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Abstract

Previous attempts to build effective seman-
tic parsers for Wizard-of-Oz (WOZ) conversa-
tions suffer from the difficulty in acquiring a
high-quality, manually annotated training set.
Approaches based only on dialogue synthesis
are insufficient, as dialogues generated from
state-machine based models are poor approx-
imations of real-life conversations. Further-
more, previously proposed dialogue state rep-
resentations are ambiguous and lack the preci-
sion necessary for building an effective agent.

This paper proposes a new dialogue represen-
tation and a sample-efficient methodology that
can predict precise dialogue states in WOZ
conversations. We extended the ThingTalk rep-
resentation to capture all information an agent
needs to respond properly. Our training strat-
egy is sample-efficient: we combine (1) few-
shot data sparsely sampling the full dialogue
space and (2) synthesized data covering a sub-
set space of dialogues generated by a succinct
state-based dialogue model. The completeness
of the extended ThingTalk language is demon-
strated with a fully operational agent, which is
also used in training data synthesis.

We demonstrate the effectiveness of our
methodology on MultiWOZ 3.0, a reannota-
tion of the MultiWOZ 2.1 dataset in ThingTalk.
ThingTalk can represent 98% of the test turns,
while the simulator can emulate 85% of the
validation set. We train a contextual seman-
tic parser using our strategy, and obtain 79%
turn-by-turn exact match accuracy on the rean-
notated test set.1

1 Introduction

Virtual assistants and task-oriented dialogue agents
are transforming how consumers interact with com-
puters. This has led to active research on dialogue
state tracking networks (Ren et al., 2019; Zhou and

1Our data and code can be downloaded from https://
oval.cs.stanford.edu/releases/

SearchQuestion: area;
Restaurant, food = “indian” && price == cheap
{ name = “Kohinoor”, area = centre, ... }
{ name = “Royal Spice”, area = north, ... }

“Do you have anything 
with Indian food?”

user utterance RecommendMany;
Restaurant, price == cheap
{ name = “Pizza Hut City Centre”, area = centre, ... }
{ name = “The Missing Sock”, area = east, ... }

input formal dialogue

CSP Model

Exec: Restaurant, food = “indian”
&& price == cheap

user state

Agent

“Do you have a specific 
part of town in mind?”

agent utterance

output formal dialogue

...

...

Figure 1: The inference-time flow of a dialogue
agent with a contextual semantic parser based on the
ThingTalk representation.

Small, 2019; Zhang et al., 2020; Chen et al., 2020;
Heck et al., 2020), and even full neural networks
that track dialogue states, implement dialogue poli-
cies, and generate agent utterances (Williams and
Zweig, 2016; Eric et al., 2017; Zhang et al., 2020;
Peng et al., 2020; Hosseini-Asl et al., 2020).

Dialogue state tracking on Wizard-of-Oz task-
oriented conversations, where humans are asked to
simulate both the agent and the user, has proven
to be challenging. For example, despite multiple
rounds of manual annotation, the MultiWOZ multi-
domain task-oriented dataset still contains signif-
icant errors which hamper the development of ac-
curate semantic parsers (Zang et al., 2020; Han
et al., 2020; Ye et al., 2021a). An approach to by-
pass manual annotations is to generate dialogues
using a simulator and then manually paraphrase
them (Shah et al., 2018). Unfortunately, as we
shall show in this paper, such dialogue simulators
do not exercise many of the possible dialogue flows
seen in Wizard-of-Oz conversations. This gap is
likely to widen with real-life conversations.

Given the many attempts to create accurate se-
mantic parsers for the MultiWOZ data set, this
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paper takes a fresh look at the problem of under-
standing Wizard-of-Oz conversations. We observe
two fundamental flaws with the current approach.
Previously proposed state representations such as
slot-value pairs and the recently proposed hierar-
chical forms (Cheng et al., 2020) do not capture
critical details in the user utterances, such as logical
“or” and negation. Even if the semantic parser is
100% accurate, the agent will not be able to satisfy
the user’s request. Second, it is easy to make errors.
The existing slot representation is ambiguous, so
it is not possible to be consistently correct. This
leads to poor quality of annotation.

This paper shows that it is possible to create a
precise and accurate semantic parser for Wizard-
of-Oz conversations in a sample-efficient manner.
We introduce the MultiWOZ 3.0 dataset, a reanno-
tation of the full test set and partial validation set
of MultiWOZ 2.1 (Eric et al., 2019), using a new,
more precise formal representation. The contribu-
tions of this paper include:

1. A precise, complete, executable ThingTalk
representation for dialogues. In previous work,
we proposed the ThingTalk programming language
to represent just a single utterance (Campagna et al.,
2019). Here we extend it to a full formal represen-
tation of a dialogue, including multiple turns of
user input, results from the user request (such as a
database lookup or API invocation), and the agent’s
response. We show that the extended ThingTalk
for dialogues is precise enough to capture 98% of
the turns in MultiWOZ 3.0. In the rest of the paper,
we will refer to the extended ThingTalk language
as ThingTalk, unless noted otherwise.

We also demonstrate that ThingTalk is a com-
plete representation for dialogues. The agent di-
rectly executes the ThingTalk representation to re-
trieve the results from the databases and APIs, with-
out referring to any of the user utterances. In fact,
the same agent code can be used both during simu-
lation and in a real agent deployment.

2. We show that we can obtain a high-quality
synthetic training data set with a simulator that
adopts the ThingTalk representation. The pre-
cision of ThingTalk makes it possible to generate
many distinctively different dialogue paths that mir-
ror those in the WOZ conversation. Our experiment
shows that our simulator can generate 85% of the
user turns.

