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Abstract

Medical images are widely used in clinical
decision-making, where writing radiology re-
ports is a potential application that can be
enhanced by automatic solutions to alleviate
physicians’ workload. In general, radiology re-
port generation is an image-text task, where
cross-modal mappings between images and
texts play an important role in generating
high-quality reports. Although previous stud-
ies attempt to facilitate the alignment via the
co-attention mechanism under supervised set-
tings, they suffer from lacking valid and ac-
curate correspondences due to no annotation
of such alignment. In this paper, we propose
an approach with reinforcement learning (RL)
over a cross-modal memory (CMM) to better
align visual and textual features for radiology
report generation. In detail, a shared memory
is used to record the mappings between visual
and textual information, and the proposed rein-
forced algorithm is performed to learn the sig-
nal from the reports to guide the cross-modal
alignment even though such reports are not
directly related to how images and texts are
mapped. Experimental results on two English
radiology report datasets, i.e., IU X-Ray and
MIMIC-CXR, show the effectiveness of our
approach, where the state-of-the-art results are
achieved. We further conduct human evalua-
tion and case study which confirm the validity
of the reinforced algorithm in our approach.1

1 Introduction

Radiology report generation aims to automatically
generate a free-text description from a specific clin-
ical radiograph (e.g., chest X-ray), which can sig-
nificantly alleviate the burden of radiologists and
thus improve the quality and standardization of
health care. With the advantages of its applica-
tions, radiology report generation has become an

†Corresponding author.
1Our code for this paper is released at https://

github.com/cuhksz-nlp/R2GenRL.

Figure 1: A chest X-ray image with its report, where
aligned visual and textual features are linked by colors.

interesting research topic attracted in both artificial
intelligence and clinical medicine. Recently, to
generate more accurate reports, approaches based
on deep learning techniques are adapted to this task
and have achieved great success (Jing et al., 2018;
Li et al., 2018; Liu et al., 2019).

To effectively perform radiology report gener-
ation, most existing studies adopted conventional
encoder-decoder architectures with convolutional
neural networks (CNN) as the encoder and recur-
rent neural networks (e.g., LSTM (Hochreiter and
Schmidhuber, 1997), GRU (Cho et al., 2014)) or
non-recurrent neural networks (e.g., Transformer
(Vaswani et al., 2017)) as the decoder. Considering
that there is alignment between radiographs and
their corresponding doctor-written reports (such
as the mappings demonstrated in Figure 1 where
visual and textual features representing the same
content are highlighted in the same color), the abil-
ity of a model to learn such alignment is the key
to achieve outstanding performance. To model the
alignment information, Jing et al. (2018) proposed
a co-attention mechanism to explicitly learn the
linking between visual features in the radiographs
and the semantic information in the correspond-
ing doctor-written text reports, where the model is
trained to generate text sequences via maximum
likelihood estimation (MLE). However, one chal-
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Figure 2: The overall architecture of our proposed approach, where the visual extractor, encoder, and decoder are
shown in gray dash boxes with the details omitted. The CMM and reward computation process of RL are illustrated
in green dash boxes, and the orange dash arrows indicate back-propagation of gradients from training the model.
The orange, blue, and red nodes in CMM denote the vector representations of visual features, textual features, and
memories, respectively.

lenge to learn the alignment is that there is no an-
notated alignment for such research to perform
supervised learning to accurately map cross-modal
information, so that normal learning procedure may
not fit this scenario. To address this challenge, re-
inforcement learning (RL) is a potential solution,
because it is able to guide the learning process of
the cross-modal alignment with appropriate super-
vision from carefully designed rewards. Although
there are studies following this paradigm by using
RL to perform report generation, they focused on
other aspects of this task rather than facilitating
the mappings for cross-modal information. For
example, Li et al. (2018) designed sentence- and
word-level rewards to guide the model to choose
to either retrieve a template sentence or generate a
new sentence, and Jing et al. (2019) ultilized multi-
agent RL to capture the imbalanced distribution
between abnormality and normality. Therefore, RL
on cross-modal alignment is expected to be studied
and has the potential for further improvements.

