
Findings of the Association for Computational Linguistics: ACL 2022, pages 3864 - 3876
May 22-27, 2022 c©2022 Association for Computational Linguistics

Interpretable Research Replication Prediction
via Variational Contextual Consistency Sentence Masking

Tianyi Luo1, Rui Meng2, Xin Eric Wang1, Yang Liu1

1Computer Science and Engineering, University of California, Santa Cruz
2Lawrence Berkeley National Laboratory, University of California, Berkeley

{tluo6, xwang366, yangliu}@ucsc.edu
rmeng@lbl.gov

Abstract

Research Replication Prediction (RRP) is the
task of predicting whether a published research
result can be replicated or not. Building an
interpretable neural text classifier for RRP pro-
motes the understanding of why a research pa-
per is predicted as replicable or non-replicable
and therefore makes its real-world application
more reliable and trustworthy. However, the
prior works on model interpretation mainly fo-
cused on improving the model interpretabil-
ity at the word/phrase level, which are insuf-
ficient especially for long research papers in
RRP. Furthermore, the existing methods can-
not utilize a large size of unlabeled dataset
to further improve the model interpretabil-
ity. To address these limitations, we aim to
build an interpretable neural model which can
provide sentence-level explanations and apply
weakly supervised approach to further lever-
age the large corpus of unlabeled datasets to
boost the interpretability in addition to improv-
ing prediction performance as existing works
have done. In this work, we propose the
Variational Contextual Consistency Sentence
Masking (VCCSM) method to automatically
extract key sentences based on the context
in the classifier, using both labeled and unla-
beled datasets. Results of our experiments on
RRP along with European Convention of Hu-
man Rights (ECHR) datasets demonstrate that
VCCSM is able to improve the model inter-
pretability for the long document classification
tasks using the area over the perturbation curve
and post-hoc accuracy as evaluation metrics.

1 Introduction

Scientific research results that cannot be repro-
duced are unreliable and negatively impact the de-
velopment of science. Therefore, it is important to
know whether a published research result can be
replicated or not. To this end, domain researchers
have conducted several direct replication projects
in contemporary published social science studies
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Figure 1: (a) Given the text information of a research
paper, Research Replication Prediction (RRP) task pre-
dicts whether the paper can be reproduced or not. (b)
Having the same input as (a), our VCCSM model can
keep the important sentences (through masking unim-
portant ones) which are related to reproducibility.

(Camerer et al., 2016, 2018; Ebersole et al., 2016;
Klein et al., 2018; Collaboration et al., 2015). Such
direct replication, however, is very time-consuming
and expensive. A much more efficient and cheaper
alternative, Machine Learning (ML), is utilized for
predicting research replication (Dreber et al., 2019;
Yang, 2018; Altmejd et al., 2019; Luo et al., 2020).
In this paper, we model the task of predicting re-
search replication as a binary classification problem
and name it Research Replication Prediction (RRP)
task which is shown in Figure 1(a). Nonetheless,
applying the neural network models in the context
of RRP faces two challenges. The first challenge
is that the existing neural network models used
in RRP are characterized as a black box because
their predictions are hardly understandable. With-
out intelligible explanations for the predictions, re-
sults of RRP may not be widely accepted as reli-
able and trustworthy. Despite the progress in in-
terpretable machine learning (Hechtlinger, 2016;
Smilkov et al., 2017; Singh et al., 2018; Serrano
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and Smith, 2019; Han et al., 2020; Chen and Ji,
2020; Chen et al., 2021) , the existing works mostly
focus on improving the interpretability only at the
word/phrase level which might work well for short
documents. However, research papers in our RRP
problem are usually lengthy (the average length
of words is about 10,000). Building interpretable
models for long documents is a challenging task
due to the massive amount of textual information.

The second salient challenge is the small size of
labeled dataset in RRP due to the high cost (e.g.,
funding requirement, human labor, etc.) of direct
replications. Training an interpretable neural net-
work also requires a large size of labeled dataset
and weakly supervised learning can help utilize the
unlabeled dataset. Although weakly supervised ap-
proaches have been utilized to make use of a large
size of unlabeled dataset (Berthelot et al., 2019; Xie
et al., 2019; Chen et al., 2020), they have mainly
focused on improving the prediction performance
but not the interpretability. We therefore aspire to
build a weakly supervised interpretable neural text
classifier for predicting research replication that
can leverage the existence of the large corpus of
unlabeled articles to boost up both the prediction
performance and the interpretability.

To tackle the first challenge mentioned above, we
built an interpretable neural network model which
can automatically select key sentences instead of
words/phrases by adding a variational sentence
masking layer on the input layer which is a simple
modification of network architecture but can ef-
fectively improve the model interpretability. By
adding a variational sentence masking, we can
adopt information bottleneck framework (Tishby
et al., 2000; Alemi et al., 2016) to train the model
and improve both the prediction performance and
interpretability by identifying important sentences.
In addition, we hypothesize that whether to mask
a sentence or not should also depend on its con-
text (whether other sentences in the same paper
are masked) in the case for long research papers
because the information provided by extracted key
sentences should not be redundant. Therefore, we
invoke a contextual sentence masking approach us-
ing the LSTM model (Hochreiter and Schmidhuber,
1997). The extracted key sentences after masking
are considered as our interpratable outcomes for
each research paper.

