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Abstract

Relation linking (RL) is a vital module in
knowledge-based question answering (KBQA)
systems. It aims to link the relations expressed
in natural language (NL) to the corresponding
ones in knowledge graph (KG). Existing meth-
ods mainly rely on the textual similarities be-
tween NL and KG to build relation links. Due
to the ambiguity of NL and the incomplete-
ness of KG, many relations in NL are implic-
itly expressed, and may not link to a single
relation in KG, which challenges the current
methods. In this paper, we propose an implicit
RL method called ImRL, which links relation
phrases in NL to relation paths in KG. To find
proper relation paths, we propose a novel path
ranking model that aligns not only textual in-
formation in the word embedding space but
also structural information in the KG embed-
ding space between relation phrases in NL and
relation paths in KG. Besides, we leverage a
gated mechanism with attention to inject prior
knowledge from external paraphrase dictionar-
ies to address the relation phrases with vague
meaning. Our experiments on two benchmark
and a newly-created datasets show that ImRL
significantly outperforms several state-of-the-
art methods, especially for implicit RL.

1 Introduction

The past few years have witnessed the rapid devel-
opment of knowledge-based question answering
(KBQA), which aims to answer natural language
(NL) questions over knowledge graph (KG), e.g.,
DBpedia (Auer et al., 2007) and Freebase (Bol-
lacker et al., 2008). In many KBQA systems (Singh
et al., 2018; Kapanipathi et al., 2021), as a funda-
mental module, relation linking (RL) seeks to link a
relation phrase expressed in NL to a corresponding
relation in KG, which has a great impact on the ac-
curacy of subsequent steps like query construction
and even the entire KBQA systems.

∗Wei Hu is the corresponding author.

Question:                       Where is the tv show Dragonaut: The Resonance from?
Gold Relation Path:     dbp:publisher  ->  dbo:country
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Figure 1: An example of RL to DBpe-
dia. There is no explicit relation between
dbr:Dragonaut:_The_Resonance and dbr:Japan.
We expect to implicitly link the phrase “from” to an
indirect relation path dbp:publisher→ dbo:country.

Previous studies (Mulang et al., 2017; Singh
et al., 2017; Naseem et al., 2021) focus on the
similarities between the relation phrases and the
text descriptions (e.g., local names) of relations in
KG, and use the textual measures to link them. We
refer to these studies as explicit RL, because they
all assume that the relations in NL are explicitly
expressed and can be recognized by existing NLP
tools. However, according to (Sakor et al., 2019),
while existing RL methods perform well on several
benchmark datasets, they are still challenged by
implicit relations prevalent in the real world.

Figure 1 illustrates a motivating example derived
from (Azmy et al., 2018). Assuming that the entity
phrase “Dragonaut: The Resonance” has already
been linked to dbr:Dragonaut:_The_Resonance,1

a typical method, e.g., EARL (Dubey et al., 2018),
conducts RL with three steps: detecting the relation
phrases in the question, generating the candidate
relations in KG according to each phrase, and rank-
ing them by calculating the similarities. However,
handling the above question faces two challenges:
(1) KG (e.g., DBpedia) is incomplete, which leads

1We denote entities and relation phrases in NL by “quo-
tation marks”, and entities and relations in KG by italics.
dbr:, dbo: and dbp: refer to http://dbpedia.org/
resource/, http://dbpedia.org/ontology/ and
http://dbpedia.org/property/, respectively.
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to the situation that there is no direct relation be-
tween the entity dbr:Dragonaut:_The_Resonance
and the answer dbr:Japan. Therefore, it is only pos-
sible to link them through an implicit relation path
expressing a similar meaning as dbo:country. (2)
Due to the diversity of NL, there does not exist any
explicit relation phrase except the word “from”, but
“from” has a vague meaning and cannot do much for
disambiguation. Obviously, the expressions of rela-
tion phrase “from” and relation path dbp:publisher
→ dbo:country in this example are very different,
which leads to the poor performance of existing
methods, since they rely on the textual similarity.
Besides, according to the statistics in (Stadelmaier
and Padó, 2019), 93.8% of people in Freebase do
not have place of birth, and 78.5% of people do
not have nationality, which shows that the situation
of RL through implicit relation paths may occur in
question answering frequently.

In this paper, we focus on the problem of implicit
RL, where an implicit relation means the one not
explicitly expressed in NL or cannot be linked to
a single relation in KG. This is different from the
studies, e.g., (Qiu et al., 2020), which use multi-
ple explicit relations for multi-hop reasoning. To
address such implicitness, we propose a new RL
method called ImRL that links relation phrases in
NL to relation paths in KG. To find proper relation
paths, we propose a novel path ranking model that
captures both textual information in the word em-
bedding space and structural information in the KG
embedding space, and align them between relation
phrases in NL and relation paths in KG. In this way,
in addition to the textual information from word
embeddings, ImRL can also use the structural in-
formation possessed by KG embeddings to capture
the correlation between single relations and rela-
tion paths, thereby expressing the missing relations
through similar relation paths in the incomplete
KG. Considering the work (Xue et al., 2020) that
constructs a dictionary of paraphrases and estab-
lishes a mapping relationship between NL phrases
and relations in KG, which can be prior knowledge
for implicit relation phrases with vague meanings,
ImRL leverages a gated mechanism with attention
to inject prior knowledge from external dictionaries
into the model, and integrates all the information to
predict the links between implicit relation phrases
and relations (or relation paths) in KG.

