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Abstract

How to learn highly compact yet effective sen-
tence representation? Pre-trained language
models have been effective in many NLP tasks.
However, these models are often huge and pro-
duce large sentence embeddings. Moreover,
there is a big performance gap between large
and small models. In this paper, we propose
Homomorphic Projective Distillation (HPD) to
learn compressed sentence embeddings. Our
method augments a small Transformer encoder
model with learnable projection layers to pro-
duce compact representations while mimicking
a large pre-trained language model to retain
the sentence representation quality. We evalu-
ate our method with different model sizes on
both semantic textual similarity (STS) and se-
mantic retrieval (SR) tasks. Experiments show
that our method achieves 2.7-4.5 points perfor-
mance gain on STS tasks compared with pre-
vious best representations of the same size. In
SR tasks, our method improves retrieval speed
(8.2×) and memory usage (8.0×) compared
with state-of-the-art large models. Our imple-
mentation is available at https://github.
com/XuandongZhao/HPD.

1 Introduction

It is a fundamental problem to learn compact yet ef-
fective sentence representations. Good representa-
tions have wide applications in NLP, including web
search (Palangi et al., 2016), question answering
(Hao et al., 2019), knowledge inference (Wang and
Kuo, 2020), and machine translation (Yang et al.,
2020). Sentence embedding models take a sentence
as the input and output a fixed-length continuous
vector representation. Based on BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019), re-
cent sentence embedding models such as Sentence-
BERT (SBERT) (Reimers and Gurevych, 2019)
and SimCSE (Gao et al., 2021), are fine-tuned on
sentence pair scoring tasks to learn better sentence
representations, which show much improvement
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Figure 1: Overview of Homomorphic Projective
Distillation (HPD). In contrast to the teacher model,
which is a large pre-trained language model with a fixed
PCA dimension reduction module, the student model
is a smaller language model with a learnable projection
layer. The mean square error of both dimension reduc-
tion results is used to train the student model.

in downstream tasks. However, these models are
big in two aspects. 1) They contain hundreds of
millions to billions of parameters, which requires
large memory and powerful machine to serve in
production; 2) Their resulting embeddings are high
dimensional (e.g. 1024), requiring huge database
to store and index, which cause high search latency.
Therefore, it is challenging to directly use these
large models in real-world applications with strict
throughput/latency requirement and bounded hard-
ware resources. Our work focuses on reducing both
the model size and the representation size. There
has been several works to reduce model size and re-
tain the superior model performance. Recent stud-
ies (Jiao et al., 2020; Sanh et al., 2019; Wang et al.,
2020) have used knowledge distillation (KD) on
large language models to derive compressed com-
pact models with decent performance. TinyBERT
(Jiao et al., 2020) performs layer-to-layer trans-
former distillation at pre-training and task-specific
learning stage utilizing the teacher’s hidden states
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and self-attention distributions. MiniLM (Wang
et al., 2020) proposes task-agnostic transformer dis-
tillation, which uses self-attention distributions and
value relations to help the student deeply mimic the
teacher’s self-attention modules. Nevertheless, di-
rectly fine-tuning small transformer models for sen-
tence embedding shows less desirable results than
large ones (Reimers and Gurevych, 2019; Reimers,
2019).

Can we learn a compact yet highly performant
sentence representation? In this work, we propose
HPD: a dimension reduced sentence embedding
model via projected knowledge distillation. The
key idea is to start from a pre-trained large model
and distill its knowledge into a small one. The
large model is fine-tuned on natural language infer-
ence (NLI) datasets first. Then the small and large
ones are augmented with linear projection layer
and Principal Component Analysis (PCA) (Abdi
and Williams, 2010) respectively to reduce final
representation dimension. In this way, the small
model is expected to produce semantic meaningful
representations (semantically similar sentences will
have close embeddings), where it mimics the power
of large models through homomorphic mappings.

We evaluate our model on semantic textual simi-
larity (STS) and semantic retrieval (SR) tasks. Em-
pirical results show that our model can attain 2.7-
4.5 points of performance gain on STS tasks com-
pared to other dimension reduction approaches and
achieve competitive retrieval performance against
large sentence embedding models while signifi-
cantly improving retrieval speed (8.2×) and mem-
ory usage (8.0×) in SR tasks.