To resolve the second challenge, we developed a
new weakly supervised method which makes use

of unlabeled dataset to improve both the prediction
performance and interpretability. Specifically, we
adopted the consistency training methods (Laine
and Aila, 2016; Tarvainen and Valpola, 2017; Xie
et al., 2019) which regularize model predictions
to be invariant to the small noises added to the in-
put. Consistency training were used to improve
the prediction performance with the help of unla-
beld dataset (Xie et al., 2019). In this paper, to
improve the interpretability along with the predic-
tion performance, we propose a consistency train-
ing method with sentence masking through replac-
ing the noises-added input of unlabeled dataset by
masked sentences. Specifically, for each unlabeled
research paper, we generate the first prediction by
using only the extracted key sentences after the
sentence masking. Then, we generate the second
prediction using all the sentences in the research
paper without masking. The consistency check is
then imposed upon the two predictions by minimiz-
ing the difference between them. Through the con-
sistency training, an extra large size of unlabeled
dataset can be utilized to make model continually
learn how to extract the key sentences of a research
paper so that the model interpretability is further
improved.

In sum, our main contribution is the proposal of
a variational contextual consistency sentence mask-
ing (VCCSM) method as shown in Figure 1(b) that
is able to (1) extract the key sentences based on
the context of a research paper and (2) leverage the
large number of unlabeled sets of papers using a
consistency checking mechanism. We present ex-
perimental results to validate the usefulness of our
proposed methods on two neural network models,
LSTM (Hochreiter and Schmidhuber, 1997) and
BERT (Devlin et al., 2018) on the RRP along with
ECHR datasets. In particular, we find VCCSM
is able to improve both the replication prediction
accuracy and the interpretability for long research
papers and general long documents.

2 Related Work

Blackbox Research Replication Prediction Re-
search Replication Prediction, knowing whether
a published research result is replicable or not, is
important. Recently, several large scale of direct
replication projects have been conducted in social
science studies to alleviate the replication crisis.
But the cost of direct replication is too high to have
a large size of annotated dataset. Therefore, an
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alternative ML method that is much cheaper and
more efficient than direction replication is utilized
in RRP. Luo et al. (2020) proposed a neural text
classifier to achieve the best performance on RRP.
But their model is a blackbox and cannot provide
faithful explanations about why a research paper is
predicted as replicable or non-replicable.

Interpreting Neural Networks Various ap-
proaches have been proposed to interpret neural
network models from the post-hoc manner, such as
gradient-based (Simonyan et al., 2014; Hechtlinger,
2016; Sundararajan et al., 2017), attention-based
(Serrano and Smith, 2019), decomposition-based
(Murdoch et al., 2018; Singh et al., 2018), example-
based methods (Koh and Liang, 2017; Han et al.,
2020), and word masking (Chen and Ji, 2020).
However, these interpretation methods have their
own limitations, including only work with specific
neural network model, render doubts on faithful-
ness, and need additional work to provide the ex-
planations based on trained models. In this paper,
we focus on model-agnostic explanation methods.
More specifically, we follow the research of mask-
ing methods which can improve both the prediction
performance and interpretability by adopting infor-
mation bottleneck framework (Tishby et al., 2000;
Alemi et al., 2016) to identify important sentences.

Improving interpretability via word masking
Chen and Ji (2020) proposed a word masking
method which can automatically select important
words in the training process and build interpretable
neural text classifiers by formulating their problem
in the framework of information bottleneck. The
proposed solution mainly deals with the short text
and the average length (words) in all the seven
datasets they used are less than 300. Four of them
are less than 25. In constrast, the average length
(words) of research papers in our RRP task is about
10,000 which is much longer than the ones used
in (Chen and Ji, 2020). Therefore, we view word
masking as insufficient for our task. On the other
hand, Chen and Ji (2020) learn independently on
whether each word is masked or not. But context
matters, especially for long documents. Different
from prior work, we utilized the context informa-
tion (whether other sentences in the same paper are
masked or not) of each sentence by applying LSTM
models to decide whether to mask this sentence or
not. We hypothesize that context masking is bet-
ter than independent masking, especially for long

documents such as the research papers in RRP.

Consistency Training on Unlabeled Dataset
The annotated data in RRP is collected using di-
rection replication and its size is small. Therefore,
weakly supervised learning methods need to be
used to improve the model performance in RRP
with the help of the unlabeled dataset. The existing
weakly supervised methods applied in RRP focus
mainly on improving the prediction performance,
but less so about the model interpretability.