In summary, our contributions are threefold:

• We propose a novel ranking model, with the

aim to eliminate the influence of incomplete
KG. It aligns the textual information in the
word embedding space and the structural infor-
mation in the KG embedding space between
relation phrases in NL and relation paths in
KG.

• We explore a variety of ways to inject the
knowledge in a paraphrase dictionary into the
model, and choose a gate-based method with
attention mechanism for knowledge injection,
which can provide auxiliary information for
the relation phrases with vague meanings.

• We conduct experiments on three datasets, in-
cluding two benchmark datasets and a newly-
created dataset that particularly focuses on
implicit RL. Our results show that ImRL out-
performs several state-of-the-art competitors,
especially for linking implicit relations.

2 Related Work

Existing RL approaches mainly focus on two tasks:
relation candidate generation and relation disam-
biguation. For the first task, ReMatch (Mulang
et al., 2017), SIBKB (Singh et al., 2017) and
EERL (Pan et al., 2019) generate candidates by
running a textual similarity-based method over pre-
built dictionaries constructed by analyzing the NL
patterns contained in massive text corpora through
frequent item mining or crowdsourcing. Several
widely-used dictionaries include PATTY (Nakas-
hole et al., 2012), PPDB (Ganitkevitch et al., 2013),
Paraphrase (Xue et al., 2020), etc.

As for the second task, EARL (Dubey et al.,
2018) leverages the connection density of KG for
ranking. Falcon (Sakor et al., 2019) uses several
fundamental principles of English morphology to
obtain auxiliary information, and exploits an align-
ment model for linking. With the development of
deep learning, a few deep learning-based methods
appear. SLING (Mihindukulasooriya et al., 2020)
leverages abstract meaning representation (AMR)
to capture the semantic relationships in a question,
and ranks the candidates with a Transformer-based
model, which is trained in a distantly supervised
manner. SimReL (Naseem et al., 2021) also uses
AMR, and trains a BERT-based model for relation
disambiguation. In addition to the aforementioned
studies using DBpedia, there are also some stud-
ies, e.g., KBPearl (Lin et al., 2020) and Falcon
2.0 (Sakor et al., 2020), towards other KGs such as
Wikidata (Vrandecic and Krötzsch, 2014).
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Despite some literature (Pan et al., 2019; Sakor
et al., 2019; Mihindukulasooriya et al., 2020) men-
tions the issue of implicit relations, there is still
much left for improvement. For instance, EERL
discovers the implicit relations by using the do-
mains and ranges of properties in KG, but it can-
not handle the issue of RL through relation paths.
Falcon and SLING mainly focus on the implicit
relations in phrases expressing the meaning about
country, e.g., “Spanish movie”. However, they per-
form poorly for other kinds of implicit relations,
and cannot handle RL through relation paths either.

In recent years, KG embedding has become a
popular area of research (Wang et al., 2017). Its
main idea is to encode entities and relations in
KG into a continuous low-dimensional embedding
space. These embeddings can be further applied to
various tasks, such as KG completion and KBQA.
Many studies in the KG completion field (Bordes
et al., 2013; Lao and Cohen, 2010; Lao et al., 2011)
predict the possibility of the establishment of a
specific triple through the embedding of entities
and relations. Recently, researchers in the KBQA
field have also begun to leverage KG embeddings.
The studies (Huang et al., 2019; Saxena et al., 2020)
try to learn a deep model that maps a NL question
into a KG embedding space, and combine the KG
embeddings of topic entities in the question with
the question embedding to infer the answer. To
the best of our knowledge, there is no prior work
focusing on using KG embedding for implicit RL.

3 Implicit Relation Linking

A knowledge graph (KG), denoted by G, can be
defined as a triple G = (E ,R, T ), where E is the
entity set, R is the relation set, and T ⊆ E ×
R× E denotes the relational triple set. Each entity
in E is denoted by e, and each relation in R is
denoted by r. If there exists a set of m triples
{(e0, r1, e1), . . . , (em−1, rm, em)} ⊆ T , we say
that there is an m-hop relation path p between e0
and em, denoted by p = (r1, . . . , rm). The goal
of RL can be formulated as: Given a NL question
q and a KG G, linking a relation phrase s in q to
its corresponding relation r or relation path p in G.
Figure 2 shows the architecture of our method.

3.1 Path Generation

The path generation module consists of three steps:

Entity linking aims to link the phrases in NL that
represent real-world objects to the corresponding

entities in KG. Recent studies (Singh et al., 2018)
have shown that entity linking can affect RL. To
reduce the influence of entity linking on RL, we
use the existing tool Falcon (Sakor et al., 2019) to
link entities in advance, which has shown accurate
results on entity linking (around 0.83 of F1-score
on the LC-QuAD dataset as reported). The results
are then fed into subsequent steps.