3. We show that by leveraging synthesized di-
alogues represented in ThingTalk, we can train

an effective semantic parser for WOZ conver-
sations. This is significant since it is difficult to
annotate dialogues accurately. ThingTalk does not
make it easier to annotate, but it is unambiguous.
We annotate manually only a few-shot training set,
and rely on synthesis for the rest. The few-shot
training data is 2% of the typical amount of anno-
tated data.

The few-shot training samples in ThingTalk help
the semantic parser generalize from the simulated
dialogues to WOZ conversations. Whereas the sim-
ulator can only generate a subset of the states rep-
resentable by ThingTalk, ThingTalk can precisely
represent nearly all WOZ data.

Our novel contextual semantic parser, described
in Section 5, obtains a turn-by-turn accuracy of
79% on MultiWOZ 3.0. Note that this model gen-
eralizes to utterances that fall out of the realm of
simulation.

2 Related Work

State Representation for DST Dialogue State
Tracking is the task of predicting a formal repre-
sentation of a conversation. The standard represen-
tation used in DST contains the values of all slots
mentioned in the dialogue (El Asri et al., 2017;
Budzianowski et al., 2018). This is inadequate in
practice. First of all, the definition is ambiguous,
as it could mean “all slots mentioned by the user”
or “all slots mentioned by either the user or the
agent”. This has lead to inconsistency in the anno-
tation. Second, the representation does not track
the comparison or logical operators in the request,
so it cannot model complex queries.

Recently, Cheng et al. (2020) proposed adopting
a formal representation for both the user and agent
state, using the TreeDST representation. TreeDST
was built to support only dialogues synthesized
and paraphrased from a compatible state machine,
while ThingTalk supports the full generality of
Wizard-of-Oz conversations.

Data Acquisition for DST In recent years, a
number of very large DST datasets have been re-
leased (Budzianowski et al., 2018; Byrne et al.,
2019; Rastogi et al., 2020). The preferred tech-
nique to acquire such datasets is through Wizard-
of-Oz (Kelley, 1984), a technique in which two
humans are instructed to converse with each other,
with one person taking the role of the agent. WOZ
datasets are expensive, and the annotation quality
is poor. A different approach synthesizes a large
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corpus of dialogues using a state machine, then em-
ploys crowdworkers to paraphrase them. Paraphras-
ing has been applied to semantic parsing (Wang
et al., 2015) and dialogues (Shah et al., 2018;
Rastogi et al., 2020; Cheng et al., 2020). Para-
phrased datasets have less variety than WOZ, and
crowdsourced paraphrases are also expensive. Our
approach has a significant cost advantage, while
matching the variety of WOZ dialogues.

Campagna et al. (2020) found that using data
synthesized from a small finite state machine, it
is possible to increase the accuracy of DST in the
transfer learning setting. Later, Yu et al. (2021)
proposed using synthesized data to pre-train a DST
model, using a different objective function. They
showed modest improvements in MultiWOZ 2.1,
using the full training set. We instead propose using
the same fine-tuning objective for both synthesized
and few-shot annotated data.

3 The ThingTalk Dialogue Language

The ThingTalk Dialogue Language is designed to
formally capture all relevant information in task-
oriented dialogues to interpret what the user says
next. This includes the user utterances, the result
of the user requests, as well as the agent’s replies.

To see why the results and the agent’s reply
are needed, consider the example in Fig. 1. The
user has previously asked for a cheap restaurant,
and now asks “Do you have anything with Indian
food?”. In the example, the agent noted that there
are many cheap restaurants available, so it is likely
that the user wants both “Indian” and “cheap”. This
is reflected in the query that the command maps
to. Conversely, had the agent responded that there
are no cheap restaurants, it is likely that the user no
longer cares about finding a cheap and only wants
Indian. The user query thus would be just:

Exec : Restaurant, food = “indian”

This illustrates that the meaning of the user utter-
ance depends on the result and the agent’s response,
so we must include them in the formal dialogue.
The previous slot-based representation captures
only what is mentioned by the user; it is not precise
enough to handle this example.

Formally, ThingTalk represents (1) the user state
u ∈ U with the semantics of a single user turn, (2)
the agent state a ∈ A with the semantics of the
single agent turn, and (3) the formal dialogue d ∈
D to capture all information necessary to interpret
the user utterance. In this section, we provide the

(a) Sorting and ranking in ThingTalk
Agent: There are 14 trains that arrive by 12:45. What time

would you like to leave?
User: What’s the latest train i can take that will still get me

there by 12:45?
u1 = Exec : sort(arrive_by desc of Train,

arrive_by ≤ 12:45 && . . .)[1]

(b) Projection and logical operators in ThingTalk
User: I think i would like to visit both churchill and

magdalene colleges. May I have their phone
numbers?

u1 = Exec : [phone] of Attraction,
name = “churchill” || name = “magdalene”

Figure 2: ThingTalk representations of user utterance
examples in the MultiWOZ 3.0 validation set. u1 de-
notes the user state.

Agent: [. . . ] Would you like me to make you a reservation?
User: Yes, please make a reservation.
u1 = Exec : Restaurant.MakeReservation(name = “...”)

Agent: What day and time?
a1 = SlotFill: book_day, book_time

Restaurant.MakeReservation(name = “...”)
(a) User answers the question
User: At 17:30 on Friday.
u2 = Exec : Restaurant.MakeReservation(name = “...”,

book_time = 17:30, book_day = friday);
(b) Or, user switches to a new domain instead
User: Nevermind. Not at this time. Can you help me find

the postcode for the Holiday Inn Cambridge?
u2 = Exec : Hotel, name = “holiday inn cambridge”;

Figure 3: Examples of a user continuing or abandoning
a transaction, adapted from the MultiWOZ 3.0 valida-
tion set. The user state u2 denotes this fact by propa-
gating or discarding the action. a1 is the agent state.

detailed definition of each component. The formal
syntax is included in Appendix A.

