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Abstract

Entity recognition is a fundamental task in
understanding document images. Traditional
sequence labeling frameworks treat the entity
types as class IDs and rely on extensive data
and high-quality annotations to learn semantics
which are typically expensive in practice. In
this paper, we aim to build an entity recognition
model requiring only a few shots of annotated
document images. To overcome the data limi-
tation, we propose to leverage the label surface
names to better inform the model of the target
entity type semantics and also embed the labels
into the spatial embedding space to capture the
spatial correspondence between regions and
labels. Specifically, we go beyond sequence la-
beling and develop a novel label-aware seq2seq
framework, LASER. The proposed model fol-
lows a new labeling scheme that generates the
label surface names word-by-word explicitly
after generating the entities. During training,
LASER refines the label semantics by updating
the label surface name representations and also
strengthens the label-region correlation. In this
way, LASER recognizes the entities from docu-
ment images through both semantic and layout
correspondence. Extensive experiments on two
benchmark datasets demonstrate the superiority
of LASER under the few-shot setting.

1 Introduction

Entity recognition lies in the foundation of docu-
ment image understandings, which aims at extract-
ing word spans that perform certain roles from the
document images, such as header, question. Dis-
tinct from the text-only named entity recognition
task, the document images, such as forms, tables,
receipts, and multi-columns, provide a perfect sce-
nario to apply multi-modal techniques into practice
where the rich layout formats in such document
images serve as the new, complementary signals
for entity recognition performance in addition to
the existing textual data.
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Recent methods (Xu et al., 2020; Hong et al.,
2020; Garncarek et al., 2021) follow the tradi-
tional sequence labeling framework to extract the
word spans using the standard IOBES tagging
schemes (Marquez et al., 2005; Ratinov and Roth,
2009) in named entity recognition tasks. Entity
types are treated as class IDs and the semantics of
the label surface names are ignored. These meth-
ods also largely extend the label space by including
combinations of the boundary identifiers (B, I, E,
S) and entity types. For instance, when there are 3
target entity types, the extended label space would
have 13 (i.e., 4x3+1) dimensions. As aresult, they
fail to learn from the data efficiently and require
extensive datasets and high-quality annotations to
create the connection between entities and their en-
tity types. Meanwhile, document images typically
include various formats and have a high diversity of
entities within each page. It is expensive or almost
impossible to enumerate all required entity types
and obtain enough annotated data for them. More-
over, ethical concerns would arise when it comes
to the receipts or consent forms, which makes it
even harder to collect enough data.

Due to the inefficiency of traditional methods
and the data limitation in real application scenarios,
it is necessary to resort to few-shot learning for
entity recognition in document images. We aim
at exploiting the potential of a limited number of
training pages and try to generalize our model on
the much larger number of new pages for testing.
In our method, we go beyond the sequence labeling
framework and reformulate the entity recognition
as a sequence-to-sequence task. Specifically, we
propose a new generative labeling scheme for entity
recognition — the label surface name is explicitly
generated right after each entity as a part of the
target sequence. In this way, different entity types
are no longer independent dimensions in the la-
bel space and models can leverage the semantic
connect between the entities and entity types.
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To this end, we propose a label-aware sequence-
to-sequence framework for entity recognition,
LASER. Our implementation is based on pre-
trained language model LayoutReader ! (Wang
et al., 2021), which is a layout-aware pre-trained
sequence-to-sequence model.

As shown in Figure 1, LASER extends the ar-
chitecture of LayoutReader for our proposed gen-
erative labeling scheme to better solve the few-
shot entity recognition task for document images.
Specifically, after generating certain word spans,
the model can choose to generate either the follow-
ing words in the source sequence or label surface
names. The entity labels are explicitly inserted
in the generated sequence so that the probabil-
ity of the entity types conditioned on the entity,
P(typelentity), can be maximized not only by the
signals from the training data but also by the knowl-
edge from the pre-training of the language models.
We also embed the label surface names into the spa-
tial embedding space, so the generation of labels
is also aware of the correlation between labels and
the regions in the page.

Benefit from the novel generative labeling
scheme and the semantics of labels, LASER is
able to effectively recognize entities in document
images with only a limited number of training sam-
ples. In contrast, the sequence labeling models use
less efficient tagging scheme, thus requiring more
data and failing in the few-shot settings.

We validate LASER using two benchmarks,
FUNSD (Guillaume Jaume, 2019) and CORD-
Lvl (Park et al., 2019). Both datasets are from
real scenarios and fully-annotated with textual con-
tents and bounding boxes. We compare our model
with strong baselines and study the label-entity se-
mantic and spatial correlations. We summarize our
contribution as follows.

* We reformulate the entity recognition task and
propose a new generative labeling scheme that
embeds the label surface names into the target
sequence to explicitly inform the model of the
label semantics.

* We propose a novel label-aware sequence-to-
sequence framework LASER to better handle
few-shot entity recognition tasks for document
images than the traditional sequence labeling
framework using both label semantics and layout
format learning.

» Extensive experiments on two benchmark

"Licensed under the MIT License

datasets demonstrate the effectiveness of LASER
under few-shot settings.
Reproducibility. We will release the code and
datasets on Github?.