Relation identification is to determine whether
there is any relation phrase in a question with en-
tity connected to it. Inspired by (Hu et al., 2018),
which demonstrates that using rules to transform
the dependency tree into a directed graph and using
a heuristic search to find the shortest path between
two nodes can effectively decompose the complex
question into multiple simple triples, thereby dis-
covering the relations. We use a similar method
to identify the relations in a question. Further-
more, we use a dictionary-based method (Deng
et al., 2015) to identify those phrases that can be
linked to classes in KG. In particular, wh-words,
e.g., “what” and “when”, are also regarded as class
phrases. For each pair of nodes in the graph, we
consider there is a relation between them if and
only if (1) both nodes are phrases linked to enti-
ties or classes; (2) all intermediate nodes in the
path between the nodes are not linked to entities or
classes. The word sequence composed of interme-
diate nodes is obtained by the breadth-first-search
(BFS) algorithm, and regarded as a relation phrases.
For more details, please refer to Algorithm 1. In
this way, we can obtain some relation phrases with
entities connected to them. Furthermore, accord-
ing to (Mihindukulasooriya et al., 2020), AMR can
effectively capture the semantic information at the
sentence level, thus we use a similar method for re-
lation phrase extension. For example, for a phrase
like “German actor”, “country” can be recognized
as the relation phrase contained in it through AMR.
We refer the reader to (Mihindukulasooriya et al.,
2020) for more details.

Candidate generation. Existing RL methods only
consider single relations when generating candi-
dates. However, KG is widely acknowledged as
incomplete (Wang et al., 2017), which makes it fail
to find the corresponding single relations in KG for
some phrases and needs to be expressed by relation
paths. We extend the RL task to link phrases to rela-
tion paths, where conventional RL can be regarded
as a simpler case when the path is one hop. We
enumerate the relation path candidates in different
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Does  newspaper  Tribune  Star  circulate  through Vigo county?

Does  newspaper  Tribune  Star  circulate  through Vigo county ?
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Figure 2: Overview of our method. The method has two parts: (1) Path generation parses the input question and
finds the relation path candidates in the KG, by entity linking, relation identification and candidate generation. (2)
Path ranking encodes the relation phrase in the question and path candidates in the KG in the BERT embedding
space and RotatE embedding space, utilizes a ranking model to rank those candidates, and takes the one with the
highest similarity score as answer. It also leverages a gated mechanism with attention to inject prior knowledge
from external dictionaries to help relation disambiguation.

ways according to the number of connected entities
of a phrase: (1) If a relation phrase is connected
with two entities, all the paths between them are re-
garded as candidates. (2) If there is only one entity,
all the paths within M -hop are considered as candi-
dates. (3) Otherwise, if there is any phrase without
any entity association, all possible common single
relations in KG are considered as candidates. In
order to effectively reduce the input size of subse-
quent modules, we select c candidate paths whose
local names are most similar to the relation phrases,
where c is a hyperparameter and the similarity is
calculated with cosine similarity between the word
embeddings of phrases and local names.

3.2 Path Ranking

We propose a novel ranking model to find the rela-
tion path most relevant to the given relation phrase.
Different from those studies using path ranking
algorithm for KG completion (Lao et al., 2011;
Gardner et al., 2014; Mazumder and Liu, 2017;
Das et al., 2018), which leverage the entities and
relations in the KG for path reasoning, our path
ranking model additionally considers the relation
phrase in the question for ranking.

Relation path encoder. The relations in KG can
provide rich information. Most existing RL meth-
ods mainly focus on the local names of KG re-
lations, and leverage language models to capture
the semantics. However, they ignore the structural
information in massive triples. In order to make
use of both information, we use this relation path

encoder to model relation paths in the word em-
bedding space, denoted by R_Encoderwe, and the
KG embedding space, denoted by R_Encoderkg.
R_Encoderwe consists of a BERT encoder

(Devlin et al., 2019) and a feed-forward neural
network (FFNN). For each relation path candi-
date p = (r1, . . . , rm), the sequence of local
names inputp of p is denoted by 〈[CLS], namer1 ,
[SEP ], . . . , namerm , [SEP ]〉, which is fed to the
encoder to obtain the embedding pwe ∈ Rdwe :

pwe = σ(W1BERT(inputp) + b1), (1)

where σ() is the ReLU activation, W1 is the weight
matrix of FFNN, and b1 is the bias vector.
R_Encoderkg uses a KG embedding model to

encode the relations in KG. Considering that Ro-
tatE (Sun et al., 2019) has been proven to achieve
good results in existing work (Huang et al., 2019),
and have the properties of composition and symme-
try of relations, we choose it as the KG embedding
model. According to (Wang et al., 2017), KG em-
beddings have a certain ability for reasoning. Thus,
the KG embedding of a relation path with dkg di-
mension pkg ∈ Rdkg can be obtained by merging
all the KG embeddings of single relations within
the path through composition operation:

pkg = ROTATE(r1) ◦ · · · ◦ ROTATE(rm), (2)

where ◦ denotes the Hadamard product.

