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Abstract

Warning: this paper contains content that
may be offensive and distressing.

Hate speech classifiers exhibit substantial
performance degradation when evaluated on
datasets different from the source. This is
due to learning spurious correlations between
words that are not necessarily relevant to hate-
ful language, and hate speech labels from the
training corpus. Previous work has attempted
to mitigate this problem by regularizing spe-
cific terms from pre-defined static dictionaries.
While this has been demonstrated to improve
the generalizability of classifiers, the coverage
of such methods is limited and the dictionar-
ies require regular manual updates from human
experts. In this paper, we propose to automati-
cally identify and reduce spurious correlations
using attribution methods with dynamic refine-
ment of the list of terms that need to be regular-
ized during training. Our approach is flexible
and improves the cross-corpora performance
over previous work independently and in com-
bination with pre-defined dictionaries.1

1 Introduction

The relative sparsity of hateful content in the real
world requires crawling of many of the standard
hate speech corpora through keyword-based sam-
pling (Poletto et al., 2021), rather than random
sampling. Thus, hate speech classifiers (D’Sa et al.,
2020; Mozafari et al., 2019; Badjatiya et al., 2017)
often learn spurious correlations from the training
corpus (Wiegand et al., 2019) leading to a substan-
tial performance degradation when evaluated on a
corpus with a different distribution (Yin and Zu-
biaga, 2021; Bose et al., 2021; Florio et al., 2020;
Arango et al., 2019; Swamy et al., 2019; Karan and
Šnajder, 2018).

Recent work has proposed regularization mecha-
nisms to penalize spurious correlations by attempt-

1Code is available here: https://github.com/
tbose20/D-Ref

Target corpus utterances Actual Predicted
Genocide is never ok non-hate hate
Women are goddesses non-hate hate

Table 1: Spurious correlations learned by the source
classifier between the shaded tokens and the hate label.

ing to explain model predictions using feature at-
tribution methods (Ross et al., 2017; Rieger et al.,
2020; Adebayo et al., 2020). These methods assign
importance scores to input tokens that contribute
more towards a particular prediction (Lundberg
and Lee, 2017). For instance, Liu and Avci (2019)
penalize the attributions assigned to tokens con-
tained in a manually curated dictionary consisting
of group identifiers (e.g. women, jews) that are
often known to be targets of hate. Kennedy et al.
(2020) extract group identifiers manually from the
top tokens indicated by a bag-of-words logistic re-
gression model trained on the source corpus. How-
ever, regularizing only group identifiers limits the
coverage of such approaches, and may not capture
other forms of corpus-specific correlations learned
by the classifier limiting its performance on a new
corpus. Moreover, such manually curated lists may
not always remain up-to-date because new terms
emerge frequently (Grieve et al., 2018). While Yao
et al. (2021) do not use such lists for refining mod-
els in different target-domains, their method still
requires input from human annotators.

In this paper, we hypothesize that the classifica-
tion errors in a small annotated subset from the tar-
get can reveal spurious correlations between tokens
and hate speech labels learned from the source (see
Table 1). To this end, we propose Dynamic Model
Refinement (D-Ref), a new method to identify and
penalize spurious tokens using feature attribution
methods. We demonstrate that D-Ref improves the
overall cross-corpora performance independently
and in combination with pre-defined dictionaries.
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2 Dynamic Model Refinement (D-Ref)

In this section, we describe the general theoreti-
cal framework of the proposed approach. We as-
sume that during training our hate speech classifica-
tion model has access to the source training corpus
Dtrain

S and a small validation set Dval
T from a tar-

get corpus with different distribution, following
a similar setting to Maharana and Bansal (2020).
Our Dynamic Model Refinement (D-Ref) approach
consists of 2 recurring steps across epochs: (i) we
first extract a set of spurious tokens using Dval

T at
the end of every epoch; and (ii) then we penalize
the extracted tokens during the next epoch.

2.1 Extraction of Spurious Tokens

Global token-ranking in source corpus: We first
begin with identifying the tokens from Dtrain

S that
are highly correlated with hate/non-hate labels.
These tokens are suitable candidates for causing
source-specific spurious correlations, restricting
generalizability to a new corpus.

For that purpose, at the end of every training
epoch epi, we first obtain the global class-specific
ranked list of tokens from Dtrain

S . This is achieved
by computing global attributions per token tok and
class c (gl-atrctok) from its attribution per instance
j (loc-atrjtok) averaged across all training instances
classified as c by the source model trained until epi:

gl-atrctok =

∑|Dtrain
S |

j=1 1ŷj=cloc-atrjtok∀occurrence of tok in j∑|Dtrain
S

|
j=1 1ŷj=c#(occurrence of tok in j)

(1)

Here c ∈ {hate, non-hate}, ŷ is the predicted class
and 1 is the indicator function. Prior to this,
loc-atrjtok are individually normalized using sig-
moid to obtain values in a closed range. Rarely
occurring tokens and stop-words are not consid-
ered for the global ranking. The gl-atrctok values
are sorted from the highest globally attributed token
to the lowest, which yields two ranked token-lists
[gl-hate, gl-nhate]epi .