2 Related Work

Embedding techniques are used to represent com-
plex data mathematically (Mikolov et al., 2013;
Zhao et al., 2020; Khrulkov et al., 2020). Sen-
tence embedding is a well-researched topic with
a plethora of proposed approaches. Early works
(Kiros et al., 2015; Logeswaran and Lee, 2018)
build upon the distributional hypothesis and train
the models to predict the surrounding sentences.
Sent2Vec (Pagliardini et al., 2018) generate sen-
tence embeddings using word vectors along with
n-gram embeddings. Conneau et al. (2017) propose
to fine-tune a Siamese network on NLI datasets,
which is then further extended to pre-trained mod-
els in Sentence-BERT (Reimers and Gurevych,
2019). SimCSE (Gao et al., 2021) proposes a con-

trastive learning method and achieves state-of-the-
art performance on STS tasks.

Recently, Raunak and Gupta (2019) combines
PCA based dimensionality reduction with a post-
processing algorithm to address the latency and
capacity issues of large dimensionality models. Shi
et al. (2018) proposed extended robust PCA (Ex-
RPCA) to do dimension reduction. But both of
them only focus on word embedding. Su et al.
(2021) find that the whitening operation can en-
hance the isotropy of sentence distribution and re-
duce the dimensionality of the sentence representa-
tion, which optimizes the memory storage and ac-
celerates the retrieval speed. We use this approach
as one of our baselines.

3 Method

The overview of our approach is illustrated in Fig-
ure 1. Given a set of sentences X = {xi}mi=1,
our goal is to obtain efficient sentence embedding
models f : X → Rd, where d is the embedding
dimension.

The teacher model ft is trained on the same
NLI dataset as Conneau et al. (2017); Reimers
and Gurevych (2019); Gao et al. (2021), where
there are three types of sentence pairs (entail-
ment/neutral/contradiction). We follow the super-
vised contrastive training framework in SimCSE
(Gao et al., 2021) and take a cross-entropy objective
with in-batch negatives and hard negatives. The
idea is based on the assumption that a good seman-
tic representation should be able to bring similar
sentences together while pushing dissimilar ones
apart. Let (ei, e+i , e

−
i ) denote the representations

of sentence triplet (xi, x+i , x
−
i ), where (x+i , x

−
i )

are corresponding "entailment" and "contradiction"
pairs for xi in the NLI dataset. For a mini-batch
with N pairs, the training objective is

ℓi = − log
esim(ei,e

+
i )/τ∑N

j=1

(
esim(ei,e

+
j )/τ + esim(ei,e

−
j )/τ

) , (1)

where τ is a temperature hyperparameter;
sim (e1, e2) is the cosine similarity e⊤1 e2

∥e1∥·∥e2∥ .
After building up a teacher model, we use it

for knowledge distillation. Firstly, we enrich the
training dataset by data augmentation (Details in
Section 4.3). Then for each sentence xi, we get
the embedding eti ∈ Rd′t from the teacher model
ft and esi ∈ Rd′s from the student model fs. Note
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Algorithm 1 PCA

Input: Initial embeddings {eti}mi=1 and reserved
dimensionality d

1: compute ēt of {eti}mi=1

2: compute V,S,U⊤ = SVD(E)
3: compute Wt = V[:, : d]
4: for i = 1, 2, ...,m do
5: ht

i = Wt⊤(eti − ēt)
6: end for

Output: Transformed embeddings {ht
i}mi=1

that the dimensions for eti and esi may be different
(d′t ̸= d′s).

In order to perform homomorphic projective dis-
tillation, we employ Principle Component Anal-
ysis (PCA) (Abdi and Williams, 2010), ht

i =

Wt⊤(eti − ēt), to the teacher model after its av-
erage pooling layer and we add a projection layer,
hs
i = Ws⊤esi + bs, to the student model, where

ht
i,h

s
i ∈ Rd are the teacher and student’s final em-

beddings with the same dimension. Wt ∈ Rd′t×d

is the PCA weight matrix for the teacher model.
Ws ∈ Rd′s×d is the weight matrix of the projection
layer for the student model. bs is the bias term and
both d′s and d′t are larger than the final embedding
dimension d.