2 Problem Formulation

The few-shot entity recognition in the document
images is to take the text and layout inputs from
a limited number of training samples to predict
the boundary of each entity and classify the en-
tity into categories. Given a document image page
‘P, the words within the page are annotated with
their textual contents w and the bounding boxes
B = (x0, Y0, x1,y1) (top-left and bottom-right cor-
ners) by human annotators or the OCR engines,
and all the words and bounding boxes are listed
in a sequence serving as the inputs from textual
and layout modalities. In this way, the entities are
spans of these words referring to precise concepts,
which makes it possible to conduct entity recogni-
tion using sequence labeling or generative labeling
scheme. We randomly select a small subset of train-
ing samples and evaluate the performance under
the k-shot training, where k£ denotes the number of
the training samples.

3 Our Generative Labeling Scheme

We propose our labeling scheme of entity recog-
nition in the generative manner which generates
the entity boundaries and the label surface names
explicitly. Specifically, given an entity e =
(Wi, Wit1...,w;], we use the [B] and [E] to de-
note the boundary of the entity and append the label
surface name afterwards. Overall, the generative
formulation is to generate:

Wi—1, [B]awiv'-'ija [E], 71, ., Tk, [T]7wj+1

where [B] and [E] denote the start and end of
the entity; 7...7% are the words in the label surface
name; [T] denotes the end of the label surface
name. For example, “Sender” and “Charles Dug-
gan” are a pair of question and answer from a doc-
ument image. According to the generative labeling
scheme, the corresponding generated sequence is
that: [B] Sender [E] question [T]1 [B] Charles
Duggan [E] answer [T].

4 Our LASER Framework

In this section, we introduce our label-aware
sequence-to-sequence framework for entity recog-

2gj_thub .com/zlwang—-cs/LASER-release
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Figure 1: The Framework of LASER: [B

1, [E1, [T] denote the boundaries; 7, 7/, 7"/ are the label surface names;

(a) is the process of generative labeling scheme; (b) shows the alignment of the spatial identifiers and embeddings.

nition in document images. First, we introduce our
method in a bird’s eye view. Then we dive into
the details of each part including the multi-modal
prefix language model, the label-aware generation.

4.1 Overview

Our proposed LASER is a label-aware sequence-
to-sequence model for entity recognition in docu-
ment images. The framework is shown in Figure
1. The model follows the prefix language model
paradigm (Raffel et al., 2019; Dong et al., 2019a;
Bao et al., 2020) and is built upon the pre-trained
language model, LayoutReader (Wang et al., 2021).
With extensive knowledge learned in pre-training
stage, the model leverages the semantic meaning
of label surface names during generation.

Since the functional tokens (e.g. [B], [E]) and
the label surface names are foreign words in the
given page, their layout features are nonexistent.
We use trainable vectors as special layout identi-
fiers for these extra tokens and these vectors are
well aligned into the spatial embedding space. In
this way, the spatial correspondence between lay-
out formats and labels can be learned.

To reinforce the model to distinguish the func-
tional tokens (e.g. [B], [E]) and ordinary words,
an extra binary classification module is added, and
the probability is used in the next token prediction.

Equipped with all the components, our proposed
model is able to conduct entity recognition effi-

ciently and effectively under the few-shot setting.

4.2 Multi-modal Prefix LM

LASER is built on the layout-aware prefix lan-
guage model, LayoutReader (Wang et al., 2021).
Prefix language model refers to a multi-layered
Transformer where the source sequence and tar-
get sequence are packed together and a “partially-
triangle” mask is used to control the attention be-
tween tokens in the two sequences. In LASER,
the source sequence has full self-attention and the
target sequence only attends to the previous tokens
so the conditional generative probability is learned.

Input Embedding The input embedding layer of
LASER includes the word embedding, spatial em-
bedding, and positional embedding. We normalize
and round the bounding box coordinates to inte-
gers ranging from 0 to 1000, and embed them as
trainable vectors as spatial embeddings (Xu et al.,
2020, 2021a,b; Wang et al., 2021). So the input
embeddings of the ordinary words are as follows:

€w; = WordEmb(w; ) + SpatialEmb(B;) + PosEmb(4)

where WordEmb, SpatialEmb, PosEmb are the
word embedding, the spatial embedding, and the
positional embedding lookup tables, respectively; ¢
is the index of the word in the packed sequence.
The functional tokens and label surface names
are new tokens in the given page. We cannot ex-
tract the layout features from the bounding boxes of
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them because their bounding boxes are nonexistent.
Instead of the actual bounding boxes, we design
unique embedding vectors for each new tokens as
their layout identifiers. These identifiers can per-
form in the same way as real bounding boxes dur-
ing training to embed the functional tokens and la-
bel surface names into the spatial embedding space.
The input embedding replaces the spatial embed-
ding with the spatial identifiers:

ex = WordEmb(\) + SpatiallD(A) + PosEmb (%)

where SpatiallD is the spatial identifier lookup ta-
ble; ¢ is the index of the word in the packed se-
quence; A € {[B], [E], [T1, 71, ..., Tt}

Within the input embedding layer, the pre-
trained model learns the semantic and layout for-
mats from word embeddings or spatial features.
The spatial embeddings are already pre-trained and
further fine-tuned in the downstream tasks, and the
spatial identifiers are new to the model and com-
pletely trained in the downstream tasks.