Consistency training can improve the robustness
of models by regularizing model predictions to be
invariant to small noise applied to input examples
(Sajjadi et al., 2016; Clark et al., 2018). Xie et al.
(2019) proposed to substitute the traditional noise
injection methods in the consistency training with
high quality data augmentations so that a new con-
sistency training based weakly supervised method
is proposed and the performance is improved with
the help of unlabeled dataset. But they focused
only on improving the prediction performance.

In this paper, we conduct the consistency training
on the unlabeled dataset to improve both prediction
performance and interpretability by substituting the
traditional noise injection methods with sentence
masking methods, which is the major contribution
of our paper. More specifically, we first mask the
unimportant sentences and keep the critical sen-
tences. Then we make the predictions on the kept
key sentences the same as the ones based on all the
sentences in the research paper without masking.
Finally, we conducted the consistency check by
minimizing the difference between them.

3 Problem Statement

In this paper, our main goal is to improve the in-
tepretibility of neural textual classifier for Research
Replication Prediction (RRP). First we introduce
the RRP task.

Research Replication Prediction (RRP)
task In RRP, we hope to build a model
f that takes each research article as in-
put and predicts whether the made research
claim is replicable or not f(article) ∈
{0 (non-replicable), 1 (replicable)}. There are
different definitions and criteria for claiming a
research paper to be replicable. In this work,
a research paper is replicable means that an
independent replication can provide evidence of a
statistically significant effect in the same direction
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as the original paper.

Interpretable Research Replication Prediction
In this paper, we aim to build an interpretable
neural textual classifier for RRP. Improving the
model interpretability can help us understand why
a research paper is predicted as replicable or non-
replicable and make its application in the real world
achieve more reliability and trustworthiness. Dif-
ferent from generating post-hoc explanations based
on well-trained models, we adopt the information
bottleneck framework (Tishby et al., 2000; Alemi
et al., 2016) to train our model and build a more
interpretable neural textual classifier for RRP.

Preliminaries and notations To perform the
above task, we have an labeled training dataset
L := {(xi, yi)}Li=1, an unlabeled dataset U :=
{xi}Ui=1, and a test dataset T := {(xi, yi)}Ti=1,
where L,U, and T are the number of labeled train-
ing, unlabeled training, and testing datasets re-
spectively. xi contains a sequence of sentences
xi = [xi1, xi2, ...xij ..., xiS ] in the ith research pa-
per and S is the maximum number of sentences in
a research paper in RRP task. For the jth sentence
in xi, xij = [xij1, xij2, ...xijk..., xijK ], where n is
the maximum number of words in a sentence and
xijk ∈ Rd which indicates the word embeddings as
the model input. All the sentences have the same
length K by truncating. And yi is xi’s binary clas-
sification label which is either ‘1’ (replicable) or
‘0’ (non-replicable). A neural textual classifier can
be trained to output the replication labels given any
new research paper xi.

4 Method

The details of our proposed variational contextual
consistency sentence masking (VCCSM) method
are described in this section.

4.1 Model Overview

Our model contains two key modules: variational
contextual sentence masking and consistency train-
ing. Variational contextual sentence masking mod-
ule is applied in the training on both labeled and
unlabeled datasets. Consistency training is only
used in the training on the unlabeled dataset.

In the training on labeled dataset, variational con-
textual sentence masking module extracts the key
sentences via contextual masking (LSTM model).
Then the supervised loss is calculated and opti-
mized to minimize the difference between predic-

tion using the extracted sentences as the input and
the ground truth label in the information bottleneck
framework. The formula of supervised loss will be
described later in this section and the architecture
of the model on how to train the labeled dataset is
shown in the left part of Figure 2.

In the training on unlabeled dataset, different
from the prior works, we conduct the consistency
training on the unlabeled dataset to improve both
prediction performance and interpretability by sub-
stituting the traditional noise injection methods
with sentence masking methods. Consistency train-
ing can improve the model robustness by regulariz-
ing model predictions to be invariant to small noise
applied to input examples (Sajjadi et al., 2016; Miy-
ato et al., 2018; Clark et al., 2018). Typical noise in-
jection methods included additive Gaussian noise,
dropout noise or adversarial noise. The existing
consistency training based work e.g., (Xie et al.,
2019) focuses only on improving the prediction
performance instead of interpretability. The con-
sistency training methods utilized in this paper are
based on variational contextual sentence masking
and can also improve the model interpretability.
Our optimization goal is to minimize the differ-
ence between prediction using the extracted vi-
tal sentences and prediction made on all the sen-
tences without masking in the information bottle-
neck framework. The formula of unsupervised loss
will be described later in this section and the ar-
chitecture on how to train the unlabeled dataset is
shown in the right part of Figure 2.

4.2 Variational Contextual Sentence Masking

Inspired by Chen and Ji (2020), we want to add
a mask layer M after the sentence embeddings
layer to help the model select the key sentences,
where M = [M1,M2, ...Mj ...,MS ] and S is the
maximum number of sentences in a research paper.
The embedding of each sentence is concatenated
by word embeddings included in this sentence.