Algorithm 1 shows how to conduct the PCA over
a set of initial sentence embeddings for the teacher
model. We sample m sentences from the training
dataset and get the embeddings {eti}mi=1 after the
average pooling layer of the teacher model. We
then construct a centered matrix E of d′t ×m size,
where d′t is the initial embedding dimension. Thus
the i-th column of E corresponds to eti − ēt, i.e.
row means have been subtracted. Then we perform
the singular value decomposition (SVD) of E (line
2 in Algorithm 1). Because only the first d princi-
ple components are needed, we reserve the first d
columns of V (i.e. the first d eigenvectors), which
we denote as weight matrix Wt. The transformed
embeddings ht

i in the new PC space are given by
the i-th column of Wt⊤E (line 5 in Algorithm 1).

Note that PCA only requires m sample sentences
and calculating their initial embeddings. So during
the distillation process, the teacher’s transformer
parameters θt and PCA weight matrix Wt are fixed,
while the student’s transformer parameters θs, pro-
jection weight Ws, and projection bias bs can be
updated. We minimize the distance between final
embeddings ht

i and hs
i by taking the mean squared

loss:

L =
1

M

M∑
i=1

∥∥hs
i − ht

i

∥∥2
2
, (2)

where M is the total number of sentences after data
augmentation.

4 Experiment

We conduct our experiments on standard semantic
textual similarity (STS) tasks using the SentEval
toolkit (Conneau et al., 2017) for evaluation. We
also test mean reciprocal rank (MRR), memory
usage, and retrieval speed on semantic retrieval
(SR) tasks. All of our experiments are tested on
a server with Intel i7-5930K CPU @ 3.50GHz,
Nvidia TITAN Xp GPU, CUDA 11.3 and cuDNN.

4.1 Semantic Textual Similarity (STS) Task
Semantic textual similarity (STS) is a natural lan-
guage processing (NLP) task to quantitatively as-
sess the semantic similarity between two text snip-
pets. We evaluate our model by computing the co-
sine similarity between sentence pair embeddings
on 7 standard STS tasks: STS 2012–2016 (Agirre
et al., 2012, 2013, 2014, 2015, 2016) , STS Bench-
mark (Cer et al., 2017) and SICK-Relatedness
(Marelli et al., 2014). These datasets have la-
bels between 0 and 5 indicating the semantic re-
latedness of sentence pairs. Following Reimers
and Gurevych (2019); Su et al. (2021); Gao et al.
(2021), we use Spearman rank correlation to mea-
sure the correlation quality between calculated sim-
ilarity and human labels. Spearman correlation
has a value between -1 and 1, which will be high
when the ranks of predicted similarities and the
ground-truth are similar.

4.2 Semantic Retrieval (SR) Task
The semantic retrieval (SR) task is to identify all
sentences in the retrieval corpus that are semanti-
cally similar to a query sentence. We construct the
SR task on Quora Duplicate Questions Dataset1

and Faiss2 (Johnson et al., 2017) to test the re-
trieval effect and efficiency of different models.
The Quora dataset contains over 500k sentences
with over 400k pairwise annotations on whether
two questions are duplicates or not. Faiss (John-
son et al., 2017) is a library for efficient similarity

1https://quoradata.quora.com/First-Quora-Dataset-
Release-Question-Pairs

2https://github.com/facebookresearch/faiss
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg. Size Dim Speed
Large models

SBERTbase 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89 109M 768 993
SRoBERTalarge 74.53 77.00 73.18 81.85 76.82 79.10 74.29 76.68 355M 1024 385
SimCSE-MPNet ♠ 73.70 86.78 82.56 87.24 83.06 86.54 79.27 82.75 109M 768 986
SimCSE-RoBERTalarge ♣ 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76 355M 1024 291

Backbone for compact model: TinyBERT
SimCSE-TinyBERT 73.02 80.71 76.89 83.01 78.57 81.10 78.19 78.78 14M 312 2650
+Projection-128 72.73 79.81 76.60 82.70 77.37 80.24 77.41 78.12 14M 128 2604
+Whitening-128 73.00 80.81 77.02 82.79 78.45 80.97 78.16 78.74 14M 128 2612