Instance-level local ranking in target corpus:
We hypothesize that tokens highly correlated with
hate/non-hate classes in the source, but also caus-
ing mis-classifications in the target, should most
likely contribute to spurious source-specific corre-
lations, and may not be important for hate speech
labels. Thus, we identify the tokens that cause mis-
classifications in Dval

T , and then obtain a list of
spurious tokens dynamically after every epoch epi.

We rank the tokens in the target instances from
Dval

T based on their loc-atrjtok, starting from the
highest attributed token per instance j to the
lowest. The top k tokens in j is given by
tokjtopk = topk[argsort(loc-atrjtok)], where k is a
hyper-parameter in Dval

T . We treat the two error
cases of False Positives (FP) and False Negatives
(FN) separately. Here the hate class is considered
as the positive class.

Since the tokens responsible for FP may also be
important for the True Positives (TP), we only ex-
tract those that have high attributions for FP, but
not for TP. Further, another filtering step is ap-
plied, where only the tokens common to the top
N from the ranked gl-hate are extracted. This
results in discarding the tokens that may not be
globally correlated with a class with respect to the
source model. So tokFP = [tok ∈ tokjFP

topk
&

tok ̸∈ tokjTP
topk

] ∩ topN (gl-hate) ∀ instances j in
Dval

T . Similarly, top k tokens corresponding to FN
instances are extracted, wherein those common to
TN are discarded, and subsequent filtering based on
the gl-nhate is performed, i.e. tokFN = [tok ∈
tokjFN

topk
& tok ̸∈ tokjTN

topk
] ∩ topN (gl-nhate) ∀ j.

This step thus yields a list of possible spurious to-
kens at the end of epi, Sepi = [tokFP , tokFN ]epi .

2.2 Penalizing the Extracted Spurious Tokens
In this step, we attempt to reduce the importance
assigned, by the source model, to the extracted
spurious tokens by penalizing the terms in Sepi

during the next epoch epi+1. We propose three
different ways for token penalization:

Tok-mask: In this case, we simply mask the to-
kens from Sepi present in Dtrain

S after every epi
and then train the source model during epi+1.

Reg: Since token masking might eliminate sub-
stantial information, we regularize the model using
Sepi . The attributions assigned to these terms are
pushed towards zero by the following learning ob-
jective on Dtrain

S :

L = L′
+ λLatr (t) ; t ∈ Sepi

;Latr =
∑

t∈Sepi

ϕ (t)
2

(2)

where L′
is the classification loss and Latr is the at-

tribution loss. Here ϕ (t) is the attribution score for
the token t. Intuitively, this should reduce the im-
portance of tokens contributing to source-specific
patterns and encourage learning more general in-
formation. Both losses are computed over Dtrain

S .
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Comb: We finally combine Sepi with the pre-
defined group identifiers from Liu and Avci (2019)
and Kennedy et al. (2020) to perform regularization
using Equation 2.

We surmise that repeating these steps at the end
of every epoch should reduce the source-specific
correlations while the source model gets trained.
We use three different attribution methods:

(i) Scaled Attention (α∇α) (Serrano and Smith,
2019): Here attention weights αi are scaled with
their corresponding gradients ∇αi =

δŷ
δαi

, where
ŷ is the predicted label. Serrano and Smith (2019)
show that combining an attention weight with its
gradient can better indicate token importance for
model predictions, compared to only using the at-
tention weights.

(ii) Integrated Gradients (IG) (Sundararajan
et al., 2017): This method is based on the notion
that the gradient of a prediction function with re-
spect to input can indicate the sensitivity of the
prediction for each input dimension. As such, it
aggregates the gradients along a path from an un-
informative reference input (e.g. zero embedding
vector) towards the actual input such that the pre-
dictions change from uncertainty to certainty.

(iii) Deep Learning Important FeaTures
(DeepLIFT/DL) (Shrikumar et al., 2017): This
aims to explain the difference in the output from
a reference output in terms of the difference of
the input and a reference input. Given a target
output neuron t, a reference activation t0 of t,
and ∆t = t − t0, it computes the contribution
scores C∆xi∆t of each input neuron xi that are
necessary and sufficient to compute t, such that∑n

i=1C∆xi∆t = ∆t. The reference input could be
the zero embedding vector.

3 Experiments and Results

3.1 Experimental Setup

Data We use three standard hate speech corpora:
HatEval (Basile et al., 2019), Waseem (Waseem and
Hovy, 2016) and Dynamic (Vidgen et al., 2021).
Following previous work by Wiegand et al. (2019);
Swamy et al. (2019), we consider the detection of
hate vs non-hate, where the hate class covers all
forms of hate. We split Waseem (26.8% hate) into
train (80%; 8720), val (10%; 1090) and test (10%;
1090) sets as no standard splits are provided. We
use the original splits for HatEval (42.1% hate;

train: 89932, val: 1000; test: 3000) and Dynamic
(54.4% hate; train: 32497, val: 1016, test: 4062).
We reduce the size of available Dval

T in Dynamic
by randomly sampling 25% of the validation set
(4064). We remove URLs, split hashtags into
words using the CrazyTokenizer3, remove infre-
quent Twitter handles, punctuation marks and num-
bers, and convert text into lower-case. See Ap-
pendix A for a detailed discussion on the corpora.

