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Abstract

Modern Natural Language Processing (NLP)
models are known to be sensitive to input per-
turbations and their performance can decrease
when applied to real-world, noisy data. How-
ever, it is still unclear why models are less ro-
bust to some perturbations than others. In this
work, we test the hypothesis that the extent to
which a model is affected by an unseen tex-
tual perturbation (robustness) can be explained
by the learnability of the perturbation (defined
as how well the model learns to identify the
perturbation with a small amount of evidence).
We further give a causal justification for the
learnability metric. We conduct extensive ex-
periments with four prominent NLP models
— TextRNN, BERT, RoBERTa and XLNet —
over eight types of textual perturbations on
three datasets. We show that a model which
is better at identifying a perturbation (higher
learnability) becomes worse at ignoring such
a perturbation at test time (lower robustness),
providing empirical support for our hypothesis.

1 Introduction

Despite the success of deep neural models on many
Natural Language Processing (NLP) tasks (Liu
et al., 2016; Devlin et al., 2019; Liu et al., 2019b),
recent work has discovered that these models are
not robust to noisy input from the real world and
thus their performance will decrease (Prabhakaran
et al., 2019; Niu et al., 2020; Ribeiro et al., 2020;
Moradi and Samwald, 2021). A reliable NLP sys-
tem should not be easily fooled by slight noise
in the text. Although a wide range of evaluation
approaches for robust NLP models have been pro-
posed (Ribeiro et al., 2020; Morris et al., 2020;
Goel et al., 2021; Wang et al., 2021), few attempts
have been made to understand these benchmark
results. Given the difference of robustness be-
tween models and perturbations, it is a natural
question why models are more sensitive to some
perturbations than others. It is crucial to avoid

over-sensitivity to input perturbations, and under-
standing why it happens is useful for revealing
the weaknesses of current models and designing
more robust training methods. To the best of our
knowledge, a quantitative measure to interpret the
robustness of NLP models to textual perturbations
has yet to be proposed. To improve the robust-
ness under perturbation, it is common practice to
leverage data augmentation (Li and Specia, 2019;
Min et al., 2020; Tan and Joty, 2021). Similarly,
how much data augmentation through the pertur-
bation improves model robustness varies between
models and perturbations. In this work, we aim to
investigate two Research Questions (RQ):

• RQ1: Why are NLP models less robust to
some perturbations than others?

• RQ2: Why does data augmentation work bet-
ter at improving the model robustness to some
perturbations than others?

We test a hypothesis for RQ1 that the extent to
which a model is affected by an unseen textual
perturbation (robustness) can be explained by the
learnability of the perturbation (defined as how
well the model learns to identify the perturbation
with a small amount of evidence). We also val-
idate another hypothesis for RQ2 that the learn-
ability metric is predictive of the improvement on
robust performance brought by data augmentation
along a perturbation. Our proposed learnability
is inspired by the concepts of Randomized Con-
trolled Trial (RCT) and Average Treatment Effect
(ATE) from Causal Inference (Rubin, 1974; Hol-
land, 1986). Estimation of perturbation learnability
for a model consists of three steps: ① randomly
labelling a dataset, ② perturbing examples of a par-
ticular pseudo class with probabilities, and ③ using
ATE to measure the ease with which the model
learns the perturbation. The core intuition for our
method is to frame an RCT as a perturbation identi-
fication task and formalize the notion of learnability
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Exp No. Measurement Label Perturbation Training Examples Test Examples

0 Standard original l ∈ ∅ (xi,0), (xj ,1) (xi,0), (xj ,1)
1 Robustness original l ∈ {0,1} (xi,0), (xj ,1) (x∗i ,0), (x∗j ,1)
2 Data Augmentation original l ∈ {0,1} (xi,0), (xj ,1)(x∗i ,0), (x∗j ,1) (x∗i ,0), (x∗j ,1)
3

Learnability
random l′ ∈ {1′} (xj ,0′), (x∗i ,1′) (x∗i ,1′)

4 random l′ ∈ {1′} (xj ,0′), (x∗i ,1′) (xi,1′)
Table 1: Example experiment settings for measuring learnability, robustness and improvement by data augmentation.
We perturb an example if its label falls in the set of label(s) in “Perturbation” column. ∅ means no perturbation at
all. Training/test examples are the expected input data, assuming we have only one negative (xi,0) and positive(xj ,1) example in our original training/test set. l′ is a random label and x∗ is a perturbed example.

as a causal estimand based on ATE. We conduct
extensive experiments on four neural NLP mod-
els with eight different perturbations across three
datasets and find strong evidence for our two hy-
potheses. Combining these two findings, we further
show that data augmentation is only more effective
at improving robustness against perturbations that
a model is more sensitive to, contributing to the
interpretation of robustness and data augmentation.
Learnability provides a clean setup for analysis
of the model behaviour under perturbation, which
contributes better model interpretation as well.

Contribution. This work provides an empirical
explanation for why NLP models are less robust
to some perturbations than others. The key to
this question is perturbation learnability, which is
grounded in the causality framework. We show a
statistically significant inverse correlation between
learnability and robustness.

2 Setup and Terminology

As a pilot study, we consider the task of binary
text classification. The training set is denoted as
Dtrain = {(x1, l1), ..., (xn, ln)}, where xi is the
i-th example and li ∈ {0,1} is the corresponding
label. We fit a model f ∶ (x; θ) ↦ {0,1} with
parameters θ on the training data. A textual per-
turbation is a transformation g ∶ (x;β) → x∗ that
injects a specific type of noise into an example x
with parameters β and the resulting perturbed ex-
ample is x∗. We design several experiment settings
(Table 1) to answer our research questions. Exper-
iment 0 in Table 1 is the standard learning setup,
where we train and evaluate a model on the original
dataset. Below we detail other experiment settings.