Attention Mask As mentioned, LASER depends
on a “partially-triangle”” mask to realize sequence-
to-sequence training within one encoder. To be
more specific, the “partially-triangle” attention
mask has two parts, the source part and the tar-
get part. In the source part, the tokens can attend to
each other, which enables the model to be aware of
the entire sequence. In the target part, to predict the
next token in a sequence-to-sequence way, we de-
sign the “triangle” mask which prevents the tokens
from attending to the tokens after them. There-
fore, the generative probability conditioned on the
previous tokens can be computed.

Output Hidden States To learn the conditional
generative probability of the next token, we take the
output hidden states corresponding to the target se-
quence which is denoted as h,, 1, hy, 4o, ..., hy o,
where n 4+ 1 is the beginning of the target sequence
in the packed sequence. According to the “partially-
triangle” attention mask, h,, ;. is produced with the
attention to the source tokens and the previous tar-
get tokens, i.e., the input embeddings whose index
ranges from 1 to n + k. Therefore, h,, |, is used to
predict the (k + 1)-th token in the target sequence.

4.3 Label-aware Generation

In the sequence-to-sequence setting, LASER esti-
mates the probability of next token conditioned
on the previous context, i.e. P(xp|z<r) and

xr € C, where C = {wy..w,} U {m...7u} U
{[B1, [E], [T]} is the set of all candidate words.
Following LayoutReader, we restrain the candi-
dates within the source words instead of the whole
dictionary, and we go beyond it and extend the can-
didate set to include the functional tokens and label
surface names. Moreover, to distinguish whether
the next word belongs to the source or not, we
design an extra binary classification module.
Specifically, we take the hidden states hy, to pre-
dict whether the next token is from the source or
not. We denote the probability P(zyy1 € src) =
Pr+1. Then we use pg1 to weight the next token
prediction. The probability that the next token is
the i-th word in the source is computed as follows:

T
Pr+1exp (e, hy + b
P(z1 = wilzey) = — (e, )
5, exp (el b + by )

where wj is the ¢-th word in the source; ey, is
the input embedding of wj;; by is the bias.

Similarly, the probability that the next token is
one of the functional tokens or label surface names
is computed as follows:

(1 — prt1) exp (el hg + b))

P(x = Az =
(@1 <) >y exp (el hy + b))
where ) is a functional token or label surface name,
ie. A€ {[B],[E], [T],7T1,-, Tt} 1 — Dpy1 i
the probability that (k£ 4 1)-th token is a functional
token or label surface name; b%; is the bias.

Label Semantics Learning With the log like-
lihood loss of generative language modeling, the
model maximize the dot production between the
hidden states h and the input embeddings e. The
semantic correlation is learned considering that the
input embeddings of the labels surface names are
encoded in the word embeddings.

Spatial Identifier Learning From the layout for-
mat perspective, the input embedding of the la-
bel surface names also includes the spatial iden-
tifiers. When predicting the next token, the log
likelihood also strengthens the relation between
the spatial identifiers and the layout context. In
this way, LASER inserts the spatial identifiers into
the hyperspace of the spatial embeddings. In other
words, LASER predicts where a certain label is
more likely to be. Similar to the joint probability
of language modeling, LASER maximizes the joint
probability of a mixture of spatial identifiers and
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spatial embeddings: P(..., Bx_1, Bg, 7, Bi11, -..)
where By, is the bounding boxes of the words in
the page and the 7 is the label to predict. Further
visualization is conducted in Section 5.7.

4.4 Sequential Decoding

After training, LASER follows the prefix language
modeling paradigm and generates the target se-
quence sequentially. We input the source sequence
into the model and take the last hidden states to pre-
dict the first token in the target. Then we append
the result to the end of input and repeatedly run the
generation. We cache the states of the model and
achieve generation in linear time.

5 Experiments

In this section, we conduct experiments and abla-
tion study on FUNSD (Guillaume Jaume, 2019)
and CORD-Lv1 (Park et al., 2019) under few-shot
settings. We replace the original label surface
names with other tokens to study the importance
of semantic meaning. We also plot the heatmaps
of the similarity between the spatial identifiers and
the spatial embeddings to interpret the spatial cor-
respondence. Case studies are also conducted.

5.1 Experimental Setups

All the experiments are under few-shot settings
using 1, 2, 3, 4, 5, 6, 7 shots. We use 6 differ-
ent random seeds to select the few-shot training
samples and the data augmentation is conducted
to solve the data sparsity. We train all the mod-
els using the same data and compute the average
performance and the standard deviation. We only
report the result of 1, 3, 5, 7 shots for space limi-
tation. To evaluate our model, we first convert our
results into TOBES tagging style and compute the
word-level precision, recall, and F-1 score using
the APIs from Nakayama (2018) so that all compar-
isons with sequence labeling methods are under the
same metrics. We believe such experiment settings
guarantee the results are representative.