Baselines We compare D-Ref with the following
baselines: (i) BERT Van-FT (Devlin et al., 2019):
vanilla fine-tuning on Dtrain

S without regulariza-
tion; (ii) Convolutional Neural Network with regu-
larization of pre-defined group identifier terms us-
ing IG for feature attribution (Liu and Avci, 2019);
(iii) BERT using two variations for regularization:
(a) all the mentioned group identifiers, (b) group
identifiers extracted from the top features of a bag-
of-words logistic regression trained on each indi-
vidual corpus (Kennedy et al., 2020)4; (iv) χ2-test
with one degree of freedom and Yate’s correction
(Kilgarriff, 2001) to extract tokens tok from Dtrain

S

that reject the null hypothesis with 95% confidence.
The null hypothesis states that in terms of tok, both
Dtrain

S and Dval
T are random samples of the same

larger population. We, then, regularize the attribu-
tion scores5 assigned to these terms, with BERT.
(v) Pre-def: BERT with regularizing the combined
pre-defined group identifiers from (ii) and (iii).

Model training We use pre-trained BERT (De-
vlin et al., 2019) for our approach. We train all the
models over Dtrain

S from the source and evaluate
over Dtest

T from the target. The best model for all
the baselines and D-Ref are selected by tuning over
Dval

T . See Appendix B on hyper-parameter tuning.

3.2 Cross-corpora Predictive Performance

Table 2 presents macro-F1 scores across five ran-
dom initializations of each experiment using six
cross-corpora pairs. We observe that overall, all
feature-attribution methods with D-Ref yield im-
proved performance compared to Van-FT and other
baselines. While χ2 yields improvements over Van-
FT, D-Ref still displays better performance in most
of the cases. This could be attributed to the fact

2We remove the instances that contain only URLs, reduc-
ing the train instances from 9000 to 8993.

3https://redditscore.readthedocs.io
4We use Sampling and Occlusion (Jin et al., 2020).
5We use DL as it yields comparable or higher overall im-

provements taking Table 2 and Table 3 together.
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Approaches H →D D →H H →W W →H D →W W →D Average
BERT Van-FT 53.2±1.0 63.3±1.8 67.5±5.1 52.6±2.4 60.3±1.0 46.7±4.0 57.3
Liu and Avci (2019) 45.1±4.5 59.5±0.7 57.2±3.8 52.6±0.8 57.1±2.7 39.6±2.0 51.9
Kennedy et al. (2020) (a) 52.2±1.2 62.0±1.6 62.7±2.9 50.1±6.8 53.5±2.0 45.1±2.3 54.3
Kennedy et al. (2020) (b) 52.0±3.8 61.9±1.7 63.6±3.7 54.8*±1.6 57.0±1.7 46.8±1.9 56.0
BERT χ2-test 55.4*±1.1 65.0*±1.0 68.1±1.3 53.7±2.1 60.4±2.8 45.2±2.8 58.0

Pre-def (α∇α) 54.6*±1.3 65.1*±1.1 69.6±3.4 54.4*±1.2 61.9±1.6 47.2±3.1 58.8
D-Ref-Tok-mask (α∇α) 53.8±0.6 64.9*±0.7 68.9±3.3 53.6±3.0 59.6±2.2 45.8±3.7 57.8
D-Ref-Reg (α∇α) 54.9*±1.2 65.1*±0.9 68.6±4.0 54.1*±1.0 60.9±1.5 48.7*±4.3 58.7
D-Ref-Comb (α∇α) 55.0*±1.6 64.7*±1.2 69.9±1.6 55.3*±1.3 61.0±2.8 48.1*±1.0 59.0
Pre-def (IG) 55.7*±1.4 63.5±2.8 69.7±2.2 51.7±2.7 60.3±2.2 44.6±3.0 57.6
D-Ref-Tok-mask (IG) 56.3*±2.3 64.5*±1.8 68.3±2.0 52.3±2.3 59.3±1.3 48.2*±2.1 58.2
D-Ref-Reg (IG) 56.4*±1.4 65.5*±0.8 69.2±2.5 53.8*±0.7 60.6±1.7 47.7±3.6 58.9
D-Ref-Comb (IG) 55.7*±0.8 63.7±2.4 69.1±2.3 52.6±2.3 61.4±2.5 51.4*±3.6 59.0
Pre-def (DL) 54.2±1.6 64.0±1.9 68.1±1.5 52.9±1.2 62.0±1.8 44.5±1.3 57.6
D-Ref-Tok-mask (DL) 55.1*±1.4 64.9*±1.7 67.2±3.6 52.1±1.9 60.5±2.5 47.2±3.1 57.8
D-Ref-Reg (DL) 54.2±1.6 64.8*±0.8 70.7*±2.7 51.4±0.7 62.3*±2.5 47.1±5.5 58.4
D-Ref-Comb (DL) 55.4*±1.8 64.0±0.9 69.5±3.3 54.0*±0.8 61.5±2.3 48.1*±2.7 58.8