HPD-128 (Teacher: ♠) 74.20 84.49 79.95 85.79 80.07 83.41 78.99 80.99 14M 128 2608
HPD-128 (Teacher: ♣) 74.29 83.05 78.80 84.62 81.17 84.36 80.83 81.02 14M 128 2609

Backbone for compact model: MiniLM
SimCSE-MiniLM 70.34 78.59 75.08 81.10 77.74 79.39 77.85 77.16 23M 384 2031
+Projection-128 70.19 79.22 75.53 80.78 78.13 79.45 77.46 77.25 23M 128 2022
+Whitening-128 70.55 78.85 75.4 81.06 77.77 79.40 77.92 77.28 23M 128 2015

HPD-128 (Teacher: ♠) 74.25 84.43 80.33 85.75 80.68 83.91 79.06 81.20 23M 128 2025
HPD-128 (Teacher: ♣) 74.94 84.52 80.25 84.87 81.90 84.98 81.15 81.80 23M 128 2024

Table 1: Sentence embedding performance on STS tasks (Spearman’s correlation ρ×100). STS12-STS16: SemEval
2012-2016, STSb: STS benchmark, SICK-R: SICK relatedness dataset, Dim: embedding dimension, Size: number
of parameters, Speed: sentences per second.

search and clustering of dense vectors, which con-
tains algorithms that search in sets of vectors of
any size. We calculate all the sentence embeddings
of question2, store them in Faiss, and then use
the sentence embedding of question1 to retrieve
them. Faiss is configured in CPU mode with ’nlist
= 1024’ and ’nprobe = 5’. Note that we didn’t fine-
tune the models on the semantic retrieval task. We
report the results on three parts: average mean re-
ciprocal ranking (MRR@10), average retrieve time
for 1,000 sentences (Time/ms) and memory usage
(Mem/MB).

4.3 Experiment Setup
We train our model on the NLI dataset, which is
a combination of the SNLI (Bowman et al., 2015)
and the MNLI (Williams et al., 2018) dataset. SNLI
dataset contains 570k sentence pairs and MNLI
is a collection of 430k sentence pairs. Particu-
larly, the teacher model is trained on "entailment"
and "contradiction" pairs in NLI dataset using con-
trastive loss (Equation 1). We use two state-of-the-
art large sentence embedding models, SimCSE-
RoBERTalarge

3 (Gao et al., 2021) and SimCSE-
MPNet4 (Song et al., 2020), as our teacher models.
For the student model, we choose the released pre-
trained checkpoints of TinyBERT (Jiao et al., 2020)
and MiniLM (Wang et al., 2020), and we leverage a
linear projection layer for dimension reduction. As
for the PCA implementation, we first sample 100k
random sentences from the dataset and pass them

3https://huggingface.co/princeton-nlp/sup-simcse-
roberta-large

4https://huggingface.co/sentence-transformers/nli-mpnet-
base-v2

to the teacher model. Then we calculate the princi-
pal components Wt of the output embeddings by
calling the PCA function of the scikit-learn
package.

Baseline Models We compare our HPD method
to both state-of-the-art sentence embedding mod-
els and various dimension reduction techniques.
For sentence embedding model baseline, we di-
rectly fine-tune pre-trained language models Tiny-
BERT/MiniLM given NLI dataset using contrastive
loss. For the dimension reduction baseline, we
test both projection and whitening approaches: 1)
adding a projection layer after TinyBERT/MiniLM
encoder and training on NLI dataset with con-
trastive loss (without distillation); 2) adopting
whitening (Su et al., 2021) as a post-processing
operation (similar to PCA) to reduce the dimension
of SimCSE-TinyBERT or SimCSE-MiniLM. More
details about each baseline and training setting can
be found in Appendix A.

Data Augmentation Data Augmentation is a set
of techniques for improving the size and quality
of training datasets for Deep Learning models. It
is widely applied as an effective methodology to
improve generalization and achieves improvements
in many computer vision and natural language pro-
cessing tasks (Zhang et al., 2018; Sennrich et al.,
2016). To generate synthetic data and improve the
student’s performance, we apply WordNet substi-
tution and back translation (Ma, 2019) to every
distinct sentence in NLI dataset. After data aug-
mentation, the training data size is boosted from 1
million to 3 millions sentences.
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Model Dim STS-B Avg.

