
showing better transferability on various down-
stream tasks (Lu et al., 2019; Li et al., 2020).
However, it is reportedly bad when the trans-
former is trained on out-of-domain datasets, that
are not aligned with its pre-training corpus (Chen
et al., 2020; Zhang et al., 2020), as they are
purely likelihood-based, leading to spurious cor-
relations and hurting the generalization ability. To
this end, recent approaches adopt a traditional do-
calculus (Pearl et al., 2016), encouraging causal
intervention-based estimation to remove spurious
correlations, that can be exploited in vision-only
dataset (Wang et al., 2020) or visio-linguistic
dataset (Zhang et al., 2020; Yang et al., 2021). Dif-
ferent from these works, we focus on identifying
spurious correlation comparing association-based
and intervention-based knowledge.

6 Conclusion

We studied the problem of robustifying event under-
standing, to overcome dataset bias, by combining
observational and interventional estimations. Our
experiments suggest that this extension improves
event understanding, and eventually visual com-
monsense tasks.
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