In this paper, we propose to enhance radiology
report generation via reinforced cross-modal align-
ment to alleviate the requirement of annotated su-
pervision while facilitate the interactions across
modalities (i.e., images and texts). In detail, our
approach is based on Chen et al. (2021b), where

a cross-modal memory (CMM) module is used to
stores the cross-modal information that bridges the
visual and textual features. Based on CMM, the
proposed RL algorithm is applied to leverage the
signals from natural language generation (NLG)
metrics, i.e., BLEU (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2011) and ROUGE
(Lin, 2004), to guide the cross-modal mappings
so as to better matching features from images and
texts as well as have a direct target of learning out-
come for report generation. Experimental results
confirm the validity of our approach, which outper-
forms strong baselines and achieves the state-of-
the-art performance on two widely used benchmark
datasets, i.e., IU X-Ray (Demner-Fushman et al.,
2016) and MIMIC-CXR (Johnson et al., 2019).
Moreover, we perform human evaluation and case
study to further illustrate the validity of the pro-
posed RL in our approach.

2 The Proposed Approach

Following previous studies (Jing et al., 2018; Li
et al., 2018; Liu et al., 2019; Chen et al., 2021b),
we treat radiology report generation as a sequence-
to-sequence task, where the source sequence are
patch features X = {x1,x2, ...,xs, ...,xS} from
an input image, where xs ∈ Rd is extracted by
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visual extractors, and the target sequence Y =
{y1, y2, ..., yt, ..., yT } is the corresponding report
to the image, with yt ∈ V being generated tokens,
T the length of the report and V the vocabulary
of all possible tokens. On the top of the gen-
eral sequence-to-sequence paradigm, we add CMM
which allows the proposed RL to take the signal
from Y and use it to guide cross-modal mappings
for X and Y. An overview of our proposed ap-
proach is presented in Figure 2, where the details
for different parts are illustrated as follows.

2.1 The Overall Generation Pipeline

In general, our model is composed of three major
components, i.e., the visual extractor, the CMM,
and the encoder-decoder part, where the CMM
is dynamically integrated into the encoding and
decoding process. The high-level descriptions of
the three components are explained below.

Visual Extractor The visual features X of a ra-
diology image I are extracted by pre-trained con-
volutional neural networks (CNN), such as VGG
(Simonyan and Zisserman, 2015) or ResNet (He
et al., 2016). Normally, an image is decomposed
into regions with equal size (i.e., patches), and
the extracted features from patches are then ex-
panded into a sequence by simply concatenating
all features from each row in a row-by-row manner,
where the process is formulated by

{x1,x2, ...,xs, ...,xS} = fv(I) (1)

with fv(·) representing the visual extractor. Then
the result is used as the source sequence for all
subsequent modules.

Cross-modal Memory Memories are widely used
to model the associations between different types
of features through the mapping of keys and values
and its effectiveness in doing so is demonstrated
in many previous natural language processing stud-
ies (Miller et al., 2016; Xu et al., 2019; Tian et al.,
2020; Cornia et al., 2020; Nie et al., 2020; Wu et al.,
2021; Chen et al., 2021a). Therefore, we use CMM,
which is based on Chen et al. (2021b), to record
potentially shared information of visual and textual
features in the memory so that the entire learning
process is able to explicitly map corresponding
parts in images and texts within a unified represen-
tation space. Formally, given a source sequence
X = {x1,x2, ...,xs, ...,xS} from an image, we
feed it to the CMM module to obtain the memory

correspondences {rx1 , rx2 , ..., rxs , ..., rxS} for the
visual features. Similarly, the given the generated
text sequence {y1, y2, ..., yt−1} for I with embed-
ding {y1,y2, . . . ,yt−1} is also fed to CMM to
form memory correspondences for textual features
{ry1 , ry2 , ..., ryt−1}.