Table 2: Macro-F1 (±std-dev) on source →target pairs (H : HatEval, D : Dynamic, W : Waseem). Bold denotes the
best performing approach in each column for every feature attribution method. * denotes statistical significance
compared to Van-FT with paired bootstrap (Dror et al., 2018; Efron and Tibshirani, 1993), 95% confidence interval.

that although the terms obtained through the χ2

test from the source indicate differences across do-
mains, they may not necessarily be important for
the prediction of hate/ non-hate labels by the source
model, and may not contribute to source-specific
spurious correlations.

We find that D-Ref-Reg with IG and DL achieves
better average macro-F1 of 58.9 and 58.4 respec-
tively, compared to the corresponding Pre-def (IG)
and Pre-Def (DL) that obtain an average of 57.6.
D-Ref-Reg (α∇α) provides an average macro-F1
of 58.7, comparable to Pre-def (α∇α) with 58.8.
However, D-Ref-Reg achieves significantly im-
proved scores in more cases, as compared to Pre-
def using all the attribution methods, i.e. 4/6 cases
(α∇α), 3/6 cases (IG) and 3/6 cases (DL) with
D-Ref-Reg, compared to 3/6 (α∇α), 1/6 (IG) and
none (DL) with Pre-def. D-Ref-Tok-mask exhibits
improvements on average (α∇α: 57.8, IG: 58.2,
DL: 57.8) over Van-FT (57.3), demonstrating the ef-
fectiveness of the token extraction mechanism of D-
Ref. Finally, D-Ref-Comb displays the best overall
performance, with the highest average score of 59.
We attribute this improvement from D-Ref to its
increased coverage with dynamic token extraction,
and reduction of spurious source-specific correla-
tions, while the baselines only penalize the group
identifiers. A dynamic approach also corrects the
model during training before it can get fully biased
towards these tokens. Finally, it can incorporate the
pre-defined lists along with the extracted tokens,
and further improve the performance.

3.3 Domain-Adaptation Approaches

We further compare D-Ref-Reg with various Do-
main Adaptation (DA) methods. However, such

methods typically leverage the unlabeled train set
from the target domain (Dtrain

T ). We first continue
pre-training BERT model on Dtrain

T following Ri-
etzler et al. (2020). Then, we perform supervised
fine-tuning and regularization on Dtrain

S using D-
Ref-Reg (Masked Language Model + D-Ref-Reg).
We compare against the following methods:

(i) BERT Van-MLM-FT : MLM training of
BERT on Dtrain

T and supervised fine-tuning on
Dtrain

S .

(ii) BERT PERL (Pivot-based Encoder Repre-
sentation of Language) (Ben-David et al., 2020):
This performs pivot based fine-tuning using the
MLM objective of BERT by masking and predict-
ing the pivot terms present in the combination of
Dtrain

S and the unlabeled Dtrain
T . Here pivots are

terms that are frequently present in the unlabeled
data of both the source and target corpora, and are
predictive of the source labels.

(iii) BERT-AAD (Adversarial Adaptation with
Distillation) (Ryu and Lee, 2020), This is a domain
adversarial approach with BERT where a target
encoder is adapted with an adversarial objective
that leverages Dtrain

S and Dtrain
T .

(iv) HATN (Hierarchical Attention Transfer Net-
work) (Li et al., 2018, 2017) This approach uses
attention and a domain adversarial pivot extraction
mechanism.

(v) Sarwar and Murdock (2021): This adopts a
data-augmentation strategy leveraging a negative
emotion dataset (Go et al., 2009), for cross-domain
hate-speech detection. They construct a weakly la-
beled augmented dataset by training a sequence
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Approaches H →D D →H H →W W →H D →W W →D Average
BERT Van-MLM-FT 56.6±1.3 66.2±1.2 70.0±2.5 50.9±2.1 61.4±2.4 43.5±1.9 58.1
BERT PERL 54.1±0.7 60.0±0.6 60.1±2.0 55.2*±0.7 55.5±1.0 37.8±1.2 53.8
BERT-AAD 56.6±1.3 53.9±3.5 68.8±2.5 50.7±1.4 48.3±4.7 53.0*±1.7 55.2
HATN 48.4±1.6 59.1±0.4 59.7±2.9 51.4±1.8 60.0±2.6 45.4±2.7 54.0
MLM + Sarwar and Murdock (2021) 55.0±1.9 66.2±2.0 68.8±1.1 48.2±3.1 57.9±1.3 36.2±1.1 55.4
MLM + χ2-test 57.9±1.6 67.1±1.7 69.8±0.8 48.2±3.1 60.4±2.8 44.1±3.4 57.9
MLM + D-Ref-Reg (α∇α) 57.6±1.9 66.2±1.2 70.7±1.2 52.5*±4.0 62.8±1.4 48.0*±4.3 59.6
MLM + D-Ref-Reg (IG) 58.6*±1.2 66.8±0.5 70.1±1.5 52.1±3.0 62.5±3.0 48.9*±4.4 59.8
MLM + D-Ref-Reg (DL) 58.8*±2.2 66.7±0.6 70.5±1.3 52.4*±3.5 64.7*±2.1 51.5*±4.9 60.8

Table 3: Comparison of DA approaches with D-Ref + MLM. Macro-F1 (±std-dev) on different source →target
pairs. H : HatEval, D : Dynamic, W : Waseem. * denotes the significantly improved scores w.r.t. Van-MLM-FT.

tagger on Dtrain
S and a TF-IDF based template

matching with Dtrain
T .