2.1 Definitions
Robustness. We apply the perturbations to test
examples and measure the robustness of model
to said perturbations as the decrease in accuracy.
In Table 1, Experiment 1 is related to robustness
measurement, where we train a model on unper-
turbed dataset and test it on perturbed examples.
We denote the test accuracy of a model f(⋅) on
examples perturbed by g(⋅) in Experiment 1 asA1(f, g,D∗test). Similarly, the test accuracy in Ex-
periment 0 is A0(f,Dtest). Consequently, the ro-
bustness is calculated as the difference of test accu-
racies:

robustness(f, g,D) = A1(f, g,D∗test)−A0(f,Dtest). (1)

Models usually suffer a performance drop when en-
countering perturbations, therefore the robustness
is usually negative, where lower values indicate
decreased robustness.

Improvement by Data Augmentation (Post Aug-
mentation ∆). To improve robust accuracy (Tu
et al., 2020) (i.e., accuracy on the perturbed test
set), it is a common practice to leverage data aug-
mentation (Li and Specia, 2019; Min et al., 2020;
Tan and Joty, 2021). We simulate the data aug-
mentation process by appending perturbed data to
the training set (Experiment 2 of Table 1). We cal-
culate the improvement on performance after data
augmentation as the difference of test accuracies:

∆post_aug(f, g,D) = A2(f, g,D∗test)−A1(f, g,D∗test). (2)

where A2(f, g,D∗test) denotes the test accuracy of
Experiment 2. ∆post_aug is the higher the better.
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Learnability. We want to compare perturbations
in terms of how well the model learns to identify
them with a small amount of evidence. We cast
learnability estimation as a perturbation classifi-
cation task, where a model is trained to identify
the perturbation in an example. We define that
the learnability estimation consists of three steps,
namely ① assigning random labels, ② perturb-
ing with probabilities, and ③ estimating model
performance. Below we introduce the procedure
and intuition for each step. This estimation frame-
work is further grounded in concepts from the
causality literature in Section 3, which justifies
our motivations. We summarize our estimation
approach formally in Algorithm 1 (Appendix A).
① Assigning Random Labels. We randomly as-
sign pseudo labels to each training example re-
gardless of its original label. Each data point
has equal probability of being assigned to pos-
itive (l′ = 1) or negative (l′ = 0) pseudo la-
bel. This results in a randomly labeled dataset
D′train = {(x1; l′1), ..., (xn, l′n)}, where L′ ∼
Bernoulli(1,0.5). In this way, we ensure that
there is no difference between the two pseudo
groups since the data are randomly split.
② Perturbing with Probabilities. We apply the
perturbation g(⋅) to each training example in one
of the pseudo groups (e.g., l′ = 1 in Algorithm 1)1.
In this way, we create a correlation between the
existence of perturbation and label (i.e., the pertur-
bation occurrence is predictive of the label). We
control the perturbation probability p ∈ [0,1], i.e.,
an example has a specific probability p of being
perturbed. This results in a perturbed training set
D′∗train = {(x∗1 , l′1), ..., (x∗n, l′n)}, where the per-
turbed example x∗i is:

Z ∼ U(0,1),∀i ∈ {1,2, ..., n}
x∗i = ⎧⎪⎪⎨⎪⎪⎩

g(xi) l′i = 1 ∧ z < p,
xi otherwise.

(3)

Here Z is a random variable drawn from a uniform
distribution U(0,1). Due to randomization in the
formal step, now the only difference between the
two pseudo groups is the occurrence of perturba-
tion.
③ Estimating Model Performance. We train a
model on the randomly labeled dataset with per-

1Because the training data is randomly split into two
pseudo groups, applying perturbations to any one of the groups
should yield same result. We assume that we always perturb
into the first group (l′ = 1) hereafter.

turbed examples. Since the only difference be-
tween the two pseudo groups is the existence of the
perturbation, the model is trained to identify the
perturbation. The original test examples Dtest are
also assigned random labels and become D′test. We
perturb all of the test examples in one pseudo group
(e.g., l′ = 1, as in step 2.1) to produce a perturbed
test set D′∗test. Finally, the perturbation learnabil-
ity is calculated as the difference of accuracies on
D′∗test and D′test, which indicates how much the
model learns from the perturbation’s co-occurrence
with pseudo label:

learnability(f, g, p,D) = A3(f, g, p,D′∗test)−A4(f, g, p,D′test). (4)

A4(f, g, p,D′∗test) and A3(f, g, p,D′test) are accu-
racies measured by Experiment 4 and 3 of Table 1,
respectively.

We observe that the learnability depends on
perturbation probability p. For each model–
perturbation pair, we obtain multiple learnability
estimates by varying the perturbation probability
(Figure 3). However, we expect that learnability of
the perturbation (as a concept) should be indepen-
dent of perturbation probability. To this end, we use
the logAUC (area under the curve in log scale) of
the p− learnability curve (Figure 3), termed as “av-
erage learnability”, which summarizes the overall
learnability across different perturbation probabili-
ties p1, ..., pt:

avg_learnability(f, g,D) ∶= logAUC({(pi,
learnability(f, g, pi,D)) ∣ i ∈ {1,2, ..., t}}). (5)

We use logAUC rather than AUC because we
empirically find that the learnability varies sub-
stantially between perturbations when p is small,
and a log scale can better capture this nuance. We
also introduce learnability at a specific perturba-
tion probability (Learnability @ p) as an alternate
summary metric and provide a comparison of this
metric against logAUC in Appendix D.

2.2 Hypothesis

With the above-defined terminologies, we propose
hypotheses for RQ1 and RQ2 in Section 1, respec-
tively.

Hypothesis 1 (H1): A model for which a pertur-
bation is more learnable is less robust against the
same perturbation at the test time.
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This is not obvious because the model encounters
this perturbation during training in learnability es-
timation while they do not in robustness measure-
ment.
Hypothesis 2 (H2): A model for which a pertur-
bation is more learnable experiences bigger robust-
ness gains with data augmentation along such a
perturbation.