User State. The formal semantics of a user turn
is represented by a user state u ∈ U , which con-
sists of an abstract dialogue act and, for dialogue
acts that provide or request information, a sequence
of statements: either database queries, or actions
with side effects (such as making a reservation).
Queries specify the domain of interest and can use
the standard relational operators: selection, pro-
jection, aggregation, sorting. Actions specify the
domain, the action name, and the parameters neces-
sary for the action. User state examples in Figures
1 and 2 with abstract act “Exec” are all queries,
while the example in Fig. 3 uses the action “Restau-
rant.MakeReservation”.

The user state includes new statements that are
implied by the current utterance and statements
that the user has previously mentioned and is still
interested in pursuing (Fig. 3). Note that a sin-
gle user utterance may map to multiple ThingTalk
statements, possibly in different domains.
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Feature Slots TreeDST Express TT

User
Executable Semantics × × 3 3
Canonicalizable × × × 3
Greetings × × ? 3
Learn More, Ask Recomm. × × ? 3
Multi-domain Turns × 3 3 3
Request Features:

Slot Constraints 3 3 3 3
Comparisons × 3 3 3
Logical And 3 3 3 3
Logical Or, Not × × 3 3
Projection × 3 3 3
Ranking × × ? 3

Agent
Dialogue Acts × 3 3 3
Requested Slots 3 3 3 3
Proposed Slots × 3 3 3

Table 1: Comparison of representation power for dif-
ferent lexical features of different formal dialogue lan-
guages. TreeDST refers to Cheng et al. (2020), Express
refers to Andreas et al. (2020). TT indicates ThingTalk.

Agent State. Analogously, each agent turn has
a formal agent state a ∈ A representation, which
is computed by the agent policy. The agent state
includes an abstract dialogue act, as well as an op-
tional agent statement, which either requests some
slots from the user, proposes a new statement to the
user, or asks the user to confirm an action.

Formal Dialogue Representation. A formal di-
alogue d ∈ D captures all the information in
the conversation needed to interpret the user ut-
terance. Specifically, it contains the current agent
state, the accumulated results of executing the user
statements in previous turns, and the user state-
ments that the user has asked to execute but that are
missing some required parameters. The results for
queries are the items retrieved from the database;
the results for actions are returned by the API call.

Comparison with previous representations In
Table 1 we compare ThingTalk with three existing
state representation: the slots and values represen-
tation used in MultiWOZ, the TreeDST represen-
tation (Cheng et al., 2020), and the Express rep-
resentation (Andreas et al., 2020; Tellman, 2021).
Note that neither Express nor TreeDST are open-
source or available to use, whereas ThingTalk is
fully open-source and comes with tools that devel-
opers can use. Limited documentation exists for
Express, so we use “?” for features we do not know
are supported or not.

ThingTalk represents user queries and com-
mands as executable database queries and API calls.

An executable representation is easier to annotate
manually. Other approaches require annotators to
be familiar with the semantics of each domain,
whereas in our approach annotators just need to
learn the database query syntax to annotate for dif-
ferent domains. Additionally, the implementation
of the agent only needs to execute ThingTalk state-
ments; no custom per-domain logic is necessary.

Furthermore, ThingTalk is canonicalizable: the
annotation of the semantics of a turn is syntacti-
cally unique, regardless of how the turn is phrased,
and the unique form can be computed automati-
cally. This is important both to enforce conven-
tions on manually annotated data, as well as to
be able to paraphrase: if the annotation depends
on the syntactic form of the utterance, the annota-
tion must be changed after paraphrasing. Express,
while executable, is not canonicalizable because
it represents coreferences explicitly and expresses
updates to the dialogue state as edits. Both features
lead to syntactically different representations for
the same semantics, for example if the coreference
is by name, by constraints, or by pronoun.

ThingTalk can represent the full generality of
WoZ conversations. For example, ThingTalk can
represent turns that have no request, at the begin-
ning and end of the conversation. Neither slots
nor TreeDST have a representation for those turns.
This oversight highlights the need to design the
representation based on real conversations.

One feature present in the previous representa-
tion that we drop from ThingTalk is the precise
slots mentioned by the agent. For example, in re-
sponse to a user asking for a restaurant, the agent
may mention the restaurant “name” and ”address.”
Such slots do not affect the interpretation of the
user utterance. Removing them from the agent
state coalesces many more utterances into the same
state, and allows to approximate more complex hu-
man agent utterances, increasing the state coverage
and boosting the accuracy of the semantic parser.

4 Simulator-Agent Architecture

To synthesize data for training, we propose a
simulator-agent architecture. The state-based sim-
ulator takes the role of the human user. The same
agent that would be used at deployment time is
used during synthesis. The agent is built based on
the semantics of ThingTalk, not just the simulator.
It can respond correctly to any dialogue d ∈ D
representable in ThingTalk. On the other hand, the
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simulator samples a subset space DSim ⊂ D. We
refer to dialogues in DSim as in-simulation; other
dialogues are out-of-simulation.

Formally, the architecture has three components:

Agent(d, u) : D × U → D: an agent that accepts
a formal dialogue d ∈ D, and the user state
u ∈ U representing the last user utterance, to
produce a new dialogue d′ ∈ D. The agent
guarantees that if d ∈ DSim then d′ ∈ DSim.