(vi) χ2-test using Dtrain
S and Dtrain

T .
For a fair comparison, we initialize (v) and (vi)

with the MLM trained BERT on Dtrain
T , while the

other methods already make use of Dtrain
T for adap-

tation. We use Dval
T from target for model selection

for all the above methods.
Table 3 shows the results on comparing against

other DA approaches. We note that the average per-
formance of all the other DA approaches in this task
is lower than Van-MLM-FT, as discussed in our pre-
vious work (Bose et al., 2021). χ2-test, on an aver-
age, fails to surpass the Vanilla baseline. Besides,
the DA approach proposed for cross-domain hate-
speech detection by Sarwar and Murdock (2021)
also yields an overall drop in performance. They
perform data-augmentation by replacing relevant
words from an external negative emotion dataset
with tagged hateful terms from the target domain.
We find that a major portion of the augmented in-
stances lack meaning, and this negatively impacts
the adaptation. However, across all feature attri-
bution methods, D-Ref-Reg improves the cross-
corpora performance compared to Van-MLM-FT
and the DA approaches, with average macro-F1 of
59.6 (α∇α), 59.8 (IG), and 60.8 (DL), compared
to 58.1 from Van-MLM-FT. Since D-Ref-Reg and
Van-MLM-FT use identical MLM pre-training on
Dtrain

T , the improvements can be attributed to the
dynamic token extraction of our method.

More generally, when the larger set of target do-
main unannotated instances Dtrain

T are unavailable,
D-Ref can identify and correct spurious correla-
tions on source using a small amount of annotated
instances from the target Dval

T , as demonstrated in
Section 3.2. When sufficient number of unanno-
tated instances from the target corpus are avail-
able, D-Ref can yield further cross-corpora im-
provements by leveraging the unannotated target
instances with the MLM pre-training.

Non-hate examples HatEval →Dynamic
FP with Van-FT TN with D-Ref-Reg (IG)
Wildlife belongs in the

f*cking wild .

Wildlife belongs in the

f*cking wild.

NHS s*cks NHS s*cks

Hate examples Waseem →Dynamic
FN with Van-FT TP with D-Ref-Reg (IG)
Blacks are savages . Blacks are savages .

Queers can’t be truly

happy .

Queers can’t be truly

happy .

Table 4: Change in attributions with D-Ref-Reg (IG).

3.4 Qualitative Analysis

Table 4 shows the change in attributions for some
instances in Dtest

T from Dynamic that were mis-
classified by Van-FT but correctly classified by our
D-Ref-Reg (IG). Van-FT wrongly attributes higher
importance to ‘f*cking’ and ‘s*cks’ for the hate
class in the first example, and ‘blacks’ and ‘queers’
for non-hate in the second due to source-specific
correlations. However, D-Ref-Reg (IG), extracts
and penalizes abusive tokens like {s*ck, a**hole,
d*ck} for the former causing FP and {africans,
dark, queer} for the latter causing FN. Our ap-
proach not only penalizes the exact tokens, but also
those with similar meaning (e.g. ‘blacks’ is con-
textually close to ‘dark’, ‘africans’), giving more
importance to the context around the spurious to-
kens. See Appendix C for the token-lists.

4 Conclusion

We proposed a dynamic approach for automatic
token extraction with regularization of the source
model such that the spurious source specific corre-
lations are reduced. Our approach shows consistent
cross-corpora performance improvements both in-
dependently and in combination with pre-defined
tokens. Future work includes applying our method
on other cross-domain text classification tasks and
exploring how explanation faithfulness can be im-
proved in out-of-domain settings (Chrysostomou
and Aletras, 2022).
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Ethical Considerations

The approach proposed in the paper is aimed at
supporting robust and accurate detection of on-
line hate speech. The datasets used in the work
are publicly available and referenced appropriately.
The dataset creators have presented, in detail, the
data collection process and annotation guidelines
in peer-reviewed articles. The offensive terms pre-
sented, as examples, are only intended for better
analysis of the models for research purposes.
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A Data Description