5.2 Datasets

Our experiments are conducted on two real-world
data collections: FUNSD and CORD-Lv1. Both
datasets provide rich annotations for the document
image understandings includes the words and the
word-level bounding boxes. The details and statis-
tics of these two datasets are as follows.
e FUNSD: FUNSD consists of 199 fully-
annotated, noisy-scanned forms with various

Table 1: Dataset Statistics.

Dataset # Train Pages # Test Pages # Entities / Page
FUNSD 149 50 42.86
CORD-Lv1 800 100 13.82

appearance and format which makes the form
understanding task more challenging. The
word spans in this datasets are annotated with
three different labels: header, question and
answer, and the rest words are annotated as
other. We use the original label names.
CORD-Lv1: CORD consists of about 1000 re-
ceipts with annotations of bounding boxes and
textual contents. The entities have multi-level
labels. We select the first level and denote
the dataset as CORD-Lv1. The first level in-
cludes menu, void-menu, subtotal and
total. We simplify subtotal as sub and
void-menu as void.

5.3 Compared Methods

We evaluate LASER against several strong se-
quence labeling methods as follows.

* BERT (Devlin et al., 2018) is a text-only auto-
encoding pre-trained language model using the
large-scale mask language modeling. We fine-
tune the pre-trained BERT-base model with the
few-shot training samples on each datasets.

* RoBERTa (Liu et al., 2019) extends the capac-
ity of BERT and achieves better performance in
multiple natural language understanding tasks.
We also conduct the fine-tuning with few-shot
training samples.

e LayoutLM (Xu et al., 2020) is a multi-modal
language model which includes the layout and
text information. It is built upon BERT and
adds the extra spatial embeddings into the BERT
embedding layer. Following LayoutL.M, Lay-
outLMv2 (Xu et al., 2021a) leverages extra com-
puter vision features and improves the perfor-
mance, which are strong signals but absent in our
settings. For a fair comparison, we do not include
LayoutLMv2 in our comparative experiments.

* LayoutReader (Wang et al., 2021) is a layout-
aware sequence-to-sequence model for reading
order detection. We append a linear layer upon
the hidden states to conduct sequence labeling.

These compared methods are in their base version
and follow the TOBES tagging scheme.
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Table 2: Evaluation Results with Different Sizes of Few-shot Training Samples: Bold denotes the best model;

Underline denotes the second-best model.

FUNSD CORD-Lv1
|P|  Model - —
Precision Recall F-1 Precision Recall F-1
BERT 9.62+2.24 24.1443.46 13.55+2.09 30.64+2.80 45.60+£3.45 36.64+3.10
RoBERTa 9.2941.57 22.06+5.64 12.76+1.91 30.66+4.25 44.39+6.72 36.2545.18
1 LayoutLM 11.3941.12 24.7347.38 15.184+2.17 33.2747.32 49.49+10.26 39.774+8.47
LayoutReader 11.3240.62 22.534+4.80 14.84+1.25 32.174+4.64 45.61+£6.54 37.70+£5.31
LASER 30.40+4.89 35.20+£7.20 32.36£5.14 47.63+£3.90 45.52+5.84 46.24+3.01
BERT 16.42+4.30 34.74+5.36 22.194£5.05 39.62+3.99 56.65+4.03 46.58+3.94
RoBERTa 16.714+3.63 31.2843.55 21.66+3.84 44.51+4.69 60.18+4.69 51.15+4.70
3 LayoutLM 28.6746.56 47.22+8.31 35.4247.00 47.68+7.49 63.93+7.04 54.571+7.46
LayoutReader 22.3742.03 35.194+4.97 27.1942.56 43.85+4.72 56.904+2.47 49.474+3.95
LASER 43.66+1.97 47.08+5.72 45.21+3.74 61.16+3.11 60.33+5.65 60.63+4.00
BERT 20.5742.59 39.25£1.10 26.93+2.46 45.73+4.31 63.29+3.68 53.06+4.14
RoBERTa 19.47+2.32 35.04+1.89 24.944+1.93 52.214+4.55 66.631+5.52 58.54+4.92
5 LayoutLM 39.2444.33 58.20+2.45 46.72+3.12 56.134+7.39 71.66+6.13 62.91+7.04
LayoutReader 27.5243.44 41.17+4.01 32.8943.28 51.974+8.42 63.824+7.87 57.2448.32
LASER 47.25+1.93 52.85£1.22 49.87+1.29 65.62+3.79 64.90+5.78 65.23+4.70
BERT 21.4442.07 40.874+3.79 28.09+2.48 50.13+4.35 66.67+3.67 57.20+4.07
RoBERTa 23.68+3.06 38.74+3.54 29.3243.08 55.1444.49 69.354+4.16 61.434+4.42
7 LayoutLM 43.234+5.27 61.731+5.97 50.7645.30 62.874+3.98 76.38+2.72 68.961+3.49
LayoutReader 31.2243.14 45.08+3.83 36.8543.26 54.434+5.89 65.48+5.34 59.4245.68
LASER 50.62+3.26 53.634+2.89 51.98+2.00 68.02+3.16 66.8714.82 67.401+3.76
baseline, LASER improves the F-1 scores by 8.59%
os on FUNSD and by 3.32% on CORD-Lv1 on aver-
e age across the different shots and LASER (IRLVT)
o — also surpasses the baselines under most settings.
0.2 / . .« . .
& Moreover, the improvement on precision is re-

2 7 3
# of Few Shots

(b) CORD-Lv1

2 3 3
# of Few Shots

(a) FUNSD

Figure 2: F-1 Curves with Different Sizes of Few-shot
Training Samples.