We validate both Hypotheses 1 and 2 with exper-
iments on several perturbations and models de-
scribed in Section 4.1 and 4.2.

3 A Causal View on Perturbation
Learnability

In Section 2.1, we introduce the term “learnability”
in an intuitive way. Now we map it to a formal,
quantitative measure in standard statistical frame-
works. Learnability is actually motivated by con-
cepts from the causality literature. We provide a
brief introduction to basic concepts of causal in-
ference in Appendix B. In fact, learnability is the
causal effect of perturbation on models, which is
often difficult to measure due to the confounding
latent features. In the language of causality, this is
“correlation is not causation”. Causality provides
insight on how to fully decouple the effect of per-
turbation and other latent features. We introduce
the causal motivations for step 2.1 and 2.1 of learn-
ability estimation in the following Section 3.1 and
3.2, respectively.

3.1 A Causal Explanation for Random Label
Assignment

Natural noise (simulated by perturbations in this
work) usually co-occurs with latent features in an
example. If we did not assign random labels and
simply perturbed one of the original groups, there
would be confounding latent features that would
prevent us from estimating the causal effect of the
perturbation. Figure 1a illustrates this scenario.
Both perturbation P and latent feature T may affect
the outcome Y ,2 while the latent feature is predic-
tive of label L. Since we make the perturbation P
on examples with the same label, P is decided by L.
It therefore follows that T is a confounder of the ef-
fect of P on Y , resulting in non-causal association
flowing along the path P ← L ← T → Y . How-
ever, if we do randomize the labels, P no longer
has any causal parents (i.e., incoming edges) (Fig-
ure 1b). This is because perturbation is purely

2Y is later defined in Section 3.2
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Figure 3: Learnability of eight perturbations for four NLP models on three datasets, as a function of perturbation
probability.

the language of causality, this is “correlation is not288

causation". Causality provides insight on how to289

fully decouple the effect of perturbation and other290

latent features. We introduce the causal motiva-291

tions for step 1 and 3 of learnability estimation in292

the following Section 3.1 and 3.2 respectively.293

3.1 A Causal Explanation for Random Label294

Assignment295

Natural noise (simulated by perturbations in this296

work) usually co-occurs with latent features in an297

example. If we did not assign random labels and298

simply perturbed one of the original groups, there299

would be confounding latent features that would300

prevent us from estimating the causal effect of the301

perturbation. Figure 4a illustrates this scenario.302

Both perturbation P and latent feature T may affect303

the outcome Y ,3 while the latent feature is predic-304

tive of label L. Since we make perturbation P on305

examples with the same label, P is decided by L.306

It therefore follows that T is a confounder of the ef-307

fect of P on Y , resulting in non-causal association308

flowing along the path P ← L ← T → Y . How-309

ever, if we do randomize the labels, P no longer310

has any causal parents (i.e., incoming edges) (Fig-311

ure 4b). This is because perturbation is purely ran-312

dom. Without the path represented by P ← L, all313

of the association that flows from P to Y is causal.314

As a result, we can directly calculate the causal315

effect from the observed outcomes (Section 3.2).316

Our randomization experiments allow us to dis-317

3Y is later defined in Section 3.2

P Y

TL

causal association

confounding association

(a) Before randomization.

P Y

TL

causal association
(b) After randomization.

Figure 4: Causal graph explanation for decoupling per-
turbation and latent feature with randomization. P is
the perturbation and T is the latent feature. L is the
original label and Y is the correctness of the predicted
label.

5

(a) Before randomization.

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

se
ns

iti
vi

ty
 @

 p

dataset = IMDB | model = TextRNN dataset = IMDB | model = BERT dataset = IMDB | model = RoBERTa dataset = IMDB | model = XLNet

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

se
ns

iti
vi

ty
 @

 p

dataset = YELP | model = TextRNN dataset = YELP | model = BERT dataset = YELP | model = RoBERTa dataset = YELP | model = XLNet

0.001 0.005 0.01 0.02 0.05 0.1 0.5 1.0
injection probability p

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

se
ns

iti
vi

ty
 @

 p

dataset = QQP | model = TextRNN

0.001 0.005 0.01 0.02 0.05 0.1 0.5 1.0
injection probability p

dataset = QQP | model = BERT

0.001 0.005 0.01 0.02 0.05 0.1 0.5 1.0
injection probability p

dataset = QQP | model = RoBERTa

0.001 0.005 0.01 0.02 0.05 0.1 0.5 1.0
injection probability p

dataset = QQP | model = XLNet

spurious feature
duplicate_punctuations
butter_fingers_perturbation
shuffle_word
random_upper_transformation
insert_abbreviation
whitespace_perturbation
visual_attack_letters
leet_letters

Figure 3: Learnability of eight perturbations for four NLP models on three datasets, as a function of perturbation
probability.

the language of causality, this is “correlation is not288

causation". Causality provides insight on how to289

fully decouple the effect of perturbation and other290

latent features. We introduce the causal motiva-291

tions for step 1 and 3 of learnability estimation in292

the following Section 3.1 and 3.2 respectively.293

3.1 A Causal Explanation for Random Label294

Assignment295

Natural noise (simulated by perturbations in this296

work) usually co-occurs with latent features in an297

example. If we did not assign random labels and298

simply perturbed one of the original groups, there299

would be confounding latent features that would300

prevent us from estimating the causal effect of the301

perturbation. Figure 4a illustrates this scenario.302

Both perturbation P and latent feature T may affect303

the outcome Y ,3 while the latent feature is predic-304

tive of label L. Since we make perturbation P on305

examples with the same label, P is decided by L.306

It therefore follows that T is a confounder of the ef-307

fect of P on Y , resulting in non-causal association308

flowing along the path P ← L ← T → Y . How-309

ever, if we do randomize the labels, P no longer310

has any causal parents (i.e., incoming edges) (Fig-311

ure 4b). This is because perturbation is purely ran-312

dom. Without the path represented by P ← L, all313

of the association that flows from P to Y is causal.314

As a result, we can directly calculate the causal315

effect from the observed outcomes (Section 3.2).316

Our randomization experiments allow us to dis-317

3Y is later defined in Section 3.2

P Y

TL

causal association

confounding association

(a) Before randomization.