While HatEval and Waseem are sampled from
Twitter, Dynamic is generated using a human-and-
model-in-the-loop process. These corpora have
been collected across different time frames, and
hence they involve different topics of discussion,
which are also determined to a large extent by the
keywords used for sampling. As such, the prob-
lem of dataset bias with spurious correlations are
induced with such focused sampling procedures
(Wiegand et al., 2019) used in Waseem and HatEval.
For instance, in Waseem, a large amount of tweets,

available at the time of our experiments, consist of
hate tweets directed against women, which results
in False Positives for instances from other corpora
that contain women related terms. We observed
that most of the racist tweets were already removed
and were unavailable for experiments. HatEval, on
the other hand, has a mix of tweets directed against
women and immigrants, and hence it demonstrates
decent performance when evaluated over Waseem
that consists of sexist tweets. On the contrary, Dy-
namic contains annotator-generated tweets that in-
cludes challenging perturbations. For instance, it
includes non-hate instances like ‘It’s wonderful
having gay people around here’, ‘I hate the concept
of hate’, ‘Tea is f*cking disgusting’, which can
easily fool a classifier learned on biased datasets,
and result in classifying these instances as hate-
ful. Moreover, this corpus covers different targets
of hate. As such, when Dynamic is used as the
target corpus, the spurious correlations learned by
the source classifier become relatively well-visible,
which are captured and penalized by D-Ref while
the source model gets trained.

The data used in the work are publicly available,
and download links are provided in the respective
original articles, which are referenced in this paper.
However, in the case of Waseem, where only tweet
IDs are provided, some tweets might be unavail-
able.

B Implementation Details

We leverage the pretrained BERT-base model6 for
our experiments. We use a batch size of 8, learning
rate of 1× 10−5 and Adam optimizer with decou-
pled weight decay regularization (Loshchilov and
Hutter, 2019) for Van-FT, Van-MLM-FT, D-Ref
and Pre-def. For Integrated Gradients, following
Liu and Avci (2019), the interpolated embeddings
are treated as constants while back-propagating the
loss from the regularization term. An all zero em-
bedding vector is used as the baseline input for
both Integrated Gradients and DeepLIFT. We use
the original code, as provided by the respective
authors, for all the prior-arts. For Pre-Def, we
combined the pre-defined lists from Kennedy et al.
(2020) and Liu and Avci (2019) and regularized
their attribution scores over BERT with α∇α, IG,
and DL as feature attribution methods.

We implement the data-augmentation approach

6https://github.com/huggingface/
transformers
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proposed by Sarwar and Murdock (2021) ourselves
due to the absence of an available implementation.
Following the description present in the paper, we
prepare the training data for the sequence tagger
by labeling all the terms in the hateful instances
from the source corpus that are also present in the
lexicon from hatebase.org7. However, we do not
tokenize the lexicon obtained from hatebase.org
while searching for the corresponding matching
terms in the source corpus. We convert the lexicon
into lower-case and look for the exact match in the
source corpus.

For D-Ref, we set the value of top N tokens
used from ranked {glist-hate, glist-nhate} as 500.
The values of k ∈ top {10%, 20%, 30%, 40%} of
the instance-length in D-Ref, and λ in both D-Ref
and Pre-def are selected through hyper-parameter
tuning over Dval

T using a random seed. For α∇α
and DeepLIFT, λ ∈ {0.1, 0.5, 1, 10, 20, 30, 40,
50, 60} and for IG, λ ∈ {1, 10, 20, 30, 40, 50,
60}. We run supervised fine-tuning on Dtrain

S for 6
epochs with all the BERT models (prior-arts and D-
Ref). We select the models (prior-arts and D-Ref)
by tuning over Dval

T from the target corpus, with
respect to macro-F1 scores. Table 5 presents the
macro-F1 scores obtained on the validation set for
D-Ref and the prior arts.

C Tokens extracted in different epochs

The list of error-causing tokens for False Positives
(FP) and False Negatives (FN) in Dval

T , extracted
for the cases presented in Section 3.4, is given
below. We underline the tokens present in the vi-
sualization examples (both Table 4 in Section 3.4
and below) and ones similar in meaning to them.
HatEval →Dynamic

• Epoch 1: FP: {idiots, conservative, countries,
p*ssy, bloody, americans, move, a**hole,
hating, beings, feminist, africans, resources,
d*ck, resist, females, attacks, dude, anger }
FN: {hitler, plague, ##urs, crisis, rescue, fund-
ing, gorgeous, treason, journalist, lawyers,
agenda, roles, principles, bloody, intern}

• Epoch 2: FP: {race, hating, flights, sheep,
females, ignorant, feminist, resist, attacks,
d*ck, kill, boat, countries, p*ssy, refugee,
bloody} FN: {president, foreigners, illegal,
betrayal, lgbt, riots, gorgeous, treason, joking,
chris, intelligent, arguments, humans}

7https://hatebase/org/

• Epoch 3: FP: {countries, race, hating,
females, feminist, africans, ridiculous, d*ck,
express, comments, organized, s*ck, allow,
bloody} FN: {illegal, hitler, generally, david,
intelligent, secret, chris, equality, dating, yel-
low, treason, abuses, ##gb, humans, plague,
dear, nonsense}