5.4 Implementation Details

We build LASER on the base of LayoutReader. We
use the Transformers (Wolf et al., 2019) and the
s2s-ft toolkits from the repository of Dong et al.
(2019a). We use one NVIDIA A6000 to finetune
with batch size of 8. We optimize the model with
AdamW optimizer and the learning rate is 5 x 1075,

5.5 Experimental Results

From Table 2 and Figure 2, the results show
that, under few-shot settings, our proposed model,
LASER, achieves the SOTA overall performance
compared with sequence labeling models. We con-
clude that the gain of performance comes mostly
from the generative labeling scheme since LASER
largely outperforms LayoutReader although both
of them share the same backbone.

Specifically, compared with the second-best

markable. LASER improves the precision by
12.35% on FUNSD and by 10.62% on CORD-Lv1
on average across the different shots. Especially,
under 1-shot setting, it surpasses the best sequence
labeling model on FUNSD by 19.01% on precision,
10.47% on recall and 17.18% on F-1 score.

We can also observe a drop in the improvement
with the increasing number of training samples. We
conclude that, with enough training samples, the
sequence labeling learns the meaning of each label
and the semantics of each label surface names no
longer provides extra useful information.

Based on these comparison, we safely come to
the conclusion that our proposed generative label-
ing scheme is superior to the traditional sequence
labeling scheme in few shot settings.

5.6 Ablation Study

In the ablation study, we aim at study the role of
the label surface names. We introduce an abla-
tion version, LASER (IRLVT), by replacing the
label surface names with irrelevant tokens. We also
design more different sets of words as substitutes
denoted Subl and Sub2. The detailed substitutes
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Table 3: Ablation Study of Different Label Surface Names in LASER. IRLVT uses the irrelevant tokens as labels;
ORIG uses the original label surface names; Subl and Sub2 use some reasonable alternative label surface names. as
substitutes. Bold denotes the best model; Underline denotes the second-best model.

FUNSD CORD-Lv1
P
[PI Label Surface Names Precision Recall F-1 Label Surface Names Precision Recall F-1
IRLVT [x, y, z] 30.644+5.89 33.45+9.14 31.624+6.61 IRLVT [w, x, y, 2] 48.57+4.93 44.124+6.36 45.84+3.57
ORIG [header, question, answer] 30.40£4.89 35.204+7.20 32.361+5.14 ORIG [menu, void, sub, total] 47.63+3.90 45.524+5.84 46.24+3.01
1
Subl [title, key, value] 31.78+4.75 34.21+7.44 32.66+5.10 Subl [info, etc, small, number] 48.12+4.15 48.47+6.60 48.04+4.06
Sub2 [page, topic, value] 30.90+5.20 35.97+8.57 33.03+6.31 Sub2 [page, non, part, price] ~ 45.59+5.68 44.09+7.87 44.38+5.39
IRLVT [x, y, z] 43.51+1.46 47.9245.93 45.44+3.36 IRLVT [w, x, y, z] 61.504+2.52 59.17+4.11 60.27+2.99
ORIG [header, question, answer] 43.66+£1.97 47.084+5.72 45.214+3.74 ORIG [menu, void, sub, total]  61.16+3.11 60.33+5.65 60.631+4.00
3
Subl [title, key, value] 43.87+1.33 47.11+£6.07 45.26+3.44 Subl [info, etc, small, number] 61.544+2.76 58.79+6.76 60.00+£4.57
Sub2 [page, topic, value] 43.88+1.34 48.01+6.86 45.65+£3.93 Sub2 [page, non, part, price] ~ 61.85£2.16 60.29+2.85 61.03+2.10
IRLVT [x, y, z] 46.94+1.87 52.964+2.03 49.74+1.63 IRLVT [w, x, y, z] 63.671+3.82 61.10£5.21 62.33+4.48
ORIG [header, question, answer] 47.25£1.93 52.854+1.22 49.87+1.29 ORIG [menu, void, sub, total] ~ 65.62+3.79 64.90+5.78 65.23+4.70
5
Subl [title, key, value] 47.43+£2.29 52.1942.09 49.68£1.98 Subl [info, etc, small, number] 65.05£5.59 63.64+7.16 64.31+£6.34
Sub2 [page, topic, value] 47.46+2.18 53.50+1.01 50.26£1.16 Sub2 [page, non, part, price] ~ 65.57+3.04 64.71+£3.97 65.12+3.38
IRLVT [x, y, z] 50.30+£2.26 54.14+3.48 52.08+2.26 IRLVT [w,x,y, z] 66.084+3.26 64.73£5.08 65.32+3.74
ORIG [header, question, answer] 50.62+£3.26 53.63+2.89 51.984+2.00 ORIG [menu, void, sub, total]  68.02+3.16 66.87+4.82 67.40+3.76
7

Subl [title, key, value]
Sub2 [page, topic, value]

50.224£3.20 53.79+3.13 51.88+£2.56 Subl [info, etc, small, number] 67.61+4.19 66.64+5.72 67.08+4.72
50.43+2.88 54.03+2.71 52.10+£2.09 Sub2 [page, non, part, price]

66.64+3.97 63.59+7.00 65.02+5.47

are introduced in Table 3.