P Y

TL

causal association
(b) After randomization.

Figure 4: Causal graph explanation for decoupling per-
turbation and latent feature with randomization. P is
the perturbation and T is the latent feature. L is the
original label and Y is the correctness of the predicted
label.

5

(b) After randomization.

Figure 1: Causal graph explanation for decoupling per-
turbation and latent feature with randomization. P is
the perturbation and T is the latent feature. L is the
original label and Y is the correctness of the predicted
label.

random. Without the path represented by P ← L,
all of the association that flows from P to Y is
causal. As a result, we can directly calculate the
causal effect from the observed outcomes.

3.2 Learnability is a Causal Estimand
We identify learnability as a causal estimand. In
causality, the term “identification” refers to the pro-
cess of moving from a causal estimand (Average
Treatment Effect, ATE) to an equivalent statistical
estimand. We show that the difference of accura-
cies on D′∗test and D′test is actually a causal esti-
mand. We define the outcome Y of a test example
xi as the correctness of the predicted label:

Yi(0) ∶= 1{f(xi)=l′i}
. (6)

where 1{⋅} is the indicator function. Similarly, the
outcome Y of a perturbed test example x∗i is:

Yi(1) ∶= 1{f(x∗i )=l′i}. (7)

According to the definition of Individual Treatment
Effect (ITE, see Equation 9 of Appendix B), we
have ITEi = 1{f(x∗i )=l′i}−1{f(xi)=l′i}

. We then take
the average over all the perturbed test examples
(half of the test set)3. This is our Average Treatment
Effect (ATE):

ATE = E[Y (1)] −E[Y (0)]= E[1{f(x∗)=l′}] −E[1{f(x)=l′}]= P (f(x∗) = l′) − P (f(x) = l′)= A(f, g, p,D′∗test) −A(f, g, p,D′test).
(8)

3The other half of the test set (l′ = 0) is left unperturbed,
following the same procedure in Section 2.1. Model predic-
tions will not change for unperturbed ones, resulting in ITEs
with zero values. Therefore, we do not take them into account
for ATE calculation.
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Perturbation Example Sentence
None His quiet and straightforward demeanor was rare then and would be today.
duplicate_punctuations His quiet and straightforward demeanor was rare then and would be today..
butter_fingers_perturbation His quiet and straightforward demeanor was rarw then and would be today.
shuffle_word quiet would and was be and straightforward then demeanor His today. rare
random_upper_transformation His quiEt and straightForwARd Demeanor was rare TheN and would be today.
insert_abbreviation His quiet and straightforward demeanor wuz rare then and would b today.
whitespace_perturbation His quiet and straightforward demean or wa s rare thenand would be today.
visual_attack_letters Hiṩ qủiẽt ầռd strḁighṭḟorwẳrȡ dԑmeanoŕ wȃṣ rȧre tḫen and wouᶅd ϸә tອḏầȳ.
leet_letters His qui3t and strai9htfor3ard d3m3an0r 3as rar3 t43n and 30uld 63 t0da4.

Figure 2: An example sentence with different types of perturbations.

where A(f, g, p,D) is the accuracy of model f(⋅)
trained with perturbation g(⋅) at perturbation prob-
ability p on test set D. Therefore, we show that
ATE is exactly the difference of accuracy on the
perturbed and unperturbed test sets with random
labels. And the difference is learnability according
to Equation 4.

We discuss another means of identification of
ATE in Appendix C, based on the prediction proba-
bility. We compare between the probability-based
and accuracy-based metrics there. We find that our
accuracy-based metric yields better resolution, so
we report this metric in the main text of this paper.

4 Experiments

4.1 Perturbation methods

Criteria for Perturbations. We select various
character-level and word-level perturbation meth-
ods in existing literature that simulate different
types of noise an NLP model may encounter in
real-world situations. These perturbations are non-
adversarial, label-consistent, and can be automat-
ically generated at scale. We note that our pertur-
bations do not require access to the model internal
structure. We also assume that the feature of per-
turbation does not exist in the original data. Not all
perturbations in the existing literature are suitable
for our task. For example, a perturbation that swaps
gender words (i.e., female→ male, male→ female)
is not suitable for our experiments since we cannot
distinguish the perturbed text from an unperturbed
one. In other words, the perturbation function g(⋅)
should be asymmetric, such that g(g(x)) ≠ x.

Figure 2 shows an example sentence with
different perturbations. Perturbation of “dupli-
cate_punctuation” doubles the punctuation by ap-
pending a duplicate after each punctuation, e.g.,

“,” → “„”; “butter_fingers_perturbation” misspells
some words with noise erupting from keyboard
typos; “shuffle_word” randomly changes the or-
der of word in the text (Moradi and Samwald,
2021); “random_upper_transformation” randomly
adds upper cased letters (Wei and Zou, 2019); “in-
sert_abbreviation” implements a rule system that
encodes word sequences associated with the re-
placed abbreviations; “whitespace_perturbation”
randomly removes or adds whitespaces to text; “vi-
sual_attack_letters” replaces letters with visually
similar, but different, letters (Eger et al., 2019);
“leet_letters” replaces letters with leet, a common
encoding used in gaming (Eger et al., 2019).