Phrase encoder. In order to compare with the
relation paths in KG equally, the relation phrases
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Algorithm 1 Relation Identification
Input: Q: Natural language question; EC: Result

set of entity and class linking; subj_relations:
[subj, nsubj, nsubjpass, csubj, csubjpass, xsubj,
poss, partmod]; obj_relations: [obj, pobj, dobj,
iobj];

Output: Related entities/classes and relation be-
tween them;
Use dependency analysis to obtain an undirected
tree T ;
for eci in EC do

Combine nodes representing eci in T into
one;

Delete all the edges which are related to the
combined node, update T ;
end for
Build a new empty graph G, copy nodes in T to
G;
for ti in T do . ti stands for (node1, r, node2)

if r in subj_relations then
Add an edge from node1 to node2,

weight is the number of entity/class between
node1 and node2;

else if r in obj_relations then
Add an edge from node2 to node1;

else
Add both edges mentioned above;

end if
end for
Update distance between nodes with the Floyd
shortest path algorithm;
for nodei, nodej in G do

if distance(nodei, nodej) = 2 and nodei,
nodej are both entities/classes then

Use the BFS algorithm to obtain the rela-
tion r between them, return (nodei, r, nodej);

end if
end for

in NL questions also need to be encoded into two
spaces to capture different aspects of information.
P_Encoderwe aims to encode the relation

phrase s with its context in a question q into an
embedding swe ∈ Rdwe . It has the same ar-
chitecture as R_Encoderwe. The difference is
that the input sequence is added with two spe-
cial tokens [S] and [Q] to separate the relation
phrase and its question context, i.e., inputs =
〈[CLS], [S], s, [Q], q, [SEP ]〉:

swe = σ(W2BERT(inputs) + b2), (3)

where W2 and b2 are two learnable parameters.
P_Encoderkg aims to encode the relation

phrase and the question into a KG embedding
skg ∈ Rdkg . It first uses BERT to encode the whole
inputs, and pick the embedding of [CLS], which
is then fed to a multi-layer perceptron MLPwe→kg
with a 3-layer FFNN and ReLU activation to ob-
tain skg. In a question, a relation phrase s creates
a connection between entities, and we expect the
KG embedding skg to reflect the KG embedding of
the relation path in KG connecting these entities,
i.e., φ(e1, skg, e2) ≈ 0, where φ denotes the score
function of RotatE, and e1, e2 are the KG embed-
dings of two connected entities. This is equivalent
to directly using the KG embedding of relation
path between the two entities to train the model.
Thus, during the training phase, we use the KG
embedding of relation path pkg corresponding to
the relation phrase s to guide the learning of skg,
and the loss function is mean-square error loss:

Lα =
1

|D|
∑

(s,q,p)∈D

‖skg − pkg‖22 , (4)

where D is the training set, skg is the KG embed-
ding of relation phrase s, pkg is the KG embedding
of relation path p, and ‖ · ‖2 is the L2-norm.
Knowledge injection. The previous works (Nakas-
hole et al., 2012; Xue et al., 2020) pre-collect some
paraphrase pairs (e.g., “be born in” is a paraphrase
for relation hometown) between relation phrases in
NL and KG relations through frequent item min-
ing or crowdsourcing. These paraphrases can be
considered as prior knowledge about the diverse
meanings of NL. For example, if we have some
prior examples of linking “in” to KG relations, e.g.,
locatedIn, we can use such knowledge to enhance
the meanings of implicit relation phrases “in”. In
this paper, we choose a predicate paraphrase dic-
tionary called Paraphrase (Xue et al., 2020) as the
knowledge source. Paraphrase maps NL patterns
to DBpedia relations, which currently covers 2,284
relations and 31,130 paraphrase pairs.

We regard the NL patterns in Paraphrase as Keys,
and corresponding relations as Values. Keys pro-
vide textual knowledge from the perspective of
NL, while Values provide both textual and struc-
tural knowledge of NL and KG. Same as the pre-
vious step, Keys is encoded as K ∈ Rde×dwe using
BERT, Values is encoded as Vwe ∈ Rde×dwe and
Vkg ∈ Rde×dkg using BERT and RotatE, respec-
tively. Here, de denotes the number of most similar
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paraphrase pairs to be selected. In this way, given a
relation phrase, which is then encoded by BERT as
Q ∈ R1×dwe , we can use the attention mechanism
(Vaswani et al., 2017) to find the most relevant
NL patterns in Paraphrase and integrate their corre-
sponding knowledge into the original embedding:

kwe = SOFTMAX(
QKT

√
dwe

)Vwe, (5)

kkg = SOFTMAX(
QKT√
dkg

)Vkg. (6)

We also explore a variety of ways to inject the
knowledge into our model. Taking the fusion of
pkg and kkg as an example, we use the following
three methods:

• Element-wise mean (MEAN) is the most
straightforward way to add two embeddings
and take the average over each element:

ykg =
1

2
(skg + kkg). (7)

• Concatenation (CAT). By concatenating the
two embeddings and feeding them to a linear
layer, all the information can be reserved:

ykg = W3[skg ; kkg] + b3, (8)

where ; denotes the concatenation operation.
W3 and b3 are two learnable parameters.