To implement the ablation study, we simply re-
place the word embedding of label surface names.
For example, in LASER (Subl) on FUNSD, we
use the wording embedding of title instead of the
original header.

From Table 3, we compare the performance of
all the ablation models. We observe that LASER
performs differently with distinct label semantics.
In most cases, the human-designed labels can pro-
vide stronger semantic correlation with the entities
than the irrelevant labels so they can further im-
prove the performance. However, there are also
drops due to improper labels. Overall, we conclude
that the semantic meanings of the label surface
names are useful to bridge the gap between the
labels and entities.

5.7 Spatial Correspondence Interpretation

In this section, we study the ability of LASER to
capture the spatial correspondence between certain
areas and the labels. The experiment is based on the
results of LASER on FUNSD with 7 shots. As men-
tioned in Section 4.2, we design unique spatial iden-
tifiers for the label surface names. The identifiers
are in the same form as the spatial embeddings and
LASER inserts the identifiers into the original spa-
tial embedding space during sequence-to-sequence
training. Ideally, the model can learn where a cer-
tain label is more likely to appear. To visualize
such patterns, we compute the cosine similarity
matrix M of identifiers and the spatial embeddings
as M;; = cos (SpatiallD(7), SpatialEmb((, j)))

(a) Header

(b) Question (c) Answer

Figure 3: Spatial correspondence visualization on
FUNSD for different entity types.

where (i,7) is the normalized coordinate pair;
7 € {71, ..., 7¢}. Then we plot the heatmap of the
similarity matrix, where the highlight areas mean
the higher similarities.

From Figure 3, we observe that the label
header is more likely to be in the middle col-
umn of the page and may appear in the bottom part
as well when there are multiple paragraphs. Intu-
itively, the label question and answer should
appear in pairs and it is observed in Figure 3 that
their heatmaps are almost complementary to each
other. Several examples from FUNSD are selected
to demonstrate the visualization results in 4. Com-
paring the examples and the visualization results,
we conclude that the spatial identifiers of labels
capture the formats of pages and LASER leverages
these features to better extract the entities under
few shot settings.

5.8 Case Study

We visualize cases from the 5-shot setting. From
Figure 5, we observe LASER can extract the enti-
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(a) Original Image (b) Labeled Entities

(c) Original Image (d) Labeled Entities

Figure 4: Layout Format Examples from FUNSD: -, R - denotes question, answer, header.
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(a) Test Image and Expected Labels

(b) LASER Results

(c) LayoutLM Results

(d) Test Image and Expected Labels

(e) LASER Results

& "=

(f) LayoutLM Results

Figure 5: Case Studies. (a), (b), (c) from FUNSD; (d), (e), (f) from CORD-Lv1; [, B, " . ] denote menu,
question, answer, other; -, - denote menu, total; D, denote the right, wrong predictions.

Table 4: Text-only Dataset Statistics

Table 5: Results of 10-way-5-shot Experiments

Dataset #Train  #Test  # Entity Type Model OntoNotes MIT Movie
F-1 F-1
OntoNotes 60.0k 8.3k 18
: . BERT 60.79£0.97 47.88+0.97
Mit Movie 7.8k 2.0k 12 RoBERTa (Huang et al., 2020) 57.70 51.30
UniLM 60.8241.26 51.0941.40
LASER 61.11+1.08 51.88+1.27

ties correctly, and the errors of LayoutLM comes
from the failure to extract the entities or wrong en-
tity type predictions. Since the sequence labeling
groups the words into spans through TOBES tag-
ging, which creates great uncertainty. Meanwhile,
LASER also learns questions and answers ap-
pear in pairs (see Figure 5(b)). It also properly
predicts a numerical string as menu even if num-
bers are likely to be total (see Figure 5(e)).

5.9 Text-only Entity Recognition

LASER is designed for the entity recognition task
in document images where both text and layout

can be leveraged to acquire essential information.
However, the generative labeling scheme is not
constrained in the scenario of document images.
We briefly explore the potential of the generative
labeling scheme in text-only scenario. We ini-
tialize LASER with a text-only language model,
UniLLM (Dong et al., 2019b), based on the experi-
ments in Wang et al. (2021), and apply it onto text-
only entity recognition task. Following Huang et al.
(2020), we conduct 10-way-5-shot experiments on
two datasets, OntoNotes (Weischedel et al., 2013)
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and MIT Movie (Liu et al., 2013), which cover
general domains and review domains, respectively.
The dataset statistics are shown in Table 4 and the
results are as shown in Table 5. We observe that
our method can also surpass the sequence labeling
methods in these two datasets, showing the great
potential of the generative labeling scheme in the
entity recognition tasks.