4.2 Experimental Settings

To test the learnability, robustness and improve-
ment by data augmentation with different NLP
models and perturbations, we experiment with
four modern and representative neural NLP mod-
els: TextRNN (Liu et al., 2016), BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019b) and
XLNet (Yang et al., 2019). For TextRNN, we
use the implementation by an open-source text
classification toolkit NeuralClassifier (Liu et al.,
2019a). For the other three pretrained models, we
use the bert-base-cased, roberta-base,
xlnet-base-cased versions from Hugging
Face (Wolf et al., 2020), respectively. These two
platforms support most of the common NLP mod-
els, thus facilitating extension studies of more mod-
els in future. We use three common binary text
classification datasets — IMDB movie reviews
(IMDB) (Pang and Lee, 2005), Yelp polarity re-
views (YELP) (Zhang et al., 2015), Quora Question
Pair (QQP) (Iyer et al., 2017) — as our testbeds.
IMDB and YELP datasets present the task of sen-
timent analysis, where each sentence is labelled
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Figure 3: Learnability of eight perturbations for four NLP models on three datasets, as a function of perturbation
probability.

Perturbation XLNet RoBERTa BERT TextRNN
Average

over models

whitespace_perturbation 1.638 1.436 1.492 0.878 1.361
shuffle_word 1.740 1.597 1.766 0.594 1.424
duplicate_punctuations 1.086 1.499 1.347 2.050 1.495
butter_fingers_perturbation 1.590 1.369 1.788 1.563 1.578
random_upper_transformation 1.583 1.520 1.721 2.039 1.716
insert_abbreviation 1.783 1.585 1.564 2.219 1.788
visual_attack_letters 1.824 1.921 1.898 2.094 1.934
leet_letters 1.816 2.163 1.817 2.463 2.065

Table 2: Average learnability (logAUC of corresponding curve in Figure 3) of each model–perturbation pair on
IMDB dataset. Rows are sorted by average values over all models. The perturbation for which a model is most
learnable is highlighted in bold while the following one is underlined.
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Figure 4: Linear regression plots of learnability vs. robustness vs. post data augmentation ∆ on IMDB dataset.
Each point in the plots represents a model-perturbation pair. ρ is Spearman correlation. ∗ indicates high significance
(p-value < 0.001).
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as positive or negative sentiment. QQP is a para-
phrase detection task, where each pair of sentences
is marked as semantically equivalent or not. To
control the effect of dataset size and imbalanced
classes, all datasets are randomly subsampled to
the same size as IMDB (50k) with balanced classes.
The training steps for all experiments are the same
as well. We implement perturbations g(⋅) with two
self-designed ones and six selected ones from the
NL-Augmenter library (Dhole et al., 2021). For
perturbation probabilities, we choose 0.001, 0.005,
0.01, 0.02, 0.05, 0.10, 0.50, 1.00. We run all ex-
periments across three random seeds and report the
average results.

4.3 Perturbation Learnability Analysis

Figure 3 shows learnability as a function of per-
turbation probability. Learnability @ p generally
increases as we increase the perturbation proba-
bility, and when we perturb all the examples (i.e.,
p = 1.0), every model can easily identify it well,
resulting in the maximum learnability of 1.0. This
shows that neural NLP models master these per-
turbations eventually. At lower perturbation prob-
abilities, some models still learn that perturbation
alone predicts the label. In fact, the major differ-
ence between different p − learnability curves is
the area of lower perturbation probabilities and this
provides motivation for using logAUC instead of
AUC as the summarization of learnability at dif-
ferent p (Section 2.1).

Table 2 shows the average learnability over
all perturbation probabilities of each model–
perturbation pair on IMDB dataset in Figure 3.4

It reveals the most learnable perturbation for each
model. For example, the learnability of “vi-
sual_attack_letters” and “leet_letters” are very high
for all four models, likely due to their strong effects
on the tokenization process (Salesky et al., 2021).
Perturbations like “white_space_perturbation” and
“duplicate_punctuations” are less learnable for
pretrained models, probably because they have
weaker effects on the subword level tokenization,
or they may have encountered similar noise in
the pretraining corpora. We observe that “dupli-
cate_punctuations” already exists in the original
text of YELP dataset (e.g., “The burgers are awe-
some!!”), thus violating our assumptions for per-
turbations in Section 4.1. As a result, the curve for

4Please refer to Appendix E for benchmark results on
YELP (Table 5) and QQP (Table 6) datasets.

ρ IMDB YELP QQP

Avg. learnability
vs. robustness

-0.643* -0.821* -0.695*

Avg. learnability
vs. post aug ∆

0.756* 0.846* 0.750*

Table 3: Correlations of average learnability vs. ro-
bustness vs. post data augmentation ∆. ρ is Spearman
correlation. ∗ indicates high significance (p-value <
0.001).

this perturbation substantially deviates from others
in Figure 3. We do not count this perturbation on
YELP dataset in the following analysis. The per-
turbation learnability experiments provide a clean
setup for NLP practitioners to analyze the effect of
textual perturbations on models.

4.4 Empirical Findings

We observe a negative correlation between learn-
ability (Equation 4) and robustness (Equation 1)
across all three datasets in Table 2, validating Hy-
pothesis 1. Table 2 also quantifies the trend that
data augmentation with a perturbation the model is
less robust to has more improvement on robustness
(Hypothesis 2). We plot the correlations on IMDB
dataset in Figure 4a and 4b.5 Both the correlations
between 1) learnability vs. robustness and 2) learn-
ability vs. improvement by data augmentation are
strong (Spearman ∣ρ∣ > 0.6) and highly significant
(p-value < 0.001), which firmly supports our hy-
potheses. Our findings provide insight about when
the model is less robust and when data augmenta-
tion works better for improving robustness.