Sim(d) : DSim → X×U : a simulator that accepts
an in-simulation dialogue d ∈ DSim, and non-
deterministically creates a new user utterance
x ∈ X and its user state u ∈ U .

CSP(d, x) : D ×X → U , a contextual semantic
parsing model that accepts a dialogue d ∈ D,
which may not be in DSim, and a user utter-
ance x ∈ X to predict the user state in U .

In this section, we describe how the components
are used to synthesize training data and build a
functional dialogue agent.

4.1 Training Data Synthesis

We synthesize training data for CSP as follows:

Syn(d) : DSim → DSim × X × U : the synthe-
sizer accepts a dialogue d ∈ DSim and returns
a training sample produced by using Sim to
generate a possible user utterance and a re-
sulting in-simulation dialogue to be predicted,
then applying the Agent to continue:

Syn(d) = (d′, x, u), where

(x, u) = Sim(d), d′ = Agent(d, u)

Starting with a null dialogue, we iteratively use Syn
to synthesize training samples. During synthesis,
the agent is called in a mock execution environment
with no side effects, and it uses a non-deterministic
policy that generates many possible agent behav-
iors. It is helpful to include many agent behaviors
because it helps model the human WOZ agent.

Following Campagna et al. (2020), both the sim-
ulator and the agent policy are implemented using a
domain-independent state machine which includes
many natural language templates for user and agent
utterances. Using the templates and a few natural
language phrases for each slot, we can generate
dialogues for any new domain with minimal effort.

User: Please book a table for 5 at 14:30 on wednesday at
Royal Spice. I also need to find a place to stay.

u1 = Exec : Restaurant.MakeReservation(
name = “royal spice”, book_people = 5,
book_time = 14:30, book_day = wednesday);
Hotel;

Agent: I was able to book your table successfully.
Your reference number is kqmxil0z. Now, what
type of accommodations are you looking for today?

Figure 4: Example of an out-of-simulation dialogue
from the MultiWOZ 3.0 test set, where the same turn
mentions two domains. The simulator never generates
such a turn but the agent can reply to it.

4.2 Deployment
After training, the same agent can be used at deploy
time to reply to the real user.

Deploy(d, x) : D×X → D: given the current di-
alogue, a deployable system uses CSP to map
the next user utterance to a formal dialogue,
which is then used by Agent to continue the
dialogue. Let d0 be the empty dialogue and
user input x1, x2, . . .

di = Deploy(di−1, xi)

= Agent(di−1,CSP(di−1, xi))

4.3 Out-of-simulation Dialogues
While the simulator can cover only the most com-
mon dialogue paths, ThingTalk is designed to be
general, covering many more possible dialogues.
To improve generality, the CSP is trained not only
with simulated dialogues but also few-shot data an-
notated with the full expressiveness of ThingTalk.
Correspondingly, the agent is written to handle
the full representation of ThingTalk. This de-
sign makes our parser and agent more robust than
those that only train with simulated dialogues.
Fig. 4 shows an out-of-simulation dialogue from
the MultiWOZ test set. In the example, the agent
must reply to two domains at once.

We show below some of the out-of-simulation
dialogue patterns handled by our agent.

• Domain switch: the user switches to a new
domain in the middle of a discussion about
another; the simulator switches domains only
after completing the action.

• Multidomain: the user refers to two domains
in the same utterance; the simulator only
refers to one domain at a time.

• Eager action parameters: the user specifies
parameters for an action before completing
the query, ignoring a prompt from the agent
to refine the query.

4025



• Abandoning transactions: the user abandons
a transaction after it has been initiated; the
simulator never interrupts a transaction.

These examples illustrate the many plausible ways
in which the user can change the course of a dia-
logue. Trying to simulate all these possibilities is
infeasible, nor is it desirable, as it will worsen the
distribution of the training data by overemphasiz-
ing uncommon patterns. At the same time, han-
dling these cases is important; thus, we train with
few-shot annotated data and rely on the model’s
inherent generalization capability.

5 Contextual Semantic Parsing Model

5.1 Model Architecture

Our CSP neural model is fine-tuned from the
pre-trained BART model (Lewis et al., 2020).
BART is a Transformer encoder-decoder neural
network (Vaswani et al., 2017) pre-trained with the
task of reconstructing noised inputs. Our model
for the user encodes a concatenation of the formal
dialogue and the user utterance, and is trained to
generate the user state as its output.

To reduce the length of the input, the formal di-
alogue is truncated before feeding to the model:
only the last executed query and action in each
domain are kept, and the rest is discarded. Previ-
ous statements are no longer relevant; information
that is still relevant is carried over in the last state-
ment. Additionally, we encode at most one result
per query. We observe that the user uses either a
coreference to refer to the only/first choice, or uses
the entity name. The model is trained to copy entity
names from the user utterance.

We use BART-Large, with about 400M parame-
ters. We train it with token-level cross-entropy loss
and teacher forcing. Hyperparameters and prepro-
cessing details are included in Appendix B.

5.2 Training Data

Data Synthesis. We use Syn to synthesize an ini-
tial set of training dialogues, covering all possible
combinations of slots at each turn, and many possi-
ble paths in DSim.

Automatic Paraphrasing. We apply automatic
paraphrasing with filtering (Xu et al., 2020) to
increase the variety of natural language in each
turn. We use a pre-trained BART model fine-tuned
on the ParaBank2 general-purpose paraphrasing
dataset (Hu et al., 2019). Each user utterance is

paraphrased individually. We apply filtering to en-
sure that the user state does not change for each
utterance: each paraphrased utterance, with its asso-
ciated formal dialogue, is passed to a model trained
on synthesized data; the utterance is discarded if
the model predicts a different user state than the
annotation before paraphrasing.