Encoder-Decoder The encoder-decoder in our
model is built upon standard Transformer. In detail,
the encoding process is formulated as

{z1, z2..., zS} = fe(rx1 , rx2 , ..., rxS ) (2)

where fe(·) is the encoder. With the encoded re-
sults, the decoding process is formulated by

yt = fd(z1, z2, ..., zS , ry1 , ry2 , ..., ryt−1) (3)

where fd(·) is the decoder and yt the generated
token at the current time step.

2.2 Cross-modal Memory
In our approach, CMM serves as an intermediate
medium to connect the visual and textual features
and thus allows the model to automatically learn
the cross-modal mappings without relying on gold
annotated alignments. Specifically, CMM contains
a memory matrix2 M = [m1, ...,mi, ...,mN ] that
consists ofN memory vectors (mi is the i-th mem-
ory vector) to align the visual and textual features.
It applies multi-thread3 alignments to the visual fea-
tures (i.e., xs), the textual features (i.e., yt), and the
memory vectors (i.e., mi), where the alignments in
all threads follow the same procedure.

In detail, in each thread, it firstly maps xs, yt,
and mi to the alignment space x′s, y

′
t, ki through

three trainable matrices (i.e., Wx, Wy, and Wk),
respectively, which is formally represented by

x′s = xsWx, y
′
t = ytWy, ki = miWk (4)

Next, for each visual feature (i.e., x′s), CMM com-
putes the distances (denoted by ds,i) between x′s all
memory vectors (i.e., ki) in the alignment space by
ds,i = x′s · ki and extracts the closest K memory
vectors (i.e., keys in the memories) which are de-
noted as [ks,1, · · · ,ks,j , · · · ,ks,K]. Then, CMM
finds the corresponding memory vectors ms,j of
the keys ks,j in the memory matrix and uses a train-
able matrix Wv to map ms,j to its corresponding
value vectors (vs,j) through vs,j = ms,j ·Wv

2One way to obtain the memory matrix M is to randomly
initialize it and then update it during the training process.

3Thread number can be arbitrarily set in experiments.
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Afterwards, we compute the weighted sum of the
value vectors and obtain the output rxs for xs by

rxs = ΣKj=1ws,jvs,j (5)

where the weight ws,j is computed through

ws,j =
exp(x′s · ks,j)

ΣKj=1exp(x′s · ks,j)
(6)

The same procedure is applied to the textual
features and obtain the output ryt for yt. Finally,
CMM concatenates the output rxs and ryt from
all threads and feeds them to the encoder-decoder
structure in our model.

2.3 Reinforced Cross-modal Alignment
Although CMM provides a “soft” mechanism to
facilitate the linking between visual and textual
features, there is still no annotated alignment to
guide an accurate learning process, which is a com-
mon problem exists in previous work (Jing et al.,
2018). To address this problem, we propose to use
RL to provide appropriate supervision from NLG
evaluation metrics to search for better mappings be-
tween features from different modalities. In doing
so, we treat the genration model as the agent that
interacts with an external environment (visual and
textual features). Therefore, all parameters of our
approach, θ, define a policy pθ that results in an
action (i.e., the prediction of the next word). Upon
generating the end-of-sequence (EOS) token, the
agent uses a reward r based on evaluation metrics,
e.g., BLEU, METEOR and ROUGE, etc., where
the reward rt for the action at step t is the improve-
ment on the evaluation metric by generating the the
next word yt, which is formally expressed by

rt = r(Yt)− r(Yt−1) (7)

where Yt = {y1, y2, ..., yt} and Yt−1 =
{y1, y2, ..., yt−1}. Therefore, the entire reward R
of generating Y = {y1, y2, ..., yt, ..., yT } is the
sum of rt:

R =
T∑
t=1

r(Yt)− r(Yt−1) = r(Y) (8)