Figure 4c shows that the more learnable a pertur-
bation is for a model, the greater the likelihood that
its robustness can be improved through data aug-
mentation along this perturbation. We argue that
this is not simply because there is more room for
improvement by data augmentation. From a causal
perspective, learnability acts as a common cause
(confounder) for both robustness and improvement
by data augmentation. This indicates a potential
limitation of using data augmentation for improv-
ing robustness to perturbations (Jha et al., 2020):
data augmentation is only more effective at improv-
ing robustness against perturbations more learnable
for a model.

5For visualizations of correlations on the other two
datasets, please refer to Figure 5 for YELP and Figure 6 for
QQP in Appendix E.
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5 Discussion

Potential Impacts. Our findings seem intuitive
but are non-trivial. The NLP models were not
trained on perturbed examples when measuring ro-
bustness, but still they display a strong correlation
with perturbation learnability. Understanding these
findings are important for a more principled eval-
uation of and control over NLP models (Lovering
et al., 2020). Specifically, the learnability metric
complements to the evaluation of newly designed
perturbations by revealing model weaknesses in
a clean setup. Reducing perturbation learnability
is promising for improving robustness of models.
Contrastive learning (Gao et al., 2021; Yan et al.,
2021) that pulls the representations of the original
and perturbed text together, makes it difficult for
the model to identify the perturbation (reducing
learnability) and thus may help improve robustness.
Perturbation can also be viewed as injecting spu-
rious feature into the examples, so the learnability
metric also helps to interpret robustness to spurious
correlation (Sagawa et al., 2020). Moreover, learn-
ability may facilitate the development of model ar-
chitectures with explicit inductive biases (Warstadt
and Bowman, 2020; Lovering et al., 2020) to avoid
sensitivity to noisy perturbations. Grounding the
learnability within the causality framework inspires
future researchers to incorporate the causal per-
spective into model design (Zhang et al., 2020),
and make the model robust to different types of
perturbations.

Limitations. In this work, we focus on the robust
accuracy (Section 2.1), which is accuracy on the
perturbed test set. We do not assume that the test ac-
curacy of the original test set, a.k.a in-distribution
accuracy, is invariant invariant against training with
augmentation or not. It would be interesting to in-
vestigate the trade-off between robust accuracy and
in-distribution accuracy in the future. We also note
that this work has not established that the relation-
ship between learnability and robustness is causal.
This could be explored with other approaches in
causal inference for deconfounding besides simula-
tion on randomized control trial, such as working
with real data but stratifying it (Frangakis and Ru-
bin, 2002), to bring the learnability experiment
closer to more naturalistic settings. Although we
restrict to balanced, binary classification for sim-
plicity in this pilot study, our framework can also be
extended to imbalanced, multi-class classification.

We are aware that computing average learnability
is expensive for large models and datasets, which
is further discussed in Section 8. We provide a
greener solution in Appendix D. We could further
verify our assumptions for perturbations with a user
study (Moradi and Samwald, 2021) which investi-
gates how understandable the perturbed texts are to
humans.

6 Related Work

Robustness of NLP Models to Perturbations.
The performance of NLP models can decrease
when encountering noisy data in the real world.
Recent works (Prabhakaran et al., 2019; Ribeiro
et al., 2020; Niu et al., 2020; Moradi and Samwald,
2021) present comprehensive evaluations of the
robustness of NLP models to different types of
perturbations, including typos, changed entities,
negation, etc. Their results reveal the phenomenon
that NLP models can handle some specific types
of perturbation more effectively than others. How-
ever, they do not go into a deeper analysis of the
reason behind the difference of robustness between
models and perturbations.

Interpretation of Data Augmentation. Al-
though data augmentation has been widely used
in CV (Sato et al., 2015; DeVries and Taylor, 2017;
Dwibedi et al., 2017) and NLP (Wang and Yang,
2015; Kobayashi, 2018; Wei and Zou, 2019), the
underlying mechanism of its effectiveness remains
under-researched. Recent studies aim to quan-
tify intuitions of how data augmentation improves
model generalization. Gontijo-Lopes et al. (2020)
introduce affinity and diversity, and find a correla-
tion between the two metrics and augmentation per-
formance in image classification. In NLP, Kashefi
and Hwa (2020) propose a KL-divergence–based
metric to predict augmentation performance. Our
proposed learnability metric implies when data aug-
mentation works better and thus acts as a comple-
ment to this line of research.

7 Conclusion

This work targets at an open question in NLP: why
models are less robust to some textual perturba-
tions than others? We find that learnability, which
causally quantifies how well a model learns to iden-
tify a perturbation, is predictive of the model robust-
ness to the perturbation. In future work, we will
investigate whether these findings can generalize
to other domains, including computer vision.
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8 Ethics Statement

Computing average learnability requires training
a model for multiple times at different perturba-
tion probabilities, which can be computationally
intensive if the sizes of the datasets and models are
large. This can be a non-trivial problem for NLP
practitioners with limited computational resources.
We hope that our benchmark results of typical per-
turbations for NLP models work as a reference for
potential users. Collaboratively sharing the results
of such metrics on popular models and perturba-
tions in public fora can also help reduce duplicate
investigation and coordinate efforts across teams.