• Gated mechanism (GATE). To retain the
valuable original information and absorb new
knowledge, a gated mechanism can be used
for a trade-off between them:

g = δ(W4[skg ; kkg] + b4), (9)

ykg = g · skg + (1− g) · kkg, (10)

where δ() denotes the sigmoid activation. W4

and b4 are two learnable parameters.
Then, given two fused embeddings, ywe and

ykg of a relation phrase s in question q, and the
embeddings of a relation path candidate p, rwe and
rkg, the score function ψ() can be formulated as

ψ(s, q, p) = [ywe ; ykg] · [pwe ; pkg]. (11)

We select the cross entropy loss between the one-
hot vector of ground truth and the score vector:

Lβ = −
∑

(s,q,p)∈D

log
eψ(s,q,p)

eψ(s,q,p) +
∑

p′∈Np

eψ(s,q,p′)
,

(12)

where Np denotes the set of negative relation paths
obtained by negative sampling based on p. The
negative sampling is implemented by randomly
samplingN relations or relation paths in KG which
are different from p.

Finally, the overall loss function is defined as

L = Lα + λLβ. (13)

4 Experiments and Results

4.1 Dataset Construction

Due to the high correlation between RL and KBQA,
we follow the works (Mihindukulasooriya et al.,
2020; Naseem et al., 2021) to reuse the KBQA
datasets as the benchmarks to evaluate the perfor-
mance of RL. We briefly introduce them as follows:

• LC-QuAD 1.0 (Trivedi et al., 2017) is a large
complex questions dataset for KBQA, which
contains 5,000 questions and corresponding
SPARQL queries over DBpedia (version 2016-
04). Only 1% of the questions involve implicit
relation links.

• QALD-9 (Usbeck et al., 2018) is a popular
benchmark dataset for KBQA over DBpedia.
It provides 408 training questions and 150 test
questions, 6% of which need implicit RL.

• Path-based SimpleQuestions dataset
(PathSQ) is a new dataset constructed by
ourselves for implicit RL evaluation. It is
based on DBpedia (version 2016-04) and
contains 400 questions that need to be linked
through a two-hop relation path. Table 1 lists
an example, and we explain its construction
details below.

Construction of PathSQ. Existing benchmarks
contain few implicit relations and cannot be used
to evaluate implicit RL well. As for other KBQA
datasets, e.g., ComplexWebQuestions (Talmor and
Berant, 2018), the proportion of implicit relations
is also small. Thus, we decide to construct a new
dataset by ourselves for implicit RL evaluation.

In SimpleQuestions (Bordes et al., 2015), some
questions have corresponding single relations in
Freebase but need to be expressed using multiple
relations in DBpedia. Based on this observation,
we collect the questions in SimpleQuestions that
must map each relation phrase in NL to a relation
path in DBpedia. We only consider two-hop rela-
tion paths, since paths with more relations are gen-
erally rare and spurious (Azmy et al., 2018). We
construct PathSQ with the following three steps:
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Question What is Claire Stansfield’s nationality?

Head entity dbr:Claire_Stansfield
Relation phrase nationality
Implicit relation dbo:birthPlace→ dbo:country
Answer dbr:United_Kingdom

Table 1: An example in the PathSQ dataset.

(1) We remove the question and answer pair in Sim-
pleQuestions such that the entity in the question or
the answer entity cannot be mapped to DBpedia.
We use the officially released file2 to achieve this
goal, which contains the entity mappings between
Freebase and DBpedia. (2) For each remaining
question and answer pair, we construct a SPARQL
query to determine whether there exists a direct
relation between the entity in the question and the
answer entity. If exists, we remove this pair. (3)
We construct another SPARQL query to obtain all
the two-hop paths between the two entities for each
remaining pair. Among all the paths, we manually
label the correct ones and try our best effort to mine
400 questions for experiments.

4.2 Comparative Methods

We compare our ImRL with six state-of-the-art
methods. All of them support RL over DBpedia.

• SIBKB (Singh et al., 2017) uses PATTY as
the underlying knowledge source, and estab-
lishes a bipartite graph index from common
phrases in NL to KG relations for RL.

• Rematch (Mulang et al., 2017) exploits Word-
Net and dependency parsing to model relation
phrases with their underlying parts of speech,
and uses various similarity metrics for rank-
ing.

• EARL (Dubey et al., 2018) models the link-
ing problem as the generalized traveling sales-
man problem, and uses connection density to
link entities and relations jointly.

• Falcon (Sakor et al., 2019) enhances entity
and relation linking through cross-KG entity
and relation alignment and basic principles of
English morphology.

• SLING (Mihindukulasooriya et al., 2020)
leverages AMR for preprocessing, trains a
Transformer-based model based on distant su-
pervision, and integrates several complemen-
tary signals for RL.

• SimReL (Naseem et al., 2021) also uses AMR
2
http://downloads.dbpedia.org/2016-10/core-i18n/

en/freebase_links_en.ttl.bz2

for question representation, and employs a
Siamese network with BERT to link relations
in an end-to-end manner.