Then the model is trained to maximize the expected
reward EY∼pθ [r (Y)] from the generated report Y
via a sampling strategy (e.g., sampling by proba-
bilities). Based on EY∼pθ [r (Y)], the loss of our
entire approach is defined as

L(θ) = −EY∼pθ [r (Y)] (9)

with the gradient of L(θ) for θ computed using the
REINFORCE algorithm (Williams, 1992) via

∇θL(θ) = −EY∼pθ [r (Y)∇θ log pθ (Y)] (10)

Then, we approximate the expectation (i.e., the
expected gradient) through a single Monte-Carlo
sample Y from pθ:

∇θL(θ) ≈ −r (Y)∇θ log pθ (Y) (11)

However, the gradient estimated from the above
process is of high variance. To maintain the sta-
bility of the RL, we follow Rennie et al. (2017a)
to reduce such variance by introducing a reference
reward b.4 Therefore, Eq. (10) is formalized as

∇θL(θ) = −EY∼pθ [(r (Y)− b)∇θ log pθ (Y)]
(12)

with the expected gradient approximated by

∇θL(θ) ≈ − (r (Y)− b)∇θ log pθ (Y) (13)

Note that, in our approach, b is obtained by com-
puting the NLG metric (e.g., BLEU-4) of the gener-
ated report using greedy sampling during inferenc-
ing at the training stage. As a result, any actions
(i.e., result in some generated Y) that returns higher
r (Y) than b drives the following learning process
to take as more such actions as possible.

3 Experiment Settings

3.1 Datasets

In our experiments, we use two conventional bench-
mark datasets, i.e., IU X-RAY (Demner-Fushman
et al., 2016)5 from Indiana University and MIMIC-
CXR (Johnson et al., 2019)6 from the Beth Israel
Deaconess Medical Center. The IU X-RAY is a

4b is normally a constant (i.e., a reference reward value)
obtained from higher rewards by sampling all possible actions.
Note that the introduction of b does not change the expected
gradient (Eq. (10)), proved by

EY∼pθ [b∇θ log pθ (Y)] = b
∑
Y

∇θpθ (Y)

= b∇θ

∑
Y

pθ (Y)

= b∇θ1

= 0

5https://openi.nlm.nih.gov/
6https://physionet.org/content/

mimic-cxr/2.0.0/
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DATASET
IU X-RAY MIMIC-CXR

TRAIN VAL TEST TRAIN VAL TEST

IMAGE # 5.2K 0.7K 1.5K 369.0K 3.0K 5.2K
REPORT # 2.8K 0.4K 0.8K 222.8K 1.8K 3.3K
PATIENT # 2.8K 0.4K 0.8K 64.6K 0.5K 0.3K
AVG. LEN. 37.6 36.8 33.6 53.0 53.1 66.4

Table 1: The statistics of the two benchmark datasets
w.r.t. their training, validation and test sets, including
the numbers of images, reports and patients, and the
averaged word-based length (AVG. LEN.) of reports.

HYPER-PARAMETER VALUE

BATCH SIZE 8, 10, 16, 32
LR (VISUAL EXTRACTOR) 1e-5, 3e-5, 5e-5, 1e-4
LR (ENCODER-DECODER) 5e-5, 1e-4, 3e-4, 5e-4

Table 2: The hyper-parameters tested in tuning our
models, where LR (VISUAL EXTRACTOR) and LR
(ENCODER-DECODER) represent the learning rates for
the visual extractor and the encoder-decoder. The bold
values illustrate the best hyper-parameter configuration
for both IU X-RAY and MIMIC-CXR.

relatively small dataset with 7,470 chest X-ray im-
ages and 3,955 corresponding reports; the MIMIC-
CXR is the largest public radiography dataset with
473,057 chest X-ray images and 206,563 reports.

Following the experiment settings from previous
studies (Li et al., 2018; Jing et al., 2019; Chen et al.,
2020), we exclude the samples without reports for
both datasets. For IU X-RAY, we use the same
split (i.e., 70%/10%/20% for train/validation/test
set) as that in Li et al. (2018) and for MIMIC-
CXR we adopt its official split. Table 1 show the
statistics of all datasets in terms of the numbers of
images, reports, patients and the average length of
reports with respect to train/validation/test sets.