Few-Shot Fine-Tuning. To expose the model to
the variety in real-world data, we fine-tune the
model with a small number of manually annotated
dialogues.

Self-Training. Acquiring large fully-annotated
WOZ datasets is challenging, because annotations
are often erroneous. Acquiring unannotated WOZ
datasets, on the other hand, is easier. To use such
data when available, we propose using self-training
(McClosky et al., 2006; Einolghozati et al., 2019;
Zoph et al., 2020). We apply the model fine-tuned
on few-shot data to unannotated input, create a
training set using the predicted result as annota-
tions, and use that to further fine-tune the model.

The annotation of WOZ dialogues requires pre-
dictions of the agent state as well, unlike the simu-
lated dialogues where the agent state is generated
automatically. We apply the same methodology
as for the user states to the agent state, so as to
annotate the full dialogues for training.

6 Evaluation

Our evaluation attempts to answer these research
questions:
1. How well does our ThingTalk representation

model Wizard-of-Oz conversations?
2. What accuracy can a model achieve in the task

of predicting ThingTalk, given our training data
acquisition strategy?

3. How well do our dialogue simulator and our
dialogue agent approximate real dialogues?

6.1 Experimental Setting

We conduct our experiments using the MultiWOZ
dataset (Budzianowski et al., 2018; Eric et al.,
2019). This dataset includes English task-oriented
dialogues across five domains: Attraction, Hotel,
Restaurant, Taxi, and Train.

We reannotated parts of MultiWOZ 2.1 with
ThingTalk annotations, and we name this version
MultiWOZ 3.0. The authors of this paper reanno-
tated the full test set and, due to a lack of time,
36% of the validation set, discarding the rest. Our
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result is thus a lower-bound on the possible accu-
racy: with more of the validation set annotated, we
expect higher test accuracy.

The slot values in our new test set differ from
the original annotations in 83% of the turns. This
is not surprising because others have already found
problems in MultiWOZ 2.1 (Zhou and Small, 2019;
Zang et al., 2020; Han et al., 2020), and because
ThingTalk and the existing annotations adopt differ-
ent conventions for when a slot should be included.
We found mistakes in the annotations, inconsistent
normalization of names, and inconsistent annota-
tion of slots offered by the agent. We dropped 1%
of test turns due to unrecoverable human errors,
such as the user acting as the agent.

We use four datasets for training:
• Synthesized dataset, generated using our state-

machine-based simulator and agent, consist-
ing of around 1M dialogues across all five
domains. The state machine has 20 abstract
transitions for the agent, and 43 for the user.

• Paraphrase dataset, obtained by automatically
paraphrasing the synthesized data.

• Few-Shot dataset, a split of 168 dialogues
from the original validation set. This amounts
to 2% of the original training set. Another
265 dialogues in the original validation set are
used as the 3.0 validation set.

• Self-Trained dataset, obtained by self-training
on the MultiWOZ training set.

Dataset statistics are detailed in Appendix C.
We use the Genie Toolkit (Campagna et al.,

2019) for data synthesis and Hugging Face’s Trans-
formers library (Wolf et al., 2020) for the model.

6.2 Precision of ThingTalk

ThingTalk is designed to precisely cover the seman-
tics of Wizard-of-Oz dialogues. We first observe
that ThingTalk captures the semantics of the sen-
tences well: it can represent the validation set in
its entirety, and 99.8% of the user utterances and
97.6% of the agent utterances in the test set are rep-
resentable. Overall, that comprises 97.7% of the
test turns. ThingTalk cannot represent, for exam-
ple, out-of-domain questions, questions that cannot
be answered using the given database, and agent
utterances such as asking the users to wait.

User utterances in the test set that cannot be rep-
resented are simply counted as errors, while agent
utterances that cannot be represented as marked
with a single “invalid” dialogue act, which is given

as input to the neural model. The model can choose
to ignore the invalid dialogue act and attempt to
predict the correct user state regardless.

6.3 Accuracy on the MultiWOZ 3.0 Test Set

Our first experiment evaluates how well our CSP
model can understand the user utterances in the
MultiWOZ 3.0 dataset on four metrics.
Exact match accuracy requires the predicted user
state to identically match the annotation.
Slot accuracy requires the slots provided by the
user in the predicted user state to match the anno-
tation, ignoring comparison operators, requested
slots, and the dialogue act.
Turn-by-turn accuracy assumes that the gold dia-
logue up to the current turn is available as input.
Dialogue accuracy requires predicting the correct
state for all the previous and current turns of a
given dialogue. This is a challenging but meaning-
ful metric because in practice, once the model fails,
the conversation diverges from the WOZ dialogue.

We train our CSP model on the combination of
Synthesized and Paraphrased sets, fine-tune it on
the Few-Shot training set, and fine-tune it again on
the Self-Trained set. Our model achieves a 79.2%
turn-by-turn accuracy and 44.1% dialogue accuracy
in exact match (Table 2).

To understand the role of synthesized data, we
removed all synthesized data, and train with only
the manually annotated few-shot data. The synthe-
sized data improves the turn-by-turn exact match
accuracy by 5.5% and the dialogue exact match
accuracy by 8.4%. This shows that the low-cost
automatically generated training data is effective.

We performed an ablation study on the valida-
tion set to evaluate the components of our training
strategy (Table 2). We first observe that the val-
idation accuracy is higher than the test accuracy,
because we used the validation set to refine our syn-
thesis. Training with only synthesized data already
delivers a respectable 61.8% turn-by-turn accuracy;
with the augmentation of auto-paraphrasing data,
turn-by-turn accuracy improves 0.1%, and dialogue
accuracy improves 0.4%.