• Epoch 4: FP: {isis, genocide, indians, society,
supported, females, feminist, attacks, s*ck,
destroy, migrants } FN: {hitler, opportunities,
sister, betrayal, ##ame, gorgeous, ##heads,
dating, riots, bank, murders, arguments, hu-
mans, fights, plague, influence, targeting, sup-
porters, coordination, lies, ##boys}

• Epoch 5: FP: {clean, ignorant, slave, femi-
nist, punish, africans, ##ache, d*ck, ##fs, ars,
destroy, status, race, p*ssy, western, send}
FN: {statement, gross, hitler, sending, yellow,
waste, hopefully, trapped, riots, bait, sister,
coordination, humans}

• Epoch 6: FP: {soft, suicide, countries, p*ssy,
bloody, genocide, punish, destroy, migrants,
vile, beings, savage, feminist, tory, awful, ig-
norant, ##ists, spend, send} FN: {gross, se-
cret, influence, yellow, crime, abuses, partici-
pate, approach}

A non-hate comment in Dynamic test set for the
above case, wrongly classified as hate by Van-FT
and correctly classified as non-hate with D-Ref-
Reg (IG), is given below. Darker the shade, higher
is the attribution:

Van-FT: There is so much cancer patients in
the world but it is mostly the young females
who are worstly affected by this disease.
D-Ref-Reg: There is so much cancer patients
in the world but it is mostly the young
females who are worstly affected by this
disease.

Waseem →Dynamic

• Epoch 1: FP: {female, ##ists, fe, sex, femi-
nist, rap} FN: {cast, coward, queer, equality,
##bi , cost, ##sy, born, asian, nazis, kids, can-
cer, gender, hiring, funded}

• Epoch 2: FP: {##ists, her, sex, worse, femi-
nist, ##nt, outraged} FN: {welcome, caused,
cancer. drag, ##bi, pressure, parent, nazis,
troll, cast, trash, ruins, lesbian, attacking, chi-
nese}
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Approaches H →D D →H H →W W →H D →W W →D Average
BERT Van-FT 54.7±0.8 64.7±1.1 65.6±4.5 59.4±1.2 61.9±1.1 46.9±4.7 58.9
Liu and Avci (2019) 45.3±5.2 50.3±1.1 57.1±2.4 49.7±0.5 56.8±3.2 39.3±2.0 49.8
Kennedy et al. (2020) (a) 53.5±1.1 62.8±1.5 60.3±2.5 53.9±8.8 51.3±2.3 43.6±2.3 54.2
Kennedy et al. (2020) (b) 54.8±4.2 55.5±3.9 62.1±1.8 61.3±0.9 58.6±4.4 46.3±2.7 56.4
Pre-def (α∇α) 55.2±1.0 65.8±1.1 67.8±3.4 59.2±1.0 62.1±1.9 47.2±4.1 59.6
D-Ref-Tok-rem (α∇α) 54.9±1.0 64.7±1.2 66.6±2.8 58.5±1.4 60.7±1.1 45.9±3.9 58.6
D-Ref-Reg (α∇α) 55.4±0.7 65.4±1.9 65.5±3.9 59.5±0.9 61.0±1.1 49.6±3.7 59.4
D-Ref-Comb (α∇α) 56.2±1.7 64.6±0.7 66.8±2.9 59.9±1.3 62.6±1.7 48.1±1.1 59.7
Pre-def (IG) 55.7±1.6 64.8±0.7 67.0±2.2 59.9±0.9 62.3±1.7 44.4±3.2 59.0
D-Ref-Tok-rem (IG) 56.5±1.9 63.5±1.4 65.4±2.0 59.0±1.1 59.9±0.8 49.7±1.9 59.0
D-Ref-Reg (IG) 57.5±2.1 64.8±1.3 67.1±2.3 59.6±1.3 60.3±1.1 47.7±4.0 59.5
D-Ref-Comb (IG) 57.2±0.8 64.3±1.5 67.4±2.5 58.3±0.9 62.0±1.5 52.1±3.7 60.2
Pre-def (DL) 54.5±2.1 65.1±1.1 66.1±1.4 60.1±0.4 61.3±1.4 45.1±1.7 58.7
D-Ref-Tok-rem (DL) 55.4±1.9 65.5±1.5 65.5±3.1 59.0±1.1 61.6±2.1 48.3±3.7 59.2
D-Ref-Reg (DL) 56.0±1.8 65.7±0.8 68.1±2.3 59.3±1.4 63.0±1.4 48.0±5.9 60.0
D-Ref-Comb (DL) 55.1±2.1 65.6±1.4 66.4±3.1 59.1±0.8 61.6±2.2 49.6±3.0 59.6

Table 5: Validation set (Dval
T ) macro F1 (±std-dev) on source →target pairs (H : HatEval, D : Dynamic, W :

Waseem).