3.2 Baseline and Evaluation Metrics

To examine our proposed model, we use three base-
lines for comparison in our experiments. The first,
namely BASE, is the backbone encoder-decoder
used in our full model, i.e., a three-layer Trans-
former model with 8 heads and 512 hidden units
without other extensions. The second, namely
BASE+RL is the Transformer model with the same
architecture of BASE, where reinforcement learn-
ing is applied to training the model.7 The third,
namely BASE+CMM, is the Transformer model
with the same backbone architecture of BASE and

7This baseline verifies the effectiveness of reinforcement
learning on the same structure of BASE without CMM.

CMM, without RL.
For evaluation, we follow Chen et al. (2020) to

evaluate the above models by two types of metrics,
namely, conventional natural language generation
(NLG) metrics and clinical efficacy (CE) metrics8.
The NLG metrics9 include BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2011)
and ROUGE-L (Lin, 2004). For CE metrics, the
CheXpert (Irvin et al., 2019)10 is applied to la-
bel the generated reports and compare the results
with ground truths in 14 different categories related
to thoracic diseases and support devices. We use
precision, recall, and F1 scores to evaluate model
performance for CE metrics.

3.3 Implementation Details

To ensure consistency with previous studies (Li
et al., 2018; Chen et al., 2020), we use two images
for each patient as the input for report generation
on IU X-RAY and one image for MIMIC-CXR.
For visual extractor, we adopt the ResNet101 (He
et al., 2016) pretrained on ImageNet (Deng et al.,
2009) to extract patch features with 512 dimensions
for each feature. For the encoder-decoder back-
bone, considering the quality of text representation
significantly determines the model performance
(Radford et al., 2018; Song and Shi, 2018; Lewis
et al., 2020; Song et al., 2021), we use Transformer
(Vaswani et al., 2017), which has demonstrated its
superior in modeling text in many natural language
processing tasks, as the encoder-decoder and ran-
domly initialize its parameters. For the memory
matrix in CMM, its dimension and the number of
memory vectorsN are set to 512 and 2048, respec-
tively, with random initialization. In addition, the
thread number and the K in CMM are set to 8 and
32, respectively. We train our model using MLE
for 30 epochs to regularize the action space before
the RL is applied. Afterwards, we start RL using
the Adam optimizer (Kingma and Ba, 2015). Table
2 reports the hyper-parameters tested in tuning our
models for the two datasets. For each dataset, we
try all combinations of the hyper-parameters and
use the one achieving the highest BLEU-4 on the
validation sets of IU X-RAY and MIMIC-CXR.
For example, the best performing learning rates of

8Note that CE metrics only apply to MIMIC-CXR be-
cause the labeling schema of CheXpert is designed for
MIMIC-CXR, which is different from that of IU X-RAY.

9https://github.com/tylin/coco-caption
10https://github.com/MIT-LCP/mimic-cxr/

tree/master/txt/chexpert
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DATA MODEL
NLG METRICS CE METRICS

BL-1 BL-2 BL-3 BL-4 MTR RG-L AVG. ∆ P R F1

IU X-RAY

BASE 0.396 0.254 0.179 0.135 0.164 0.342 - - - -
+RL 0.446 0.290 0.212 0.167 0.194 0.356 15.2% - - -
+CMM 0.474 0.309 0.224 0.173 0.195 0.376 20.6% - - -
+CMM+RL 0.494 0.321 0.235 0.181 0.201 0.384 25.2% - - -

MIMIC-CXR

BASE 0.314 0.192 0.127 0.090 0.125 0.265 - 0.331 0.224 0.228
+RL 0.357 0.219 0.146 0.104 0.139 0.274 12.1% 0.325 0.267 0.271
+CMM 0.365 0.222 0.147 0.104 0.142 0.272 13.2% 0.329 0.285 0.280
+CMM+RL 0.381 0.232 0.155 0.109 0.151 0.287 19.1% 0.342 0.294 0.292