To alleviate the computational efficiency issue of
average learnability estimation, using learnability
at selected perturbation probabilities may help at
the cost of reduced precision (Appendix D). We are
not alone in facing this issue: two similar metrics
for interpreting model inductive bias, extractability
and s-only error (Lovering et al., 2020) also re-
quire training the model repeatedly over the whole
dataset. Therefore, finding an efficient proxy for
average learnability is promising for more practical
use of learnability in model interpretation.
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A Algorithm for Perturbation
Learnability Estimation

Algorithm 1 Learnability Estimation
Input: training set Dtrain ={(x1, l1), ..., (xn, ln)}, test set Dtest ={(xn+1, ln+1), ..., (xn+m, ln+m)}, D =
Dtrain ∪ Dtest, model f ∶ (x; θ) ↦ {0,1},
perturbation g ∶ (x;β) → x∗, perturbation
probability p
Output: learnability(f, g, p,D)

1: // ① assigning random labels
2: Initialize an empty dataset D′

3: for i in {1,2, ..., n +m} do
4: l′i ← randint[0,1]
5: D′ ←D′ ∪ {(xi, l′i)}
6: end for
7: // ② perturbing with probabilities
8: Initialize an empty dataset D′∗

9: for i in {1,2, ..., n +m} do
10: z ← rand(0,1)
11: x∗i ← xi
12: if l′i = 1 ∧ z < p then
13: x∗i ← g(xi)
14: end if
15: D′∗ ←D′∗ ∪ {(x∗i , l′i)}
16: end for
17: // ③ estimating model performance
18: D′train,D

′

test ←D′[1 ∶ n],D′[n + 1 ∶ n +m]
19: D′∗train,D

′∗

test ←D′∗[1 ∶ n],D′∗[n+1 ∶ n+m]
20: fit the model f(⋅) on D′∗train
21: A(f, g, p,D′∗test)← f(⋅) accuracy on D′∗test
22: A(f, g, p,D′test)← f(⋅) accuracy on D′test
23: return A(f, g, p,D′∗test) −A(f, g, p,D′test)
B Background on Causal Inference

The aim of causal inference is to investigate how a
treatment T affects the outcome Y . Confounder X
refers to a variable that influences both treatment
T and outcome Y . For example, sleeping with
shoes on (T ) is strongly associated with waking
up with a headache (Y ), but they both have a com-
mon cause: drinking the night before (X) (Neal,
2020). In our work, we aim to study how a pertur-
bation (treatment) affects the model’s prediction
(outcome). However, the latent features and other
noise usually act as confounders.

Causality offers solutions for two questions: 1)

how to eliminate the spurious association and iso-
late the treatment’s causal effect; and 2) how vary-
ing T affects Y , given both variables are causally-
related (Liu et al., 2021). We leverage both of these
properties in our proposed method. Let us now in-
troduce Randomized Controlled Trial and Average
Treatment Effect as key concepts in answering the
above two questions, respectively.

Randomized Controlled Trial (RCT). In an
RCT, each participant is randomly assigned to ei-
ther the treatment group or the non-treatment group.
In this way, the only difference between the two
groups is the treatment they receive. Randomized
experiments ideally guarantee that there is no con-
founding factor, and thus any observed association
is actually causal. We operationalize RCT as a
perturbation classification task in Section 3.1.

Average Treatment Effect (ATE). In Sec-
tion 3.2, we apply ATE (Holland, 1986) as a mea-
sure of learnability. ATE is based on Individual
Treatment Effect (ITE, Equation 9), which is the
difference of the outcome with and without treat-
ment.

ITEi = Yi(1) − Yi(0). (9)

Here, Yi(1) is the outcome Y of individual i that
receives treatment (T = 1), while Yi(0) is the op-
posite. In the above example, waking up with a
headache (Y = 1) with shoes on (T = 1) means
Yi(1) = 1.

We calculate the Average Treatment Effect
(ATE) by taking an average over ITEs:

ATE = E[Y (1)] −E[Y (0)]. (10)

ATE quantifies how the outcome Y is expected to
change if we modify the treatment T from 0 to 1.
We provide specific definitions of ITE and ATE in
Section 3.2.

C Alternate Definition of Perturbation
Learnability

In Section 3.2, we propose an accuracy-based
identification of ATE. Now we discuss another
probability-based identification and compare be-
tween them. We can also define the outcome Y of
a test example xi as the predicted probability of
(pseudo) true label given by the trained model f(⋅):

Yi(0) ∶= Pf(L′ = l′i ∣X = xi) ∈ (0,1). (11)
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Similarly, the performance outcome Y of a per-
turbed test data point x∗i is:

Yi(1) ∶= Pf(L′ = l′i ∣X = x∗i ) ∈ (0,1). (12)

For example, for a test example (xi, l′i) which re-
ceives treatment (l′i = 1), the trained model f(⋅) pre-
dicts its label as 1 with only a small probability 0.1
before treatment (it has not been perturbed yet), and
0.9 after treatment. So the Individual Treatment
Effect (ITE, see Equation 9) of this example is cal-
culated as ITEi = Yi(1) − Yi(0) = 0.9 − 0.1 = 0.8.
We then take an average over all the perturbed test
examples (half of the test set) as Average Treatment
Effect (ATE, see Equation 10), which is exactly the
learnability of a perturbation for a model. To clar-
ify, the two operands in Equation 10 are defined as
follows:

E[Y (1)] ∶= P(f, g, p,D′∗test). (13)

It means the average predicted probability of
(pseudo) true label given by the trained model f(⋅)
on the perturbed test set D′∗test.

E[Y (0)] ∶= P(f, g, p,D′test). (14)

Similarly, this is the average predicted probability
on the randomly labeled test set D′test.

Notice that the accuracy-based definition of out-
come Y (Equation 6) can also be written in a simi-
lar form to the probability-based one (Equation 11):

Yi(0) ∶= 1{f(xi)=l′i}
= 1{Pf (L′=l

′

i∣X=xi)>0.5} ∈ {0,1}.
(15)

because the correctness of the prediction is equal to
whether the predicted probability of true (pseudo)
label exceeds a certain threshold (i.e., 0.5).