6 Related Work

Layout-aware LMs. Since the post-OCR pro-
cessing has great application prospects, existing
works propose to adapt the language pre-training to
the layout formats learning. LayoutL.M (Xu et al.,
2020) is the pioneer in this area, which successfully
uses the coordinates to represent the layout informa-
tion in the embedding layer of BERT (Devlin et al.,
2018). Following LayoutLM, the upgraded ver-
sion, LayoutLMv2 (Xu et al., 2021a), is further pro-
posed to leverage the visual features and benefits
from the alignment between words and the regions
in the page. LAMBERT (Garncarek et al., 2021)
and BROS (Hong et al., 2020) continue studying
the layout representation which uses the sinusoidal
function or apply the relative positional biases from
T5 (Raffel et al., 2019). LayoutReader (Wang et al.,
2021) aims to predict the reading order of words
from the OCR results. ReadingBank (Wang et al.,
2021) is proposed to facilitate the pre-training of
reading order detection, which annotates the read-
ing order of millions of pages.

Generalized Seq2Seq. Sequence-to-sequence ar-
chitecture is basic in natural language processing
and is originally designed for machine translation.
With the rise of large pre-trained models, sequence-
to-sequence models are increasingly used with new
problem formulation. Existing works exploit the
potential latent knowledge and stronger represen-
tation ability of sequence-to-sequence modeling.
GENRE (De Cao et al., 2020) creatively reformu-
lates the entity retrieval task into the sequence-
to-sequence settings. It inferences the lined en-
tities using the generation of BART. Recent works
on prompt learning also leverage the pre-trained
sequence-to-sequence language models to conduct
few shot learning (Liu et al., 2021; Puri and Catan-
zaro, 2019; Hambardzumyan et al., 2021).

7 Conclusions and Future Work

In this paper, we present LASER, a label-aware
sequence-to-sequence framework for entity recog-

nition in document images under few-shot settings.
It benefits from the generative labeling scheme
which reformulates the entity recognition task into
the sequence-to-sequence setting. The label surface
names are embedded into the generated sequence.
Compared with the sequence labeling methods,
LASER leverages the rich semantics of the label
surface names and overcome the limitation of train-
ing data. Moreover, we design spatial identifiers
for each label and well insert them into the spatial
embedding hyperspace. In this way, LASER can
inference the entity labels from the layout formats
perspective and empirical experiments demonstrate
our method can learn the layout formats though
limited number of training samples.

For further research, we will investigate the se-
lection of label surface names and how to bet-
ter leverage the semantics from the pre-trained
sequence-to-sequence models. We also notice that
such labeling scheme can cope with unknown cate-
gories. We will focus on the generalization of our
method.
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Appendix
A All Results

All results are listed in Table 6.

4185



Table 6: Evaluation Results with Different Sizes of Few-shot Training Samples
FUNSD CORD-Lv1