Table 3: NLG and CE evaluations of different models on the test sets of IU X-RAY and MIMIC-CXR datasets.
BL-n denotes BLEU score using up to 4-grams; MTR and RG-L denote METEOR and ROUGE-L, respectively.
The average improvement over all NLG metrics compared to BASE is also presented in the “AVG. ∆” column.

the visual extractor and other parameters are set to
5× 10−5 and 1× 10−4, respectively, and we decay
them by 0.8 per epoch for all datasets.

4 Results and Analysis

4.1 Overall Results

The experimental results of different models
on the two benchmark datasets are reported
in Table 3 where BASE, BASE+CMM, and
BASE+RL represent the aforementioned baselines
and BASE+CMM+RL represents our full model.

There are several observations. First, all mod-
els with CMM consistently outperform BASE and
BASE+RL on both datasets with respect to all NLG
metrics, which confirms the advantage of incor-
porating cross-modal memory into Transformer-
based models. Second, the comparison between
models with and without RL (i.e., BASE vs.
BASE+RL and BASE+CMM vs. BASE+CMM+RL)
on different metrics confirms the effectiveness of
using RL to train such generation model, where
models with RL outperforms the ones without
RL on all evaluation metrics. This observation
indicates that RL has its superiority to map es-
sential features from images and texts with dis-
tant (even irrelevant) signals (i.e., NLG metrics)
so as to produce better radiology reports. Third,
in particular, our full model BASE+CMM+RL out-
performs all other models by a large margin on
both datasets with respect to all metrics, although
the other baselines have already achieved outstand-
ing performance, which indicates the effectiveness
of the design of reinforced cross-modal alignment.
This observation further confirms that, under the
RL setting, CMM is able to better search for the
cross-modal alignment in the memory represen-
tation space without explicit supervision and pro-

vides a more accurate feature correspondence in
generating high-quality reports.

4.2 Comparison with Previous Studies

We further compare our full model (i.e.
BASE+CMM+RL) with existing studies on
the same datasets, and report the results (in
terms of NLG and CE metrics) in Table 4. It
is observed that our approach outperforms all
previous studies. Particularly, compared with
previous studies that also use RL (e.g., HRGR

and CMAS-RL), our approach focuses on using
RL to leverage the signals from NLG metrics
so as to update the whole model, whereas their
approaches focus on using RL to improve the
decision-making of sentence template utilization
and abnormality detection. In addition, compared
with Chen et al. (2021b) that uses memory-based
approach to align cross-modal information, our
approach is able to outperform their approach with
the help of the proposed RL mechanism, which
demonstrates the effectiveness of our approach to
further enhance the cross-modal modeling. Further
more, the overall comparison indicates that it is of
great potential in exploiting informative patterns
among images and their texts for report generation
without requiring any external resources, while
previous studies (e.g., COATT and HRGR) rely on
extra information (e.g., private datasets for visual
extractor pretraining) for this task.

4.3 Human Evaluation

We employ human evaluation to further evaluate
the effect of different modules (i.e., CMM and RL)
in our proposed model. In detail, we randomly
select 100 chest X-ray images and their ground
truth reports from the test set of MIMIC-CXR, as
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DATA MODEL
NLG METRICS CE METRICS