The few-shot training alone delivers a high ac-
curacy of 75.6%. When the model trained on syn-
thesized and paraphrased data is fine-tuned with
few-shot data, the accuracy is 81.0%, showing that
these two approaches complement each other. Self-
training further improves the turn-by-turn accuracy
by 0.4%, with 1% better dialogue accuracy.
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Training Strategy Turn-by-Turn Dialogue
EM Slot EM Slot

Test Full training 79.2% 87.5% 44.1% 61.0%
Few-shot only 73.7% 81.6% 35.7% 46.3%

Dev

Full training 81.4% 88.7% 51.9% 67.2%
− self-training 81.0% 88.0% 50.9% 65.3%
Synth. only 61.8% 73.1% 29.1% 38.0%
Synth. + para. 61.9% 73.3% 29.5% 37.4%
Few-shot only 75.6% 81.7% 41.8% 51.6%

Table 2: Turn-by-turn and dialogue accuracy, both ex-
act match (EM) and slot, of the CSP model, on the
MultiWOZ 3.0 test and validation sets.

Category % Turns Accuracy

Trained 15.5% 93.1%
In-simulation 69.7% 82.4%
Out-of-simulation 14.7% 62.7%

Unknown agent state 6.3% 66.0%
Domain switch 4.0% 84.0%
Eager action parameters 0.9% 73.3%
Multidomain 0.8% 16.7%
Abandon transaction 0.5% 25.0%

Table 3: Turn-by-turn exact match accuracy of valida-
tion set, categorized by whether each user utterance is
synthesizable by our simulator. For the unsynthesiz-
able category, we further divide in common classes of
user behavior not captured by the simulator.

6.4 Generalization of the Dialogue Model

Our strategy is to handle the complexity of Wizard-
of-Oz dialogues with a combination of simulated
dialogues and few-shot training samples to teach
generalization beyond simulated dialogues. We an-
alyze the validation set to understand the difference
between the simulated dialogues and the Wizard-
of-Oz dialogues, and its effect on accuracy.

The results are shown in Table 3. The validation
set is divided into:

1. Trained: 15.5% of the validation set turns
share the same formal dialogue and user state
with some sample in training (ignoring the
slot values). Accuracy obtained: 93.1%.

2. In-simulation: 69.7% of the validation set
turns can be represented by the simulator: the
formal context is contained in DSim, and the
user state can be generated by the simulator.
Accuracy obtained: 82.4%.

3. Out-of-simulation: 14.7% of the validation
turns require the model to generalize beyond
DSim, either through few-shot or its own gen-
eralization capabilities. Accuracy obtained:
62.7%.

Our synthesizer covers the Wizard-of-Oz

Model Training Data Accuracy

TRADE MultiWOZ 2.1 37.3%
TRADE 0-shot 2.1 12.1%
SUMBT MultiWOZ 2.1 39.3%
SUMBT 0-shot 2.1 18.3%
STAR MultiWOZ 2.1 49.9%
CSP-NOAGENT MultiWOZ 2.1 45.6%
CSP-NOAGENT 0-shot 2.1 13.3%
CSP-NOAGENT + auto-parap. 12.2%
CSP MultiWOZ 3.0 37.3%
CSP Synthesized 23.6%
CSP + auto-parap. 25.2%

Table 4: Dialogue slot accuracy on the MultiWOZ 2.1
test set. CSP-NOAGENT has no formal agent state; it en-
codes the previous slots, and the current agent and user
utterances. 0-shot 2.1 is the synthesized data by Cam-
pagna et al. (2020). CSP was trained on MultiWOZ 3.0
but tested on 2.1.

conversations well. Even though our simulator
and agent are built using a state machine with only
54 user transitions and 24 agent transitions, 85.2%
of the validation set is in-simulation.

Research that trains and validates on simu-
lated data is missing a non-trivial population of
Wizard-of-Oz dialogues. We found that 14.7% of
the validation turns are representable in ThingTalk
but are out-of-simulation.

Our training strategy generalizes beyond the
simulated dialogues. For the out-of-simulation
turns, our model achieves an accuracy of 62.7%.
The model can generalize well on validation turns
where the agent state is unseen in training, achiev-
ing 66% accuracy. This result speaks to the strength
of using a formal representation of the agent, which
avoids interpreting untrained agent utterances.

The model also reacts well to strong signals in
the user utterance. The model achieves 84.1% accu-
racy when the user switches domains unexpectedly,
and 73.3% accuracy when the user starts issuing
slots for the action before completing the query.

Finally, when the user issues a command over
two domains at once, the model achieves 16.7%
accuracy. When the user abandons a booking trans-
action mid-way, the model achieves 25% accuracy.
These kinds of out-of-simulation states are also
rare in the few shot training set. The model can
generalize, but is biased towards the common cases
seen in the training data.

6.5 Dialogue History vs. Formal Context

We wish to evaluate the difference between using
dialogue history, as in DST models, and using a for-
mal context. We do so by measuring the dialogue
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accuracy, which has the same definition for DST
and CSP.

Because we do not have the resources to rean-
notate the training data with ThingTalk, we will
use the MultiWOZ 2.1 training set for this experi-
ment. For a DST parser, we use TRADE (Wu et al.,
2019), SUMBT (Lee et al., 2019), and STAR (Ye
et al., 2021b), three high-performing models for
MultiWOZ 2.1. For CSP, we train a model we call
CSP-NOAGENT, which uses the same neural archi-
tecture as our CSP. Because MultiWOZ 2.1 has no
formal agent state annotations, CSP-NOAGENT uses
the original slot-value annotation from the imme-
diately preceding turn as the formal input context.
This context, the current agent utterance, and the
current user utterance are used to predict all the
slots from the dialogue. This is the best approxima-
tion to ThingTalk possible given the available data;
the results provide a lower bound on CSP with fully
annotated training data.