Each Mj ∈ {0, 1} is a binary random variable to
decide whether we mask this sentence or not. For
each sentence in one research paper, Mj should
be related to both the current sentence and the
sentences around it (context). Therefore, we use
LSTM model to generate the contextual sentence
mask Mj for the jth sentence in one research paper,
where Mj = LSTM(xj), j = 1, 2, ..., S. x can be
any given research paper. This contextual sentence
mask layer M together with the sentence embed-
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Figure 2: The architecture of variational contextual consistency sentence masking (VCCSM).

dings are considered as the input of neural network
text classifiers in RRP, which is denoted as follows,

Z = Xmask = M
⊙

X, (1)

where
⊙

is an element-wise multiplication, X are
all the examples in any given dataset, and Xmask

denotes the internal representations of all the exam-
ples. Our goal is to optimize M so that the model
can extract the key sentences for each research pa-
per.

The information bottleneck theory aims to learn
an encoding Z of the input X with maximal in-
formation on predicting the target Y while keeps
X’s the least redundant information (Tishby et al.,
2000; Alemi et al., 2016). As proven effective and
flexible in identifying important features (Chen
and Ji, 2020), the information bottleneck frame-
work is employed in our model. we want to make
Z = Xmask maximally expressive on predicting Y
while being maximally compressive on X . There-
fore, following the standard information bottleneck
theory (Tishby et al., 2000), our objective function
is denoted as follows:

max
Z

I(Z;Y )− β · I(Z;X), (2)

where the definitions of X and Z = Xmask are
given in Equation 1. Y is the target output, I(·; ·)
denotes the mutual information, and β ∈ R+ is a
coefficient that balances the two terms in the infor-
mation bottleneck loss function. The formula of
mutual information I should include the parame-
ters θ which need to be optimized. For simplicity,
we ignore θ in the following formulae.

However, computing the mutual information in
Equation 2 is usually computationally challeng-
ing. Therefore, we adopted variational inference

method to construct a lower bound for Equation
2. After constructing the lower bound and ap-
plying the reparameterization trick (Kingma and
Welling, 2013), we can optimize the objective uti-
lizing stochastic gradient descent. In this subsec-
tion, we simply listed the lower bound of Equation
2. The complete details on the derivation of lower
bound for variational contextual sentence masking
is shown in Appendix A.1.

Assuming that the true joint distribution is
P (X,Y, Z) and X,Y, Z are random variables
which have the following conditional dependency:
Y ↔ X ↔ Z. And x, y, z are instances of random
variables. The lower bound of Equation 2 is as
follows:∑
x,y,z

PX(x)PY |X(y|x)PZ|X(z|x) logQY |X(y|z)

− β
∑
z,x

PX(x)PZ|X(z|x) log
PZ|X(z|x)
QZ(z)

(3)

To compute Equation 3, we use the empirical data
distribution including two Delta functions to ap-
proximate the PX,Y (x, y). Therefore we have the
loss function of variational information bottleneck
(VAB) as follows:

ℓvib = −(EPX,Y (x,y)[EPZ|X(z|x)[log(QY |Z(y|z)]

− β · KL[PZ|X(z|x)||QZ(z)]]) (4)

4.3 Consistency Training based on Variational
Contextual Sentence Masking

In this work, we utilized a particular consistency
training setting where the masked input xmask is
generated by applying variational contextual sen-
tence masking mentioned above on each input x,
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which can be written as follows: xmask = M · x,
to improve both the interpretability and prediction
performance.

More specifically, inspired by Xie et al. (2019),
we propose to substitute the traditional noise injec-
tion methods with our Contextual Sentence Mask-
ing module to generate the masked input xmask

given each input x in the unlabeled dataset which
can be written as follows: xmask = M · x. We
also use the information bottleneck framework in
the consistency training. The only change is to re-
place the ground truth label yi with the prediction
ŷi given the original research paper xi as the input.
To be noted, the sentence mask layer is not used
when predicting ŷi.

4.4 Variational Information Bottleneck (VAB)
Loss Function

As shown in Figure 2, our VAB loss functions con-
tains two parts: a supervised VAB loss ℓsu and an
unsupervised VAB loss ℓun. The same model is
optimized in both losses.

Supervised VAB Loss Since we have ground
truth labels in the labeled dataset, the supervised
VAB loss ℓsu is the same as the VAB loss ℓvlb in
Equation 4 and it is denoted as follows:

ℓsu = −(EPX,Y (x,y)[EPZ|X(z|x)[log(QY |Z(y|z)]

− β · KL[PZ|X(z|x)||QZ(z)]]) (5)

where PX,Y (x, y) refers to empirical distribution
of complete observations.

Unsupervised VAB Loss As for the unsuper-
vised VAB loss, the only difference from the su-
pervised one is to replace the ground truth label
y by the prediction ŷ = f(x) given the original
research paper x as the input and and it is denoted
as follows:

ℓun = −(EPX(x)[EPZ|X(z|x)[log(QY |Z(ŷ|z)]

− β · KL[PZ|X(z|x)||QZ(z)]]) (6)

where PX(x) refers to empirical distribution of
incomplete observations.