BL-1 BL-2 BL-3 BL-4 MTR RG-L P R F1

IU X-RAY

ST‡ (Vinyals et al., 2015) 0.216 0.124 0.087 0.066 - 0.306 - - -
ATT2IN‡ (Rennie et al., 2017b) 0.224 0.129 0.089 0.068 - 0.308 - - -
ADAATT‡ (Lu et al., 2017) 0.220 0.127 0.089 0.068 - 0.308 - - -
COATT‡ (Jing et al., 2018) 0.455 0.288 0.205 0.154 - 0.369 - - -
HRGR‡ (Li et al., 2018) 0.438 0.298 0.208 0.151 - 0.322 - - -
CMAS-RL‡ (Jing et al., 2019) 0.464 0.301 0.210 0.154 - 0.362 - - -
R2GEN‡ (Chen et al., 2020) 0.470 0.304 0.219 0.165 - 0.371 - - -
CA‡ (Liu et al., 2021c) 0.492 0.314 0.222 0.169 0.193 0.381 - - -
CMCL‡ (Liu et al., 2021a) 0.473 0.305 0.217 0.162 0.186 0.378 - - -
PPKED‡ (Liu et al., 2021b) 0.483 0.315 0.224 0.168 - 0.376 - - -
R2GENCMN‡ (Chen et al., 2021b) 0.475 0.309 0.222 0.170 0.191 0.375 - - -

OURS (CMM+RL) 0.494 0.321 0.235 0.181 0.201 0.384 - - -

MIMIC
-CXR

ST3 (Vinyals et al., 2015) 0.299 0.184 0.121 0.084 0.124 0.263 0.249 0.203 0.204
ATT2IN3 (Rennie et al., 2017b) 0.325 0.203 0.136 0.096 0.134 0.276 0.322 0.239 0.249
ADAATT3 (Lu et al., 2017) 0.299 0.185 0.124 0.088 0.118 0.266 0.268 0.186 0.181
TOPDOWN3 (Anderson et al., 2018) 0.317 0.195 0.130 0.092 0.128 0.267 0.320 0.231 0.238
R2GEN‡ (Chen et al., 2020) 0.353 0.218 0.145 0.103 0.142 0.270 0.333 0.273 0.276
CA‡ (Liu et al., 2021c) 0.350 0.219 0.152 0.109 0.151 0.283 - - -
CMCL‡ (Liu et al., 2021a) 0.344 0.217 0.140 0.097 0.133 0.281 - - -
PPKED‡ (Liu et al., 2021b) 0.360 0.224 0.149 0.106 0.149 0.284 - - -
R2GENCMN‡ (Chen et al., 2021b) 0.353 0.218 0.148 0.106 0.142 0.278 0.334 0.275 0.278

OURS (CMM+RL) 0.381 0.232 0.155 0.109 0.151 0.287 0.342 0.294 0.292

Table 4: Comparisons of our proposed models (i.e., CMM+RL) with previous studies on the test sets of IU X-RAY
and MIMIC-CXR with respect to NLG and CE metrics. Herein, ‡ marks the results that are directed cited from
their paper and 3 represents the results of our runs with their released codes.

MODEL COR. FLU. COV. AVG.

BASE 5.0 13.0 8.0 8.7
+RL 9.0 23.0 15.0 15.7
+CMM 21.0 30.0 20.0 23.7
+CMM+RL 65.0 34.0 57.0 52.0

Table 5: The results of human evaluation for different
models. COR., FLU. and COV. are abbreviations of
correctness, language fluency, and content coverage, re-
spectively, with AVG. denoting the average of them.

well as the reports generated from the baselines and
our model. Five human experts who are familiar
with radiology are asked to choose the best reports
among the generated and the ground truth reports.
Following Li et al. (2018), the assessment criterion
used in our experiments include correctness, lan-
guage fluency, and content coverage. The results
are reported in Table 5. Overall, BASE+CMM+RL

outperforms all baselines with a more satisfying
result from humans in terms of all the criterion.
In particular, BASE+CMM+RL significantly outper-
forms other baselines on correctness and coverage,
which further confirms that the reinforced cross-
modal alignment helps our approach generate more
accurate and comprehensive reports.