4.3 Experiment Setup
We implement ImRL in Python 3. All experiments
are conducted on a workstation with two Xeon Sil-
ver 4215R CPUs, 384GB memory and an NVIDIA
TITAN RTX graphics card. We use the API of
Falcon (Sakor et al., 2019) to link entities to DBpe-
dia, and use StoG (Zhang et al., 2019) to generate
AMR graphs in relation identification. For word
embeddings, we use the pre-trained BERT-base
model (Wolf et al., 2020) with dwe = 768 to ini-
tialize the parameters and freeze them in the exper-
iments. For KG embeddings, we extract 200,000
popular entities and their related triples from DB-
pedia as the training corpus, and employ RotatE
with dkg = 200 for embedding learning.

As for the hyperparameters, the maximum num-
ber of relation path candidates is empirically set to
c = 30, the maximum length of path candidates
is set to M = 2, the number of negative sampling
relations is set to N = 29, and the number of se-
lected paraphrase pairs is set to de = 10. For all the
experiments, we assign the learning rate to 3e−4

and the batch size to 256. The weight λ in loss
function is set to 1. The previous works evaluate
the performance of RL with precision, recall and
F1-score. For consistency, we use the same metrics
in our experiments. For LC-QuAD and QALD-9,
we use the training set to train the model, and evalu-
ate on the testing set. For PathSQ, due to the small
scale, we treat all the dataset as the testing set, and
use the training sets of LC-QuAD and QALD-9.

4.4 Main Results
Table 2 lists the results of all the methods. From
the table, ImRL achieves the state-of-the-art results
on LC-QuAD and QALD-9.

Take QALD-9 for example, 94% of the ques-
tions are with explicit single relations. For those
questions, the F1-score of ImRL can reach 0.48,
showing that even without a specific design for
explicit RL, ImRL still performs well for it. The
reason is that leveraging word embeddings and KG
embeddings is common to both implicit and ex-
plicit relations. For explicit relations, since they
usually contain a single relation, both R_Encoder
and P_Encoder only need to encode one relation
phrase or relation local name, which makes the
matching of word embeddings easier. In addition,
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Methods
LC-QuAD QALD-9 PathSQ

P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑
Te

xt
ua

l SIBKB 0.13 0.15 0.14 0.14 0.10 0.11 0.23 0.12 0.16
ReMatch 0.15 0.17 0.16 0.14 0.15 0.14 0.24 0.15 0.18
EARL 0.17 0.21 0.18 0.15 0.17 0.16 0.06 0.05 0.05
Falcon 0.42 0.44 0.43 0.23 0.23 0.23 0.30 0.19 0.23

N
eu

ra
l SLING 0.41 0.55 0.47 0.39 0.50 0.44 0.09 0.05 0.07

SimReL 0.51 0.51 0.51 0.46 0.44 0.45 0.39 0.19 0.26

ImRL (ours) 0.59 0.49 0.54 0.51 0.46 0.48 0.46 0.41 0.43

Table 2: Relation linking performance comparison. We mark the best scores in bold and second-best underlined.

due to the use of KG embeddings and external
knowledge of paraphrase dictionary as additional
information, ImRL outperforms the latest method
SimReL without the two information. However,
since the path generation may cause correct rela-
tion paths missing in the candidate set, the recall of
ImRL is lower than precision.

For the remaining 6% questions with implicit
relations in QALD-9, the F1-score of our method
can reach 0.47. In order to further verify the perfor-
mance of ImRL on implicit relations, we conduct
another experiment on PathSQ. As shown in Ta-
ble 2, ImRL dominates in terms of all the three
evaluation metrics, while the other methods ob-
tain rather poor results. This is because all the
questions in PathSQ need to be linked through im-
plicit relation paths, which is challenging for the
existing methods. By contrast, ImRL can achieve
the reasoning of relation paths according to the
composition property of KG embeddings, thereby
effectively improving the accuracy of implicit RL.

Furthermore, ImRL can also handle unseen rela-
tions in the inference phase. Taking QALD-9 as an
example, there are 46 questions in the testing set
whose relations have never appeared in the training
set. Still, ImRL can correctly predict 10 of them,
which shows the generalization of ImRL.

4.5 Detailed Analysis

We conduct more experiments to validate the pro-
posed method. All the following experiments are
based on QALD-9 dataset.

Ablation study of embedding models. To mea-
sure the contribution of each embedding model in
ImRL, we remove the module of obtaining KG em-
beddings and word embeddings in turn for ablation
study. By removing the use of KG embeddings, the
F1-score drops by 0.04, while by removing the use
of word embeddings, it drops by 0.09. This shows

Methods P ↑ R ↑ F1 ↑

ImRL 0.51 0.46 0.48
w/o KG embeddings 0.46 0.42 0.44
w/o word embeddings 0.42 0.37 0.39
w/o KG and word embeddings∗ 0.28 0.26 0.27
∗ denotes using string matching without embeddings.

Table 3: Results of different embedding models.

that in our model, the word embeddings play a
more important role than the KG embeddings. We
believe that the root cause to the phenomenon is
that pre-trained language models, e.g., BERT, are
trained on huge corpora with several downstream
tasks, thus the word embeddings can provide more
prior knowledge. While the KG embedding model
used by ImRL, i.e., RotatE, is trained on a small-
scale corpus, and the obtained embeddings more fo-
cus on limited structural information, which leads
to that the KG embeddings provide relatively less
information than the word embeddings.