Total Loss In summary, our full training objec-
tive ℓ can be written as follows:

ℓ = ℓsu + α · ℓun (7)

where α > 0 is a balancing hyper parameter about
these two items of losses. Our goal is to minimize
the full training objective ℓ.

5 Experimental Setup

The proposed VCCSM method is evaluated with
two typical neural network models commonly used
on text classification tasks, LSTM (Hochreiter
and Schmidhuber, 1997) and BERT (Devlin et al.,
2018) on two datasets.

5.1 Datasets

RRP Dataset RRP dataset is proposed by Luo
et al. (2020). RRP dataset contains 399 labeled
and 2,170 unlabeled research articles in social sci-
ence fields. In this paper, randomly selected 300
(150:1;150:0) labeled and 2,170 unlabeled samples
are treated as the training dataset. The remaining 99
(51:1;48:0) labeled research articles are considered
as the testing dataset. More details about the RRP
dataset are shown in Appendix A.2. PDFMiner
(Shinyama, 2014) is used to extract the text in
the raw pdf files for both labeled and unlabeled
datasets. Therefore, the text format of labeled and
unlabeled datasets are the same.

ECHR Dataset European Convention of Human
Rights (ECHR) (Chalkidis et al., 2019) is a pub-
licly available English legal judgment prediction
dataset which contains 11,478 cases. Each case
has a list of paragraphs describing the facts. The
task is to predict whether one given case is judged
as violated or not. The ECHR dataset is split into
training, development, and testing datasets with the
number of cases of 7,100, 1,380 and 2,998. The av-
erage number of tokens for training, development,
and testing datasets are 2,421, 1,931, and 2,588,
respectively.

5.2 Implementation Details

The LSTM model we used has a bidirectional hid-
den layer, and it’s initialized with 300-dimensional
google’s pre-trained word embeddings. We fix the
embedding layer and update other parameters in
LSTM to achieve the best performance. As for
BERT model, a published BERT pre-trained model
(“bert-base-uncased”1) is utilized as the embedding
layer of LSTM model. We first use our corpus to
pre-train the BERT model and then fine-tune it in
the VCCSM classifier’s training. In each epoch,
the model is first trained on labeled data, followed
by unlabeled data. The hidden state of the [CLS]
token of the last layer is considered as the sentence
representation.

1https://huggingface.co/bert-base-uncased
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Because the average length (words) of all the
documents in the labeled and unlabeled datasets
is about 10,000, we set the the maximum length
of words in our paper to 10,000. Since VCCSM
method is sentence masking and we need to split
the text of research paper into sentences. We use
period, question mark, and semicolon to conduct
the splitting. After some statistical analysis, the av-
erage length (words) of each sentence is around 25.
For a fair comparison with word masking method,
we set the maximum length of sentences in each
document to 400. It means that we set the maxi-
mum length of words in each document to 10,000
in all models. In the experiments, for RRP dataset,
the number of labeled and unlabeled datasets are
4,00 and 2,170 research papers respectively. As for
ECHR dataset, 2,000 cases in the training dataset
are considered as the labeled and the remaining
5,100 cases as the unlabeled.

5.3 Interpretability Metrics

5.3.1 AOPC
The first interpretability metric we used is area over
the perturbation curve (AOPC) (Samek et al., 2016;
Nguyen, 2018) which is obtained by computing
the average change of prediction probability by
deleting top n important words and it can evaluate
the model interpretablity on faithness. Since our
proposed VCCSM is sentence masking method,
we calculate the average change of prediction
probability by deleting top n key sentences
in the explanations of the papers. Therefore,
AOPC used in our paper is defined as follows:

AOPC(f) =
1

T + 1

T∑
i=1

(f(xi)− f(xi\{s1, ..., sn})) ,

where f(xi\{s1, ..., sn}) is the probability for the
predicted class on the ith document in RRP when
the top n sentences on importance are removed.
Higher AOPC score is better.

5.3.2 Post-hoc Accuracy
The second interpretability metric utilized in this
paper is post-hoc accuracy metric (Chen et al.,
2018) which is computed by counting how many
testing examples’ predictions are changed by uti-
lizing only extracted top n words to classify. For
our VCCSM models, we used top n key sentences.
The formula to calculate the post-hoc accuracy in
our paper is as follows:

Accp(f, n) =
1

T

T∑
i=1

1[f({s1, ..., sn}) = f(xi)],

where T is the number of examples in the test-
ing dataset, {s1, ..., sn} are the top n sentences on
importance in the ith document. Higher post-hoc
accuracy is better.

6 Results

We tested our proposed models on two text classifi-
cation datasets (RRP along with ECHR), and the
details about prediction accuracy and interpretabil-
ity are described in this section.