4.4 Case Study

To further investigate the effect of our model,
we perform a case study on the generated re-
ports from different models (i.e., BASE, BASE+RL,
BASE+CMM, and BASE+CMM+RL) with an exam-
ple input chest X-ray image chosen from the test set
of MIMIC-CXR. Figure 3 shows the example im-
age with its ground-truth report, and the generation
outputs from different models. For each model, we
also demonstrate the mappings between regions of
the image and words/phrases in the generated text,
where the intensity11 of the mappings is illustrated
on the images with different colors.

The observations are drawn from two different
aspects. First, BASE+CMM and BASE+CMM+RL

is able to generate descriptions aligned with the
ground-truth, which confirms the effectiveness
of CMM. For example, for the medical findings
in the ground-truth reports (i.e., “low lung vol-
umes”, “heart size is mildly enlarged”, “atelec-
tasis”, and “vascular congestion”), BASE+CMM

and BASE+CMM+RL covers many key words in
the findings (e.g., “low lung volumes”, “heart size”,
“atelectasis” and “vascular congestion”) in the gen-

11The intensity is measured by the attention scores extracted
by the first layer of the decoder.

454



Figure 3: Visualizations of image-text mappings between particular regions (indicated by colored weights) of
a chest X-ray image and words/phrases from its reports generated by BASE, BASE+RL, BASE+CMM, , and
BASE+CMM+RL, respectively. The color spectrum indicates the value of weight in the range of [0, 1].

erated reports whereas BASE can cover few of
them. Second, the validity of RL in aligning the
cross-modal features can be observed from the fact
that BASE+CMM+RL is able to generate relatively
more accurate reports (e.g. “Heart size is mildly
enlarged”) than BASE+CMM (e.g. “Heart size is
normal”) because the former obtains better visual-
textual mappings. For example, the abnormality
(i.e., “pleural effusion”) presented in chest X-ray
image is covered by the generated report from
BASE+CMM+RL and the corresponding region on
the image is precisely associated with to the texts.

5 Related Work

The task that is the most relevant to ours is im-
age captioning, which aims to generation text cap-
tions that describe the content of the given images
(Vinyals et al., 2015; Xu et al., 2015; Anderson
et al., 2018; Wang et al., 2019). Being one of its
applications and extensions to the medical domain,
radiology report generation aims to depicting ra-
diology images with professional texts (Liu et al.,
2019; Huang et al., 2019; Miura et al., 2020; Zhang
et al., 2020; Alfarghaly et al., 2021; Nooralahzadeh
et al., 2021; Najdenkoska et al., 2021; Wang et al.,
2021). In general, existing approaches for radiol-
ogy report generation were mainly designed and
proposed to better align images and texts or to

exploit highly-patternized features of texts. For
example, Jing et al. (2018) proposed a co-attention
mechanism to simultaneously explore visual and
semantic information with a multi-task learning
framework; Li et al. (2018) introduced a template
database to incorporate patternized information;
Chen et al. (2020) improved generation process by
applying a memory-driven Transformer to model
patternized information; Chen et al. (2021b) pro-
poses memory-based module to model the cross-
modal information. In addition, there are studies
that use RL to perform report generation (e.g., Jing
et al. (2019) utilized multi-agent RL to capture the
imbalanced distribution between abnormality and
normality), but their focus is not to utilize RL for
text and image alignment. Compared to previous
studies, our model offers an effective alternative
for radiology reports generation, where a soft in-
termediate layer with RL is provided to facilitate
the mappings between visual and textual features,
which allows one to produce more accurate descrip-
tions for radiology images.

6 Conclusion

In this paper, we propose an RL approach based
on CMM to better align visual and textual features
for radiology report generation. In detail, a shared
memory is used to store the cross-modal informa-
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tion and RL is applied to leverage the signals from
NLG metrics to guide cross-modal mappings so as
to better link features from images and texts. The
experimental results on two benchmark datasets
(i.e., IU X-Ray and MIMIC-XCR) demonstrate
the effectiveness of our model, which achieves the
state-of-the-art performance on both datasets. Hu-
man evaluation and the case study further confirm
that our approach is able to generate high-quality
reports with meaningful image-text alignment.
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