Different knowledge injection methods. We ex-
plore three methods of injecting external knowl-
edge from the paraphrase dictionary into ImRL,
and compare them with the method without using
the dictionary. The result is shown in Table 4. All
methods with injection achieve better results than
those without it, which verifies the effectiveness
of knowledge injection. Among all the methods,
ImRL with a gated mechanism achieves the best
results. This shows that the knowledge in the dic-
tionary may also bring noises, thus by combining
part of the external knowledge and the original
embeddings of the phrases, more accurate external
knowledge can be supplemented to enhance the rep-
resentations of implicit relation phrases. It should
be mentioned that utilizing paraphrase dictionaries
also has certain limitations. For instance, different
dictionaries target different KGs, and may need to
be adjusted according to the schema of the KG.
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Methods P ↑ R ↑ F1 ↑

ImRL (GATE) 0.51 0.46 0.48
ImRL (MEAN) 0.50 0.44 0.47
ImRL (CAT) 0.48 0.43 0.46
ImRL (None) 0.47 0.42 0.45

Table 4: Results of different injection methods.

Error propagation in pipeline. In order to reduce
the impact of previous steps, and only evaluate the
performance of the ranking model, we conduct
an experiment assuming that the input to the Path
Ranking module is the gold standard. That is, the
correct relation path is always in relation path can-
didate set, which is the input of the Path Ranking
module. Under this assumption, the F1-score of the
model can reach 0.57, which shows that the afore-
mentioned steps have a great impact on the model.
Meanwhile, this also shows that the gap between
the relations expressed in NL and those in KG is
quite large. Even if lots of additional information
is considered, it is still difficult to pick the most
correct one from a set of relation path candidates,
which reveals the challenge of RL task.

Improvement to KBQA performance. As a vital
module of KBQA, it is necessary to integrate ImRL
into some existing KBQA systems for validation.
We conduct the experiment on the most popular
KBQA dataset LC-QuAD (Trivedi et al., 2017). We
choose gAnswer (Hu et al., 2018) as the baseline
KBQA system, and replace its RL module with
ImRL, which results in about 3.2% increase of F1-
score, verifying that our method can indeed help the
existing KBQA systems. As a reference, SimReL
reports its F1-score improvement on LC-QuAD as
2.4% (Naseem et al., 2021). It is worth noting that
the same process can also be migrated to other KGs,
e.g., Freebase, for further use.

Case study. Table 5 shows two real examples to
help understanding. In the first case from PathSQ,
the relation phrase “involved in” needs to be ex-
pressed using the relation path dbo:commander
→ dbo:militaryBranch according to the gold stan-
dard. The state-of-the-art method SimReL returns
dbo:militaryBranch, as it can only find the sin-
gle relation whose meaning is most similar to the
meaning of the whole question as the answer. Dif-
ferently, ImRL leverages the path ranking model
to find the path that best expresses the meaning of
“army ... involved in”. In the second case, there
is no entity in this question of QALD-9, which

Case 1 What army was involved in Siege of Clonmel?

Gold dbo:commander→ dbo:militaryBranch
SimReL dbo:militaryBranch
ImRL dbo:commander→ dbo:militaryBranch
Case 2 Give me all animals that are extinct.

Gold dbo:conservationStatus
SimReL null
ImRL dbo:origin

Table 5: Case study of linking results.

causes that SimReL cannot enumerate any candi-
date relations since it depends on the result of entity
linking. Although the method of generating can-
didates of ImRL is more robust, the absence of
entities also has a great impact on it, making it
give the wrong answer dbo:origin. Linking this
relation requires understanding the meaning of the
noun phrase, which is incapable for all existing RL
methods including ImRL. We leave this in future
work.

5 Conclusion

In this paper, we propose ImRL, an implicit RL
method that can better deal with the linking of
implicit relations in NL and incomplete KG. We
extend the RL task to implicit relation path linking,
and propose a novel ranking model with knowledge
injection. We evaluate our model on three datasets.
The results show that our method achieves superior
performance on LC-QuAD and QALD-9, where
the relations are mostly explicit, and PathSQ, where
the relations are all implicit, demonstrating that
ImRL can not only deal with relation phrases that
are not explicitly expressed in NL, but also perform
relation path reasoning in KG. In future work, we
will explore how to combine entity linking and
implicit RL for improvement.
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A Sensitivity Analysis of Candidate Path
Number

In order to assess the sensitivity of ImRL to the
number of candidate paths, we report the empiri-
cal analyses using different numbers of candidate
paths c on QALD-9. The metrics are mean recip-
rocal rank (MRR), Hits@c and F1-score. MRR
represents the multiplicative inverse of the rank of
the gold path in the candidate path list. Hits@c
indicates the proportion of the questions where the
gold path ranks in the top-c in the candidate list.
F1-score represents the performance of ImRL on
QALD-9. As shown in Table 6, with the increase of
c, MRR, Hits@c and F1-score all increase. How-
ever, when c reaches 30, the increment of c has
little influence on the model performance. Thus,
we choose to set c = 30.

Candidate path number c MRR ↑ Hits@c ↑ F1 ↑

10 0.30 0.46 0.39
30 0.31 0.70 0.48
50 0.31 0.73 0.48

Table 6: Results of sensitivity analysis.