6.1 Quantitative Evaluation
We evaluate the interpretability of VCCSM model
against other types of models via the AOPC (Samek
et al., 2016; Nguyen, 2018) and post-hoc accuracy
(Chen et al., 2018) metrics. We also listed the per-
formance with varying number of the unlabeled
data in Appendix A.3 and it shows that the perfor-
mance become higher with more unlabeled data.

Table 1 shows the results of VCCSM (LSTM
& BERT) and other interpretable models on the
RPP and ECHR datasets with top 500 words (word
based methods) or 20 sentences (sentence based
methods). Simialr results are obtained with vary-
ing number of sentences. For BERT’s attention
weights model, we extracted the words’ attention
weights of all heads in the last layer and average
them. As for BERT’s attention weights (sentences),
we average the words’ averaged weights in each
sentence as its sentence representation. Extractive
summarization models can also extract the key sen-
tences for each document. In this section, we used
the recent extractive summarization method (Cui
and Hu, 2021) as the baseline. We conduct the
training on arXiv + PubMed (Cohan et al., 2018)
and our labeled + unlabeled datasets (the abstract
are the summary). Training on arXiv + PubMed
aims to generalize the model and make the model
extract a more comprehensive of information in-
stead of only abstract in the research paper. We
can observe that our proposed models perform bet-
ter than other methods in both interpretability and
prediction performance on both RRP and ECHR
datasets.

Ablation Study In order to validate different
modules in our proposed VCCSM method, we con-
duct the ablation study on the RRP dataset as shown
in Table 2. We observe the drop after removing
contextual masking or consistency training (on the
unlabeled data) which shows that each component
benefit to the model. It is noting that we observe a
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RRP ECHR
Methods Acc AOPC Post-hoc Acc AOPC Post-hoc

LSTM Word Masking (Chen and Ji, 2020) 60.61% 11.16% 50.51% 84.86% 10.32% 65.84%
BERT’s Attention Weights (words) 64.65% 11.70% 60.61% 84.26% 15.06% 73.75%

BERT Word Masking (Chen and Ji, 2020) 65.66% 12.05% 61.62% 85.06% 16.30% 76.38%
SOTA Extractive Summarization (Cui and Hu, 2021) 65.66% 12.86% 57.58% 85.39% 19.57% 75.52%

BERT’s Attention Weights (sentences) 65.66% 13.62% 62.63% 85.39% 22.61% 81.49%
LSTM Sentence Masking + Contextual + Consistency 65.66% 22.19% 63.64% 86.06% 30.53% 84.22%
BERT Sentence Masking + Contextual + Consistency 68.69% 24.02% 65.66% 87.66% 32.78% 86.59%

Table 1: Comparison between VCCSM and other methods on testing accuracy, area over the perturbation curve
(AOPC), and post-hoc accuracy on RRP and ECHR datasets.

Model Methods Accuracy AOPC Post-hoc
Proposed LSTM VCCSM 65.66% 22.19% 63.64%

LSTM w/o consistency training 62.63% 14.29% 60.61%
w/o contextual masking 63.64% 19.10% 62.63%

Proposed BERT VCCSM 68.69% 24.02% 65.66%
BERT w/o consistency training 65.66% 16.38% 62.63%

w/o contextual masking 66.67% 21.16% 64.65%

Table 2: Ablation study of proposed VCCSM (LSTM & BERT Sentence Masking + Contextual + Consistency) on
testing accuracy, area over the perturbation curve (AOPC), and post-hoc accuracy on RRP dataset.

examples conditions. This difference was in the predicted direc-
tion, and it was also predicted to be small, so a nonsignificant
result is not surprising.

To investigate the second question, we tested a series of specific
predictions from our model (discussed below), about how gener-
alizations given three examples at a certain level of specificity
should differ from each other. A set of planned comparisons
addressed this question by comparing the percentages of response
at each level. Given three examples from the same subordinate-
level category, the model predicts a sharp drop between
subordinate-level generalization and basic-level generalization
(95% vs. 16%, p � .0001). Given three examples from the same
basic-level category, the model predicts a sharp drop between
basic-level generalization and superordinate-level generalization
(91% vs. 4%, p � .0001). Given three examples from the same
superordinate category, the model predicts that generalization
should include all exemplars from that superordinate category
(94%, 91%, and 87%, ns).

The similarity data are analyzed later in the article, when we
describe the fits of our Bayesian learning model. The similarities
will be used to construct the model’s hypothesis space.
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BERT VCCSM

Figure 3: Highlighted explanations (words or sentences) of BERT word masking, attention weights (sentences),
SOTA extractive summarization, and BERT VCCSM methods for a paragraph in one replicable research paper
“Word Learning as Bayesian Inference” in Psychological Review.

larger drop on both accuracy and two interpreatabil-
ity metrics without the consistency training on the
unlabeled data which demonstrates that consistency
training contributes more to the model.