HPD-MiniLM
128 83.91 81.20
256 83.95 81.05
384 83.44 80.91

HPD-MiniLM-wo-Aug
128 82.33 79.48
256 82.55 79.57
384 82.04 79.15

HPD-TinyBERT
128 83.41 80.99
256 83.19 80.81
312 83.11 80.72

HPD-TinyBERT-wo-Aug
128 81.88 79.64
256 81.67 79.47
312 81.50 79.27

Table 2: Effect of data augmentation and different di-
mensions (STS-B and Avg. in STS tasks, wo: without,
HPD Teacher: SimCSE-MPNet)

5 Results

5.1 Results of STS Tasks

Table 1 presents the results of our model compar-
ing with current state-of-the-art sentence embed-
ding models on STS tasks. Our HPD-MiniLM can
achieve 97.7% of Spearman’s correlation perfor-
mance and 7 times higher speed with only 6.5%
of parameters compared with the best performance
model SimCSE-RoBERTalarge. We also observe
that our HPD-TinyBERT and HPD-MiniLM mod-
els outperform SimCSE-TinyBERT and SimCSE-
MiniLM, which are directly fine-tuned on the
same training data and loss function as SimCSE-
RoBERTalarge. Besides, our results show that our
model can significantly improve the results with
2.7-4.5% absolute gain compared with projection
or whitening for dimension reduction.

Impact of Data Augmentation and Final Dimen-
sion Results in Table 2 show that models with
augmented data can raise the performance by 1-
2 points compared with ones without augmented
data. For example, HPD-MiniLM-128 achieves an
average Spearman’s correlation of 81.20 with data
augmentation, compared to 79.48 without data aug-
mentation. We find that different projected layer
dimensions achieve similar performances. How-
ever, small dimension has slightly better results
than large ones.

5.2 Results of SR Tasks

From Table 3, we demonstrate that the embedding
dimension plays a vital role in the performance of
semantic retrieval tasks. Our HPD model with dif-
ferent dimensions can achieve comparable MRR
performance while the retrieval speed and memory

Model MRR Time Mem
HPD-TinyBERT-128 0.613 63.1 42.61
HPD-TinyBERT-256 0.616 130.4 85.22
HPD-TinyBERT-312 0.615 165.4 103.86
HPD-MiniLM-128 0.610 68.6 42.61
HPD-MiniLM-256 0.615 132.1 85.22
HPD-MiniLM-384 0.612 194.4 127.83

SimCSE-MPNet-768 0.671 385.8 255.66
SimCSE-RoBERTalarge-1024 0.670 518.0 340.88

Table 3: Semantic retrieval results on Quora dataset.
(MRR@10: retrieval quality, Time: retrieval efficiency,
Mem: memory consumption)

usage increase significantly when dimension goes
up. Compared with SimCSE-MPNet, which out-
puts a 768 dimensional vector, our model with 128
dimensions can achieve competitive MRR perfor-
mance while reducing the retrieval time by 8.2×
and memory usage by 8.0×.

6 Conclusion and Discussion

In this paper, we propose an effective method to
compress sentence representation using homomor-
phic projective distillation. We demonstrated that
this approach successfully enables small language
models to achieve competitive high-quality sen-
tence representations compared with large ones
while keeping a small embedding size to optimize
the memory storage and retrieval latency in down-
stream tasks.

Our results show that knowledge distillation with
augmented data improves the student model’s capa-
bility to cover and understand more complex sen-
tence variances. The learned projection layer with
contrastive loss for sentence embedding can out-
perform other dimension reduction methods. We
also try adding whitening transformation on HPD’s
output and the performance is slightly dropped (Ap-
pendix B). Since we find that smaller dimensions
can have slightly better results than larger ones, we
will check over the optimal projected layer size to
enhance the isotropy of sentence representation dis-
tribution for semantic similarity tasks in our future
work.
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A Training Details

We elaborate on how we obtain different baselines
for comparisons in Table 1.