B Case Study of KBQA Results

By replacing the relation linking component in
gAnswer (an open-source KBQA system) with
ImRL, we conducted KBQA experiments over DB-
pedia. Compared with the original gAnswer, the
overall F1-score increases by 3.2%. Figure 3 and
Figure 4 show two interesting cases. In Figure 3,
the relation linking module of gAnswer incorrectly
links the relation in the question to dbo:birthPlace,
which leads to the wrong SPARQL query and the
wrong answer. In contrast, ImRL can correctly
identify the relation dbo:birthDate, modify the
SPARQL query and return the correct answer. The
main reason is that ImRL can capture the context
information “date” with the language model. In
Figure 4, although ImRL does not recognize the
same relation dbo:foundedBy as the gold SPARQL
query, it recognizes dbp:founder, which is actually
equivalent to dbo:foundedBy. Due to the organiza-
tional structure of DBpedia, namespaces dbo and
dbp have different representations of the same rela-
tions. However, with the help of KG representation
learning, the embeddings of the two kinds of re-
lations can be learned to have similar meanings.
Thus, ImRL can capture similar relationships be-
tween dbo and dbp through the KG embedding

module, which also shows that ImRL can leverage
the structural information in the KG.

C Detailed Analysis of PathSQ

Since the questions in PathSQ all need to be
linked through a multi-hop relation path in DB-
pedia, we further conduct a visualization exper-
iment on PathSQ to validate whether KG em-
bedding can eliminate the influence of incom-
plete KGs. We use embeddings obtained through
R_Encoderkg as the input of Embedding Projec-
tor3 to perform dimension reduction and obtain
two-dimensional embeddings. Take the question
“which european nation is Rudi Hedman from?” as
an example, we enumerate the top-30 candidate
relation paths of entity dbr:Rudi_Hedman. How-
ever, since entity dbr:Rudi_Hedman does not have
relation dbo:nationality in DBpedia, the gold re-
lation path dbo:nationality is missing in the can-
didate list. As the phrase “nation” should be
linked to dbo:nationality, we compare these candi-
date relation paths with it. In the KG embedding
space, through the visualization (see Figure 5),
we find that the embedding of the relation path
dbo:birthPlace→ dbo:location (color: red) is most
similar to that of the relation dbo:nationality (color:
orange). It shows that ImRL achieves implicit RL
by expressing missing relation dbo:nationality be-
tween the entities with relation path dbo:birthPlace
→ dbo:location.

3http://projector.tensorflow.org/
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Question :     Which artists were born on the same date as Rachel Stevens?

Gold SPARQL query :     SELECT  DISTINCT  ?uri WHERE { ?uri a   dbo:Artist .  ?uri dbo:birthDate ?x . 
dbr:Rachel_Stevens dbo:birthDate ?x . }

Gold answer :     dbr:Cameron_Cartio |  dbr:Gizem_Saka |  dbr:Vesna_Pisarović

gAnswer SPARQL query :     SELECT  DISTINCT  ?uri WHERE { ?uri a   dbo:Artist .  ?uri dbo:birthPlace ?x .
dbr:Rachel_Stevens dbo:birthPlace ?x . }

gAnswer answer :     dbr:Sarbel |  dbr:Ashley_Hutchings

gAnswer+ImRL SPARQL query       :     SELECT  DISTINCT  ?uri WHERE { ?uri a   dbo:Artist .  ?uri dbo:birthDate ?x . 
dbr:Rachel_Stevens dbo:birthDate ?x . }

gAnswer+ImRL answer :     dbr:Cameron_Cartio |  dbr:Gizem_Saka |  dbr:Vesna_Pisarović

Figure 3: Example 1 of KBQA with ImRL over DBpedia.

Question :     How many companies were founded by the founder of Facebook?

Gold SPARQL query :     SELECT  DISTINCT  ?uri WHERE { dbr:Facebook dbo:foundedBy ?uri .
?x       dbo:foundedBy ?uri . }

Gold answer :     dbr:Andrew_McCollum |  dbr:Chris_Hughes |  dbr:Dustin_Moskovitz |
dbr:Eduardo_Saverin |  dbr:Mark_Zuckerberg

gAnswer SPARQL query :     SELECT  DISTINCT  ?uri WHERE { dbr:Facebook dbo:foundedBy ?uri .
?x       dbo:foundedBy ?uri . }

gAnswer answer :     dbr:Andrew_McCollum |  dbr:Chris_Hughes |  dbr:Dustin_Moskovitz |
dbr:Eduardo_Saverin |  dbr:Mark_Zuckerberg

gAnswer+ImRL SPARQL query  :     SELECT  DISTINCT  ?uri WHERE { dbr:Facebook dbp:founder ?uri .
?x dbp:founder ?uri . }

gAnswer+ImRL answer :     dbr:Andrew_McCollum |  dbr:Chris_Hughes |  dbr:Dustin_Moskovitz |
dbr:Eduardo_Saverin |  dbr:Mark_Zuckerberg

Figure 4: Example 2 of KBQA with ImRL over DBpedia.

Figure 5: Visualization of KG embeddings.
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