6.2 Qualitative Evaluation

In this section, we conduct the qualitative eval-
uations and compare the explanations of differ-
ent models intuitively by highlighting the words
or sentences. Specifically, we draw on the Open
Science pratices (e.g., mentioning how to access
the data) as indicators of high reproducibility, be-
cause these practices are proposed as solutions to
the reproducibility crisis in the science commu-
nity (Simonsohn et al., 2015; Foster and Deardorff,
2017; Brodeur et al., 2020; Dienlin et al., 2021;
Markowitz et al., 2021). Some of those indicators
which are easier to check are listed as below: (1)
Publish materials, data, and code; (2) Preregister

studies and submit the reports; (3) Conduct the
replications by themselves; (4) Collaborate with
others; (5) P-value2 is close to 0.5.

We conduct the case studies on the testing
dataset and find that our proposed methods can
highlight more sentences which are related to
the indicators mentioned above. A case study
is shown in Figure 3. More specifically, Fig-
ure 3 shows highlighted explanations (words or
sentences) of BERT word masking, attention
weights (sentences), SOTA extractive summariza-
tion, and BERT VCCSM methods for a paragraph
in one replicable research paper “Word Learning
as Bayesian Inference” (Xu and Tenenbaum, 2007)
in Psychological Review. In this case study, we
extracted top 200 sentences or 5,000 words (only

2Probability of obtaining test results at least as extreme as
the results actually observed, under the assumption that the
null hypothesis is correct.
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for BERT word masking method) but only show
one paragraph highlighted results. Although all
the methods provide the correct prediction, our
VCCSM highlights the sentences which are related
to the indicators described above. It is noting that
the highlight words of BERT word masking is not
so readable for the long research paper. Attention
weights (sentences) and SOTA extractive summa-
rization methods can provide informational sen-
tences but the highlighted sentence are not related
to the indicators described above. BERT VCSSM
can highlight p-value sentences which are related
to the indicators mentioned above.

6.3 Discussion on Plausibility of Predicting
Research Replicability using Text

By looking into RRP’s labeled dataset and conduct-
ing the cases studies carefully such as in Figure 3,
we discuss on whether classifying results in a re-
search paper as replicable using text is actually suf-
ficient to replicate the results, which is the central
premise this paper is based on. Non-replicability
of scientific studies largely results from unscien-
tific, unethical research practices (e.g., p-hacking,
selective reporting, data manipulation). Such prac-
tices can be manifested in the texts of research
papers such as the reports of p-values, experimen-
tal procedures, etc. Generally speaking, the more
problematic practices a research paper involves,
the less likely its findings are valid, and the less
likely it will be reproduced. Hence, by modeling
the replicability of research paper with regard to its
textual components that are potentially linked with
the problematic practices, we can classify whether
a research paper can be replicated and identify the
focal sentences relevant to the prediction.

7 Concluding Remarks

In this paper, we proposed VCCSM to improve
both interpretability and prediction accuracy on
RRP along with ECHR datasets, using largely un-
labeled datasets. We tested VCCSM with two dif-
ferent neural text classifiers (LSTM and BERT)
and evaluated both prediction accuracy and inter-
pretability metrics. As future work, we plan to
explore other advanced interpretable models and
weakly supervised methods to further improve the
prediction performance and interpretability of long
document classification tasks.
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8 Broader Impacts

Our paper proposed VCCSM method to build an in-
terpretable model for long document datasets such
as RRP and ECHR. Our model can provide the ex-
planations about why a research paper is predicted
as replicable or non-replicalbe and why a case is
judged as violated or not so that the prediction re-
sults obtained by neural text classifier are more
reliable and trustworthy. However, sometimes, our
proposed methods can be misused. For example,
people may try to adversarially write the new text
in a research paper to fool the research replication
prediction tool when they can obtain the explana-
tions by using our interpretable models. Therefore,
the proposed methods in this paper should be used
with careful consideration of its potential misusing
when deployed in the real-world.
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A Appendix

A.1 Detailed Derivation of Lower Bound for
Variational Contextual Sentence Masking
in Section 4.2

In this section, we provided the complete details
on the derivation of lower bound for variational
contextual sentence masking in Section 4.2.

Assuming that the true joint distribution is
P (X,Y, Z) and X,Y, Z are random variables
which have the following conditional dependency:
Y ↔ X ↔ Z. And x, y, z are instances of ram-
dom variables. We can have

P (X,Y, Z) = P (Z|X,Y )P (Y |X)P (X)

= P (Z|X)P (Y |X)P (X). (8)
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According to the definition of I(Z;Y ), we have

I(Z;Y ) =
∑
z,y

PZ,Y (z, y) log
PZ,Y (z, y)

PZ(z)PY (y)

=
∑
z,y

PZ,Y (z, y) log
PY |Z(y|z)
PY (y)

. (9)

And we also have

PY |Z(y|z) =
∑
x

PX,Y |Z(x, y|z)

=
∑
x

PY |X(y|x)PX|Z(x|z)

=
∑
x

PY |X(y|x)PZ|X(z|x)PX(x)

PZ(z)
.