[Pl Model Precision Recall F-1 Precision Recall F-1
BERT 9.62+£2.24 24144346 13.55+2.09 30.64+2.80 45.60+£3.45 36.64+3.10
RoBERTa 9.2941.57  22.06+5.64 12.76£1.91 30.66+4.25 44.39+6.72  36.25+5.18
LayoutLM 11.39+1.12  24.73+7.38 15.18+2.17 33.2747.32 49.49+10.26 39.77+8.47
1 LayoutReader 11.32+0.62 22.53+£4.80 14.84+1.25 32.17+4.64 45.61+6.54 37.70£5.31
LASER 30.40+4.89 35.20£7.20 32.361+5.14 47.63£3.90  45.5245.84  46.2443.01
(IRLVT) 30.64+£5.89 3345+9.14 31.62+6.61 48.57+4.93  44.12+6.36  45.84+3.57
(Subl) 31.78+4.75 34.21+£7.44 32.66+5.10 48.12+4.15 48.47+£6.60  48.04+4.06
(Sub2) 30.90+£5.20 35.97£8.57 33.03+6.31 45.59+5.68  44.09+£7.87  44.38+5.39
BERT 12.49+£3.24  30.01£4.55 17.53£3.89 37.66+£3.79  55.43+3.41 44.82£3.78
RoBERTa 13.124+3.08 27.634£5.16  17.56+£3.59 40.66+3.60  56.604+4.87  47.304+4.05
LayoutLM 19.73£5.43  37.32+9.58 254146.25 42924827  60.47+8.15  50.15+8.44
2 LayoutReader 16.66+2.58 29.26+5.34 20.96+3.01 44.14+7.77 58.50+8.32  50.26+8.04
LASER 39.23+3.09 42.43£6.23 40.38+2.71 59.31+£2.31  54.85+£6.19  56.80+3.46
(IRLVT) 38.75+£3.74 40.37+£8.17 39.19+4.84 57.05+£2.87 53.49+7.01  55.01+4.19
(Subl) 38.47+£2.95 41.11£7.03 39434+3.83 57.46+4.22  54.72+£5.87  55.98+4.68
(Sub2) 37.52+2.22 43.23£6.48 39.90+3.12 57.03£2.80 55.75£5.48  56.284+3.48
BERT 16.42+4.30 34.74£536 22.19£5.05 39.62+£3.99  56.65+4.03  46.58+3.94
RoBERTa 16.71+£3.63  31.2843.55 21.66+3.84 44.514+4.69 60.1844.69  51.15+4.70
LayoutLM 28.67+6.56 47.22+8.31 35.424+7.00 47.68+£7.49  63.93+£7.04 54.57+7.46
3 LayoutReader 22.37£2.03  35.19£4.97 27.19£2.56 43.85+4.72  56.90+2.47 49.47£3.95
LASER 43.66£1.97 47.0845.72 45.21+£3.74 61.164£3.11  60.33+5.65  60.631+4.00
(IRLVT) 43.51+1.46 47.92+£593 4544£336 61.50£2.52 59.17+4.11  60.27£2.99
(Subl) 43.87+£1.33  47.11+6.07 45.26+3.44 61.544+2.76  58.794+6.76  60.001+4.57
(Sub2) 43.88+1.34 48.01+6.86 45.65+£3.93 61.85+2.16 60.294+2.85 61.03+2.10
BERT 18.25£3.30 37.90£2.93  24.55£3.59 43.94+4.14  61.13+4.18  51.09£4.12
RoBERTa 17.99+2.84 34.384+4.09 23.52+3.07 49.564+4.89  65.1944.85 56.291+4.86
LayoutLM 33.38+3.62 53.71£3.24 41.00+2.71 52.15£7.90  68.06£6.86  58.99+7.66
4  LayoutReader 24.61+£2.58 38.28+3.05 29.80+2.51 48274+9.14 61.294£849  53.96+9.06
LASER 4491+£242  50.254+3.26  47.36+2.18 63.90+3.19  60.994+5.86  62.38+4.60
(IRLVT) 46.31+191 51.74£2.55 48.83£1.67 63.68+£3.72  60.39+7.11  61.93£5.50
(Subl) 45.58+1.63 51474297 4829+1.65 63.2243.31  60.3948.23  61.65+5.93
(Sub2) 45.43+2.08 51.744+2.64 4833+1.79 62.85+3.83 60.07+8.00 61.31+5.97
BERT 20.57£2.59 39.25+£1.10 26.93+2.46 45.73+4.31  63.29+£3.68  53.06+4.14
RoBERTa 19.47+£2.32  35.04+1.89 24944193 52.2144.55 66.63+5.52  58.544+4.92
LayoutLM 39.24+4.33  58.20+£2.45 46.724+3.12 56.13+£7.39  71.66£6.13  62.91+7.04
5 LayoutReader  27.52+3.44 41.17£4.01 32.89+£3.28 51.97+842 63.82+7.87 57.24£8.32
LASER 47.25£1.93 52.854+1.22 49.87£1.29 65.624+3.79  64.90+5.78  65.23+4.70
(IRLVT) 46.94+1.87 52.96+£2.03 49.74£1.63 63.67£3.82 61.10+5.21  62.33+£4.48
(Subl) 47434229 52.1942.09 49.68+£1.98 65.054+5.59 63.64+7.16 64.31+6.34
(Sub2) 47.46+£2.18 53.504+1.01 50.26+1.16 65.574+3.04 64.71+3.97  65.124+3.38
BERT 20.37£2.08 39.58+£2.90 26.85+£2.27 46.39+4.56 63.61+4.81  53.62+4.65
RoBERTa 21.70+£2.37 37.14£1.34 27.3241.96 51.80+£5.60 66.54+£5.87 58.2545.77
LayoutLM 41.75+£3.83  60.474+3.23 49.2843.02 59.3144.23  74.484+3.16  66.021+3.86
¢  LayoutReader 29.19+2.10 43.21+£2.32 34.82+2.09 52.76+4.45  65.62+3.47  58.45+3.99
LASER 48.64+£2.14 53.544+2.10 50.96+1.95 66.85+3.88  65.974+5.19  66.38+4.38
(IRLVT) 48.33+£2.15 52.68£1.56 50.36£1.08 66.01£4.07 63.85+5.59  64.87+£4.63
(Subl) 48.49+1.96 52.854+1.67 50.53+£0.99 65.1944.22  63.374+7.10 64.214+5.68
(Sub2) 49.14+£197 53424+1.20 51.16+£1.22 66.444+3.11 64.05+£4.31  65.214+3.67
BERT 21.44£2.07 40.87+£3.79 28.09+£2.48 50.13+£4.35  66.67£3.67  57.20£4.07
RoBERTa 23.68+3.06 38.74+3.54 29.3243.08 55.14+4.49  69.35+£4.16 61.434+4.42
LayoutLM 43.23+£5.27 61.73+£5.97 50.76+£530 62.87+3.98  76.38+2.72  68.961+3.49
7 LayoutReader 31.22+3.14 45.08+£3.83  36.85+£3.26 54.43+589  65.48+5.34  59.42+£5.68
LASER 50.62+3.26  53.63£2.89 51.98+2.00 68.02+3.16 66.87£4.82  67.40£3.76
(IRLVT) 50.30£2.26 54.14+£3.48 52.08+2.26 66.08+3.26  64.73£5.08  65.32+3.74
(Subl) 50.22+3.20 53.79£3.13  51.884+2.56 67.61+£4.19  66.64+£5.72  67.08+4.72
(Sub2) 50.43+2.88 54.03£2.71 52.10+2.09 66.64+£3.97 63.59£7.00 65.02+£5.47
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