Approaches HatEval Dynamic Waseem Average
BERT Van-FT 43.3±1.8 85.1±0.5 85.4±0.7 71.3

In-corpus performance on source (left of arrows) while refining the source model for the target (right of arrows)
H →D H →W D →H D →W W →H W →D

D-Ref-Reg (α∇α) 39.7±3.2 38.4±1.7 84.1±1.0 84.2±0.8 84.4±0.7 78.8±8.0 68.3
D-Ref-Reg (IG) 40.5±2.0 37.7±2.1 84.0±0.4 84.5±0.4 84.6±1.0 85.3±1.4 69.4
D-Ref-Reg (DL) 37.1±1.8 38.1±2.9 84.7±0.6 84.3±1.2 84.4±0.5 80.7±6.4 68.2

Table 6: In-corpus macro F1 (±std-dev), i.e. the source corpus performance, obtained after refining the source
model for the target corpus (present at the right hand side of the arrows) using D-Ref-Reg. H : HatEval, D : Dynamic,
W : Waseem. For D-Ref-Reg, model-selection and early-stopping is done over the validation set from the target
corpus.

• Epoch 3: FP: {female, ##ja, might, men, fem-
inist} FN: {quoting, govt, referring, nazis,
troll, lesbian, rogue, date, chinese, typically}

• Epoch 4: FP: {communism, her, openly, in-
telligent, many, barbie, chicks, females, ar-
guing} FN: {date, suggest, ##lat, referring,
police, chinese, cancer, voice, native, lesbian}

• Epoch 5: FP: {term, f*ck, ##ng, woman,
##ist, feminist, females, prison} FN: {re-
moved, educate, freaking, queer, wow, ending,
referring, dye, ##wat, issues, africans, vast,
chinese, dark}

• Epoch 6: FP: {whore, her, ##ots, role, swe-
den, pay, d*ck, trump, feminist, females,
american, arguing} FN: {bat, everyday, freak,
argument, movement, chinese, tho, feature,
lesbian}

A hate comment in Dynamic test set for the above
case, wrongly classified as non-hate by Van-FT and
correctly classified as hate with D-Ref-Reg (IG),
is given below. Darker the shade, higher is the
attribution:

Van-FT:
Don’t get me wrong I don’t hate
asians, but I definitely don’t like
them

D-Ref-Reg:
Don’t get me wrong I don’t hate
asians, but I definitely don’t like
them

Since, the Waseem dataset is made available as
tweet IDs, we observed that it mostly contains
sexist comments, while most of the racist content
must have been removed before we could crawl it.
Hence, the tokens related to race mostly occur in
non-hate contexts causing FN.

Even though some error-causing tokens remain in
the list until the end, their overall effect should be
reduced as the regularization is performed through-
out the training procedure, which causes improve-
ment in macro F1.

D In-corpus performance

We present the in-corpus performance, i.e. the per-
formance on the source corpus in terms of macro-
F1 scores, obtained when the source model is re-
fined for the corresponding target corpus using D-
Ref-Reg, in Table 6. For D-Ref-Reg, the model is
tuned over the target corpus validation set. Here
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Approaches HatEval Dynamic Waseem
BERT Van-FT 1 m 25 s 3 m 52 s 2 m
D-Ref-Reg (α∇α) 1 m 39 s 7 m 3 m 33 s
D-Ref-Reg (IG) 9 m 37 s 59 m 19 m 7 s
D-Ref-Reg (DL) 4 m 4 s 18 m 36 s 8 m 44 s

Table 7: Per epoch training time on different source
corpora.

BERT Van-FT gives the original performance of
the source model, when no refinement is performed,
as a reference. In this case, the model is tuned over
the in-corpus validation set. The HatEval corpus
is part of a shared task and involves a challeng-
ing test set with low in-corpus performance. The
drop across in-corpus performance with D-Ref-Reg
is expected, as the main goal of the proposed ap-
proach is to make the source model best suited for
the target corpus.

E Pre-defined group identifiers

The combined list of pre-defined group identifiers
from Liu and Avci (2019) and Kennedy et al. (2020)
are given below:

{lesbian, gay, bisexual, trans, cis, queer, lgbt,
lgbtq, straight, heterosexual, male, female, non-
binary, african, african american, european, his-
panic, latino, latina, latinx, canadian, american,
asian, indian, middle eastern, chinese, japanese,
christian, buddhist, catholic, protestant, sikh, taoist,
old, older, young, younger, teenage, millenial, mid-
dle aged, elderly, blind, deaf, paralyzed, muslim,
jew, jews, white, islam, blacks, muslims, women,
whites, gay, black, democrat, islamic, allah, jewish,
lesbian, transgender, race, brown, woman, mexican,
religion, homosexual, homosexuality, africans}

F Computational Efficiency

We present the per epoch training time for D-Ref-
Reg with different source corpora in Table 7. The
training times of D-Ref-Reg (α∇α) are less than 2
times of that with Van-FT. With D-Ref-Reg (DL),
the training time is approximately 4.5 times of that
with Van-FT. This demonstrates the computational
efficiency of our approach. In the case of D-Ref-
Reg (IG), the computation time is indeed high. This
occurs due to the aggregation of gradients using
a path integral and computing gradients over gra-
dients, as also discussed in Kennedy et al. (2020);
Liu and Avci (2019). However, our approach is
not dependent on any particular feature attribution
method, as demonstrated with our experiments.
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