(10)

Since P (Y |Z) can be intractable, Q(Y |Z) is con-
sidered as a variational approximation to P (Y |Z).
Q(Y |Z) is our decoder and a neural network.
Because the Kullback Leibler divergence is non-
negative, we have

KL[P (Y |Z)||Q(Y |Z)] ≥ 0

⇒
∑
y

p(y|z) log p(y|z) ≥
∑
y

p(y|z) log q(y|z).

(11)

Therefore, we can obtain the lower bound of
I(Z;Y ) as follows:

I(Z;Y ) ≥
∑
z,y

PZ,Y (z, y) log
QY,Z(y|z)
PY (y)

=
∑
z,y

PZ,Y (z, y) logQY |Z(y|z) +H(Y ).

(12)

where H(Y ) = −
∑

y PY (y) logPY (y) is entropy.
According to Equation 8, we have

P (Y |Z) =
∑
x

PX,Y,Z(x, y, z)

=
∑
x

PX,Y,Z(x, y, z)

=
∑
x

PX(x)PY |X(y|x)PZ|X(z|x).

(13)

Hence, we obtain the lower bound of I(Z, Y ) as
follows:∑
x,y,z

PX(x)PY |X(y|x)PZ|X(z|x) logQY |Z(y|z).

As for I(Z;X), similar to Equation 9 in the deriva-
tion of I(Z;Y ), we first obtain

I(Z;X) =
∑
z,x

PZ,X(z, x) log
PZ|X(z|x)
PZ(z)

=
∑
z,x

PZ,X(z, x) logPZ|X(z|x)

−
∑
z

PZ(z) logPZ(z). (14)

Because the marginal distribtuion of Z, P (Z) =∑
x PZ|X(z|x)PX(x) in which the computa-

tion might be difficult, we replace P (Z) by
a variational approximation of Q(Z). Since
KL[P (Z)||Q(Z)] ≥ 0 ⇒

∑
z PZ(z) logPZ(z) ≥∑

z PZ(z) logQZ(z), we can get the upper bound
of I(Z;X) as follows:

I(Z;X) ≤
∑
z,x

PZ,X(z, x) logPZ|X(z|x)

−
∑
z,x

PZ,X(z, x) logQZ(z)

≤
∑
z,x

PX(x)PZ|X(z|x) log
PZ|X(z|x)
QZ(z)

.

(15)

Combining Equation 12 and 15, we can get the
lower bound of I(Z;Y )− βI(Z;X) as follows:∑
x,y,z

PX(x)PY |X(y|x)PZ|X(z|x) logQY |X(y|z)

− β
∑
z,x

PX(x)PZ|X(z|x) log
PZ|X(z|x)
QZ(z)

.

A.2 Details of RRP Dataset

In the RRP dataset proposed by Luo et al. (2020),
the labeled datset are collected from eight re-
search replication projects which are the Registered
Replication Report (RRR) (Simons et al., 2014),
Many Labs 1 (Klein et al., 2014), Many Labs 2
(Klein et al., 2018), Many Labs 3 (Ebersole et al.,
2016), Social Sciences Replication Project (SSRP)
(Camerer et al., 2018), PsychFileDrawer (Pashler
et al., 2019), Experimental Economics Replication
Project (Camerer et al., 2016), and Reproducibility
Project: Psychology (RPP) (Collaboration, 2012).
Among 399 labeled data in the RRP dataset, 201
are labeled as ‘1’ (replicable) and the remain 198
are annotated as ‘0’ (non-replicable). We observe
that the labeled data in the RRP dataset is balanced.
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(a) LSTM Sentence Masking + Contextual + Consistency (b) BERT Sentence Masking + Contextual + Consistency

Figure 4: Testing accuracy (%) on RRP dataset with varying number of unlabeled dataset for VCCSM applied on two neural
text classifiers (LSTM and BERT)

In addition, RRP dataset also contains 2,170 re-
search articles as the unlabeled dataset. Luo et al.
(2020) observed that most papers in the labeled
dataset in the RRP dataset are economical and psy-
chology related. Among those papers, they are
mainly from American Economic Review and Psy-
chological Science journals. Therefore, a python
crawler is written by Luo et al. (2020) to get 2,170
published research articles on the American Eco-
nomic Review (Jan 2011 - Dec 2014) and Psycho-
logical Science websites (Jan 2006 - Dec 2012).
The number of articles crawled from American
Economic Review and Psychological Science web-
sites are 981 and 1,189 respectively.

A.3 Performance with Varying Number of
Unlabeled Data

We conducted the experiments to test our model’s
effectiveness by varying number of unlabeled data
for VCCSM applied on two neural text classifiers
(LSTM and BERT). From Figure 4, we can observe
that, with more unlabeled data, the testing accu-
racy become higher on both LSTM Sentence Mask-
ing + Contextual + Consistency and BERT Sen-
tence Masking + Contextual + Consistency models,
which validates the effectiveness of using unlabeled
data.
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