The results are shown in Table 4. We see that
CSP-NOAGENT outperforms TRADE by 8.3% and
SUMBT by 6.3% in dialogue accuracy, and is
within 4% of STAR, a highly optimized model.
Note that CSP-NOAGENT needs no new annotations,
and the slot representation captures only a small
subset of the information in the utterances. This
shows the advantage of replacing the dialogue his-
tory with a formal context. It also shows that the
use of formal contexts can be applied in other rep-
resentations.

For comparison, we also test our CSP on Multi-
WOZ 2.1, using self-predicted formal agent states.
Our model, trained on MultiWOZ 3.0, reaches
37.3% dialogue accuracy in the MultiWOZ 2.1 test
set. This is due to the reannotation of MultiWOZ
3.0, and because the model is trained and tested on
data with different annotation conventions. Com-
pared to the dialogue slot accuracy on MultiWOZ
3.0, we observe a gap of about 11%, which serves
as a lower bound on the benefit of having experts
annotate the test data. Note that our approach does
not require manual annotation of a large training
set, and therefore expert annotation of test data was
feasible.

6.6 Comparison with Previous 0-Shot Model

Our last experiment compares our work with the
zero-shot model proposed by Campagna et al.
(2020). Their paper only included results with
transfer learning on new domains. Here, we eval-

uate TRADE, SUMBT, and CSP-NOAGENT trained
with their synthesized data in a zero-shot fashion.
The results shown in Table 4 indicate that the previ-
ous approach is inadequate, achieving only 12.1%
dialogue accuracy with TRADE and 18.3% with
SUMBT. CSP-NOAGENT achieves 13.3% dialogue
accuracy. Our approach, instead, achieves 23.6%
dialogue accuracy. Adding automatic paraphrasing
increases the turn-by-turn accuracy by about 3%
for both models.

This result shows that our approach is much
more effective in synthesizing data. In particu-
lar, it is important to represent the agent state for-
mally when training with synthesized data, as it
eliminates the need to synthesize and parse agent
utterances.

7 Conclusion

This paper presents a sample-efficient methodology,
based on the extended ThingTalk representation,
to predict precise dialogue states in Wizard-of-Oz
conversations. We achieve a turn-by-turn exact-
match accuracy of 79.2% on the MultiWOZ 3.0
dataset, while using 50x less manually annotated
training data than the original MultiWOZ dataset.

The proposed ThingTalk dialogue representation
is precise, complete, and executable. It is precise
enough to cover 98% of the dialogue turns in Multi-
WOZ. The precision enables automatic synthesis
of dialogues covering 85% of the MultiWOZ data
set. ThingTalk is complete and executable, as ev-
idenced by a fully working agent that can simply
execute ThingTalk queries without referring to the
user input. Furthermore, the agent can handle dia-
logue flows beyond those that can be simulated.

The accuracy is achieved with a contextual se-
mantic parser (CSP) where the dialogue context
is represented in ThingTalk rather than the natural
language dialogue history. It is trained first with
auto-paraphrased synthetic data, fine-tuned with
the few-shot annotated data, then self-trained.

In summary, this paper shows that with
ThingTalk, we can predict WOZ dialogues accu-
rately with training data mostly generated from a
state machine. Our methodology thus combines the
best of the WOZ and M2M approaches, as it can
handle the more realistic WOZ dialogues, while
having a low data acquisition cost like M2M.
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8 Ethical Considerations

We envision that our training strategy will broaden
the availability of task-oriented agents for tasks
and populations not currently covered by existing
large-scale datasets, due to its low annotation re-
quirement. We have open-sourced tool set designed
around our representation for bootstrapping afford-
able contextual semantic parsers for new domains.

Our agent was tuned and evaluated on the Multi-
WOZ benchmark. MultiWOZ is a crowdsourced
Wizard-of-Oz dataset; WOZ datasets are known not
to fully represent real-world conversations (Ganho-
tra et al., 2020). Further research is needed before
a dialogue agent based on our methodology can
be deployed in the real world. Additionally, the
current version of the agent was tuned for English;
future work should investigate techniques to au-
tomatically localize a contextual semantic parser,
analogous to prior research done for single-turn
semantic parsers (Moradshahi et al., 2020).

Our training strategy replaces manual annotation
of data with automatically obtained data, which re-
quires some additional amount of computation time.
In practice, such additional compute is small: data
synthesis runs in 5 hours on a single machine with
no GPUs; the paraphrase dataset can be obtained
in about 5 hours on a machine with 4 Nvidia T4
GPUs; training completes within 8 hours on a ma-
chine with one Nvidia V100; self-training requires
2 hours on a single Nvidia T4 GPU, and fine-tuning
is another 1.5 hours on one Nvidia V100. Overall,
the whole process is done with about 22 hours of
compute time, well below the cost of human an-
notation of equivalent amounts of data. We note
that the large amount of synthetic data poses no
challenge to convergence in practice, so training
models with a large amount of synthesized data has
little effect on the compute cost.

The manually annotated portion of our dataset
was obtained from the previously released Multi-
WOZ 2.1 dataset, a crowdsourced dataset. No
crowdsourcing was employed in this paper; the
data was annotated by the authors.
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A ThingTalk Definition

A.1 Syntax
Formal Dialogue d : a r∗ s∗

User State u : ua s∗

Agent State a : aa as?