The major difference is that, accuracy-based
ITE is a discrete variable falling in {−1,0,1},
while probability-based ITE is a continuous one
ranging from -1 to 1. For example, if a model learns
to identify a perturbation and thus changes its pre-
diction from wrong (before perturbation) to correct
(after perturbation), accuracy-based ITE will be
1 − 0 = 1 while probability-based ITE will be less
than 1. That is to say, accuracy-based ATE tends
to vary more drastically than probability-based if
inconsistent predictions occur more often, and thus
can better capture the nuance of perturbation learn-
ability. Empirically, we find that accuracy-based

average learnability varies greatly (σ = 0.375, Ta-
ble 4) and thus can better distinguish between dif-
ferent model-perturbation pairs than probability-
based one (σ = 0.288, Table 4). As a result, we
choose accuracy-based ATE as the primary mea-
surement of learnability in this paper.

D Investigating Learnability at a Specific
Perturbation Probability

Inspired by Precision @ K in Information Retrieval
(IR), we propose a similar metric dubbed Learnabil-
ity @ p, which is the learnability of a perturbation
for a model at a specific perturbation probability
p. We are primarily interested in whether a se-
lected p can represent the learnability over different
perturbation probabilities and correlates well with
robustness and post data augmentation ∆.

We calculate the standard deviation (σ) of Learn-
ability @ p and average learnability (logAUC)
over all model-perturbation pairs to measure how
well it can distinguish between different models
and perturbations. Table 4 shows that average learn-
ability is more diversified than all Learnability @
p and diversity (σ) peaks at p = 0.01 for accuracy-
based/probability-based measurement. Accuracy-
based Learnability @ p is generally more diversi-
fied across models and perturbations than its coun-
terpart. To investigate the strength of the corre-
lations, we also calculate Spearman ρ between
accuracy-based/probability-based learnability @ p
vs. average learnability/robustness/post data aug-
mentation ∆ over all model-perturbation pairs. Ta-
ble 4 shows that generally average learnability
has stronger correlation than Learnability @ p.
Correlations with both robustness and post data
augmentation ∆ peak at p = 0.02 for accuracy-
based/probability-based measurements, and the cor-
relations with average learnability (0.816*/0.886*)
are also strong at these perturbation probabilities.

Overall, Learnability @ p with higher standard
deviation correlates better with average learnabil-
ity, robustness and post data augmentation ∆. Our
analysis shows that if p is carefully selected by σ,
Learnability @ p is also a promising metric, though
not as accurate as average learnability. One advan-
tage of Learnability @ p over average learnability
is that it costs less time to obtain learnability at a
single perturbation probability.

E Additional Experiment Results
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p
Accuracy-based Learnability @ p Probability-based Learnability @ p

σ Avg Learn. Robu. Post Aug ∆ σ Avg Learn. Robu. Post Aug ∆

Avg. 0.375 1.000* -0.643* 0.756* 0.288 1.000* -0.652* 0.727*

0.001 0.182 0.426* -0.265 0.259 0.114 0.367* -0.279 0.288
0.005 0.235 0.637* -0.383* 0.522* 0.192 0.925* -0.620* 0.702*
0.01 0.263 0.741* -0.530* 0.635* 0.192 0.893* -0.567* 0.586*
0.02 0.257 0.816* -0.636* 0.743* 0.192 0.886* -0.686* 0.690*
0.05 0.236 0.279 -0.158 0.136 0.121 0.576* -0.371* 0.350*
0.1 0.241 0.354* -0.162 0.192 0.115 0.543* -0.288 0.258
0.5 0.094 0.024 0.155 -0.179 0.037 -0.080 0.114 -0.258
1.0 0.011 -0.199 0.252 -0.332 0.019 -0.220 0.294 -0.402*

Table 4: Standard deviations (σ) of Learnability @ p and Spearman correlations between accuracy-based/probability-
based learnability @ p vs. average learnability/robustness/post data augmentation ∆ over all model-perturbation
pairs on IMDB dataset. ∗ indicates significance (p-value < 0.05).
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Figure 5: Linear regression plots of learnability vs. robustness vs. post data augmentation ∆ on YELP dataset.
Each point in the plots represents a model-perturbation pair. ρ is Spearman correlation. ∗ indicates high significance
(p-value < 0.001).
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Figure 6: Linear regression plots of learnability vs. robustness vs. post data augmentation ∆ on QQP dataset. Each
point in the plots represents a model-perturbation pair. ρ is Spearman correlation. ∗ indicates high significance
(p-value < 0.001).

4006



Perturbation RoBERTa XLNet TextRNN BERT
Average

over models

shuffle_word 1.538 1.586 0.401 1.854 1.345
butter_fingers_perturbation 1.301 1.433 1.425 1.758 1.479
whitespace_perturbation 1.276 1.449 1.720 1.569 1.504
insert_abbreviation 1.437 1.370 2.241 1.572 1.655
random_upper_transformation 1.432 1.828 1.733 1.715 1.677
visual_attack_letters 2.060 2.006 2.030 1.808 1.976
leet_letters 2.083 1.947 2.359 1.824 2.053

Table 5: Average learnability (logAUC of corresponding curve in Figure 3) of each model–perturbation pair on
YELP dataset. Rows are sorted by average values over all models. The perturbation for which a model is most
learnable is highlighted in bold while the following one is underlined.

Perturbation RoBERTa TextRNN XLNet BERT
Average

over models

whitespace_perturbation 0.732 0.399 0.562 0.711 0.601
duplicate_punctuations 0.722 0.823 0.640 0.872 0.764
butter_fingers_perturbation 0.555 0.878 0.775 1.022 0.808
insert_abbreviation 0.820 1.440 0.960 1.206 1.107
random_upper_transformation 1.062 0.664 1.392 1.483 1.150
shuffle_word 1.231 0.816 1.552 1.623 1.306
visual_attack_letters 1.429 1.810 1.744 1.608 1.648
leet_letters 1.720 1.676 1.840 1.718 1.738

Table 6: Average learnability (logAUC of corresponding curve in Figure 3) of each model–perturbation pair on
QQP dataset. Rows are sorted by average values over all models. The perturbation for which a model is most
learnable is highlighted in bold while the following one is underlined.

4007