• For SBERTbase and SRoBERTalarge, we report
the results from Reimers and Gurevych (2019)
and test their speed based on released models.

• For SimCSE-RoBERTalarge, we directly load
the pre-trained models from Huggingface’s
repository (Wolf et al., 2020) "princeton-
nlp/sup-simcse-roberta-large".

• For SimCSE-MPNet, we utilize a well
fine-tuned sentence embedding model us-
ing contrastive loss trained on NLI dataset
from Huggingface’s repository "sentence-
transformers/nli-mpnet-base-v2".

• For SimCSE-MiniLM, we use the MiniLM
with 6 layers, 384-hidden size and 6 self-
attention heads as the backbone network. We
then fine-tune it following the contrastive loss
for 3 epochs with a batch size of 256. The
optimizer we use is AdamW (Loshchilov and
Hutter, 2019) and the learning rate is set as
1e-3.

• For SimCSE-TinyBERT, we use the Tiny-
BERT with 4 layers, 312-hidden size and 12
self-attention heads. The other training set-
tings are the same as SimCSE-MiniLM.

• For Projection-128, we add a linear layer to
the language model MiniLM/TinyBERT. The
linear layer projects the original embedding
from 384/312 dimension to 128 dimension.
We train the model using the same contrastive
loss and configuration as those of SimCSE-
MiniLM/SimCSE-TinyBERT.

• For Whitening-128, we implement our own
version of whitening operation (Su et al.,
2021). It is directly applied on SimCSE-
MiniLM/SimCSE-TinyBERT as a dimension
reduction technique. Note that whitening is
a post-processing method, which is different
from HPD.

• For HPD-MiniLM and HPD-TinyBERT, the
models are trained for 3 epochs with a batch
size of 256 and a learning rate of 1e-4. We
keep the best checkpoint during training by
evaluating the model on STS-B test sets.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
HPD-MiniLM-H128 74.25 84.43 80.33 85.75 80.68 83.91 79.06 81.20
HPD-MiniLM-H256 73.95 84.21 80.04 86.08 81.11 83.95 78.89 81.05
HPD-MiniLM-H384 73.63 83.91 79.71 85.90 80.88 83.44 78.88 80.91

HPD-MiniLM-H128-wo-Aug 71.39 82.45 78.24 84.65 78.85 82.33 78.42 79.48
HPD-MiniLM-H256-wo-Aug 71.36 82.65 78.20 84.65 79.21 82.55 78.36 79.57
HPD-MiniLM-H384-wo-Aug 70.94 82.06 77.60 84.41 78.70 82.04 78.31 79.15

HPD-TinyBERT-H128 74.2 84.49 79.95 85.79 80.07 83.41 78.99 80.99
HPD-TinyBERT-H256 74.06 84.14 79.7 85.93 80.03 83.19 78.60 80.81
HPD-TinyBERT-H312 73.97 84.14 79.61 85.65 79.79 83.11 78.74 80.72

HPD-TinyBERT-H128-wo-Aug 73.29 82.51 78.36 84.61 78.45 81.88 78.39 79.64
HPD-TinyBERT-H256-wo-Aug 73.00 82.25 78.36 84.74 78.10 81.67 78.20 79.47
HPD-TinyBERT-H312-wo-Aug 72.85 82.20 77.90 84.35 77.83 81.50 78.23 79.27
HPD-MiniLM-H384-whiten-128 73.73 84.10 79.47 85.23 79.32 82.69 78.74 80.47
HPD-MiniLM-H384-whiten-256 73.98 84.15 79.61 85.63 79.78 83.09 78.73 80.71

HPD-TinyBERT-H312-whiten-128 73.91 84.08 79.52 85.32 79.45 82.81 78.78 80.55
HPD-TinyBERT-H312-whiten-256 74.00 84.15 79.62 85.64 79.77 83.09 78.74 80.72

Table 4: Sentence embedding performance on STS tasks (Spearman’s correlation ρ× 100).

B More Results on STS Tasks

We report the full set of results for data augmen-
tation and different dimensions on STS tasks in
Table 4 (Teacher model: SimCSE-MPNet). We
also test a variation: adding whitening after the
projected distillation. Results show that adding
whitening after our HPD output slightly decreases
the performance.
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