User Act ua : Greet | Exec | Cancel | Insist
|AskRecommend | LearnMore
|ActionQuestion | End | Invalid

Agent Act aa : Init | Greet | RecommendOne
| RecommendMany | Propose
| SearchQuestion | SlotFill
| LearnMoreWhat | EmptySearch
| Confirm | ActionSuccess
|ActionError | AnythingElse
| Invalid

User Statement s : q | ac
Result r : s

[
{[sn = v]+}

]
∗

Agent Statement as : Request sn+

| [Propose | Confirm] [q | ac]
Query q : <ThingTalk query>
Action ac : dn([sn = v]∗)
Domain Name dn : <identifier>
Slot Name sn : <identifier>
Value v : <constant>

A.2 Agent Definition
The agent is a function Agent(d, u) = d′ that com-
putes the new formal representation of the entire
dialogue. The representation is constructed incre-
mentally, starting from the initial dialogue d0 which
is empty.

Let d = (a, r, s) ∈ D and u = (ua, su) ∈ U be
the two inputs to the agent. The agent computes
the new agent state a as follows:

(ru, isu) = Execute(su)

a′ = Policy(ua, r||ru, isu)

d′ = (a′, r||ru, isu)

where || denotes concatenation. The Execute func-
tion calls the ThingTalk runtime to execute the
statements in the user state, su. It returns (1) the
results ru by executing all statements in su whose
required parameters are available, (2) the rest of the
(incomplete) statements, isu. The Policy function
determines the agent state a′ from the user state
ua. all the results ru appended to previous results
r, and isu. The agent returns the new dialogue d′

with the new agent state, all the results and the new
incomplete statements. The incomplete statements
s in d are discarded. If the user has not changed
topics, information in s is incorporated in su.

B Training

B.1 Preprocessing
We apply the same preprocessing used by
TRADE (Wu et al., 2019) to the input utterances.

We also use a rule-based preprocessor to identify
time expressions, and replace them with place-
holder tokens. All slot values in the result and
agent states that have string or time type are re-
placed with a placeholder when input to the model.

We normalize all slot values in the user state to
match the utterance, regardless of typos. When
comparing the slot values for equality, we normal-
ize entity names via a database lookup.

B.2 Hyperparameters

Our model uses a BART large model which has 400
million trainable parameters. We use the Adam op-
timizer, with the Transformer learning rate sched-
ule (800 iterations of warm-up, 0.04 multiplier).

We train our model for 50,000 gradient updates
on the synthesized data and choose the model with
the highest validation exact-match accuracy. We
then fine-tune that model on the few-shot training
set for 15,000 gradient updates, and again choose
the model with the highest validation accuracy. We
repeat this process for another 15,000 updates on
the self-train set. Training is done on a single GPU
with 16 GB memory and batch size is chosen based
on the length of the examples in each batch: we
choose as many examples as we can fit in the GPU
memory. Gradient accumulation is used to increase
the effective batch size by a factor of 20.

C Dataset Statistics

# dlgs # turns # words

Synthesized 968,007 830,792 11,390,957
Paraphrased 592,970 945,946 12,845,548
Few-Shot 168 1,061 14,669
Self-Training 8,420 56,546 760,927

Validation 265 1,582 21,256
Test 995 7,271 100,814

Table 5: Statistics of our training and evaluation sets:
number of dialogues, of turns, and of words. For the
synthesized dataset, we do not count turns that appear
identically in multiple dialogues.

D Annotated Example Dialogue

Here is an example of a dialogue generated by the
simulator, between the user U and the agent A.
US denotes the user state, D denotes the formal
dialogue.
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U: List good restaurants which offer Indian.
US: Exec: Restaurant, food = “Indian”;
A: Do you have a specific part of town in mind?
D: SearchQuestion: area;

Restaurant, food = “Indian”
[{ name = “Cocum”, area = west, ... },
{ name = “Rajmahal”, area = east, ... },
...];

U: Yes I’d like near the east.
US: Exec: Restaurant, food = “Indian” && area = east;
A: I have Rajmahal and Curry Prince.
D: RecommendTwo

Restaurant, food = “Indian”
[...];
Restaurant, food = “Indian” && area = east
[{ name = “Rajmahal”, area = east, ... },
{ name = “Curry Prince”, area = east, ... },
...];

U: Is Curry Prince a restaurant serving Indian?
US: Exec: [food] of Restaurant, food = “Indian” && area = east && name = “Curry Prince”;
A: Curry Prince serves Indian. Would you like me to book it?
D: RecommendOne: Propose Restaurant.MakeReservation(name=“Curry Prince”, book_people=6);

Restaurant, food = “Indian”
[...];
Restaurant, food = “Indian” && area = east
[...];
[food] of Restaurant, food = “Indian” && area = east && name = “Curry Prince”
[{ name = “Curry Prince”, food = “Indian” }];

U: I will take it. Please make a reservation at the restaurant on Monday at 13:00.
US: Exec: Restaurant.MakeReservation(name=“Curry Prince”, book_people=6, book_day=Sunday, book_time=13:00)
A: Alright, Consider your request done! Its confirmation number is ay05tzjq. Anything else for you today?
D: ActionSuccess;

Restaurant, food = “Indian”
[...];
Restaurant, food = “Indian” && area = east
[...];
[food] of Restaurant, food = “Indian” && area = east && name = “Curry Prince”
[...];
Restaurant.MakeReservation(name=“Curry Prince”, book_people=6, book_day=Sunday, book_time=13:00)
[{ reference_number = “ay05tzjq” }];

U: Thanks, this is good for now. Goodbye!
US: End

4034


