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Abstract

Character-based neural machine translation
models have become the reference models for
cognate prediction, a historical linguistics task.
So far, all linguistic interpretations about la-
tent information captured by such models have
been based on external analysis (accuracy, raw
results, errors). In this paper, we investigate
what probing can tell us about both models and
previous interpretations, and learn that though
our models store linguistic and diachronic in-
formation, they do not achieve it in previously
assumed ways.

1 Introduction

In historical linguistics, cognates are words that
share a common etymological origin in a common
parent language. Galician, Portuguese and Spanish
gato, Catalan and Occitan gat, Italian gatto, French
chat and Aromanian cãtushi, all meaning ‘cat’, as
well as Romanian cătus, ă ‘manacle’,1 are cognates,
as they all descend from the same word cattus ‘cat’
in their mutual parent language, Latin. The parent
word form cattus is called the proto-form. Com-
paring the phonetic form of sets of cognates allows
to identify patterns: in our example, initial [g] in
Galician to Italian corresponds to [S] in French and
[k] in Romanian and Aromanian. If said pattern
is attested in more cognate sets, it is then consid-
ered to be a sound correspondence pattern, which
emerge in related languages from the application of
minimal, regular and exceptionless sound changes
rules to the ancestral proto-forms.2 Such sound
correspondence patterns then help finding new cog-
nates.

1In Aromanian and Romanian, the words also underwent
diminutive suffixes (-ushi and -us, ă) additions to the now lost
cognate root.

2These sound changes are assumed to be regular and with-
out exception since (Osthoff and Brugmann, 1878), who stated
that ‘Every sound change [...] takes place according to laws
that admit no exception’.

The cognate prediction task aims at predicting,
from a phonetised word, the plausible phonetic
form of its cognate in a related language, according
to known sound correspondence patterns; this has
many applications, from identifying new words
with field linguists (Bodt et al., 2018; Bodt and
List, 2019) to inducing translation lexicons for low-
resourced languages (Mann and Yarowsky, 2001).3

This task has been modelled as a sequence to
sequence character level machine translation task
in the most recent papers studying it (see the sur-
vey on cognate prediction in Dekker and Zuidema
(2021)), which drew linguistic conclusions on the
latent information learnt by such models by study-
ing their outputs in a ‘black-box’ fashion. However,
no paper that we know of tried to confirm or inform
these conclusions by using modern interpretability
tools, such as probing tasks, hidden representation
analysis, or inner components analysis.

In this paper, we therefore investigate whether
the linguistic conclusions previously reached 1)
can be reproduced, 2) hold under the scrutiny of
modern interpretability techniques, and 3) can be
extended. We first train several neural cognate pre-
diction models,4 and analyse their outputs as such.
Then, we focus on applying modern interpretability
techniques, and compare the insights they provide
with prior hypotheses.

2 Related Works

2.1 Automatic Cognate Prediction

Automatic cognate prediction has been studied us-
ing character-level machine translation techniques
(Beinborn et al., 2013; Wu and Yarowsky, 2018;
Dekker, 2018; Hämäläinen and Rueter, 2019; Four-

3Inferring the plausible shape of the related proto-form
from its children (proto-form reconstruction) can be seen as a
sub-task of cognate prediction.

4Training can be replicated using data provided with the
paper, and code at github.com/clefourrier/CopperMT. We can
provide all our trained models on request (>10GB).
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Figure 1: Relations between studied languages and their families.

rier and Sagot, 2020a). Dekker and Zuidema (2021)
provide an overview of the different neural ap-
proaches used to solve this task (including their
own), as well as its applications to other historical
linguistic tasks (such as phylogeny reconstruction).
However, the current paper follows specifically the
tracks of two previous works studying encoder-
decoder models for Romance cognate prediction.

Fourrier et al. (2021) study which NMT archi-
tecture fits the cognate prediction task best, com-
paring different methods and data augmentation
techniques. They conclude that best results are ob-
tained with multilingual RNN encoder-decoders
with attention, a setup we shall follow. Meloni et al.
(2021) train an encoder-decoder on the prediction
of Latin proto-forms from modern Romance cog-
nates sets. They then settle to explain the results
linguistically in a ‘black-box’ fashion; we shall
probe their conclusions.

2.2 Neural Models Interpretability

NLP interpretability is a recent field, with the
first workshop dedicated to the topic occurring
in 2018 (BlackBoxNLP, colocated with EMNLP
2018). Madsen et al. (2021) provide a review of
post hoc interpretability techniques (focused on a
posteriori model interpretation), which they divide
along the level of abstraction (from local to global
explanations). Among all the works they mention,
we focus on two. Belinkov et al. (2020) develop
toolkits for global interpretability in their tutorial:
probing tasks and model components interaction
and visualisation. Conneau et al. (2018) focus on
probing tasks for sequence to sequence models, to
investigate different aspects of language captured
by the model. In this paper, we therefore focus on
global post hoc interpretability techniques, such
as visualisation and probing tasks, to linguistically
interpret our models.

3 Paper Objective

3.1 Reference Task: Cognate Prediction

Training Objective The task we are optimising
for is cognate prediction, i.e. generating, from a
phonetised word, the plausible phonetic forms of its
cognates in related languages. This is a sequence
to sequence translation problem, going from a se-
quence of phones to a sequence of phones. To
evaluate such ‘translations,’ we use Post (2018)
implementation of BLEU (Papineni et al., 2002),
which does not suffer for cognate prediction from
the same drawbacks as for NMT (Fourrier et al.,
2021).

Reference Architectures Best performing mod-
els for the task are NMT encoder-decoder models
(Fourrier et al., 2021). They are composed of one or
several encoder components, encoding the source
word into a hidden representation, and of one or
several decoder components, each playing the role
of a ‘conditional language model’ (Conneau et al.,
2018) that generates the output, in our case the
target phonetic form of the word.

Languages Choice Sound correspondences and
sound change rules are identified by looking at mul-
tilingual sets of cognates. If we want our neural
models to latently capture such linguistic informa-
tion, we need our data to be as multilingual as
possible in a given language family.

We select 9 related Romance languages for
which enough cognate data is available: Galician
(GL), Portuguese (PT), Spanish (ES), Catalan (CA),
Occitan (OC), Italian (IT), French (FR), Romanian
(RO) and Aromanian (RUP).

The Romance family divided early in two
branches (Fig. 1): the Eastern Romance branch
(RO, RUP), and the Italo-Western branch (all oth-
ers). They therefore constitute the two oldest lan-
guage clusters in our data. However, through ex-
ternal influences on their phonology, French (Ger-
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manic influences) and the Eastern Romance branch
(Slavic influences) tend to diverge from the other
Romance languages studied. At the opposite end in
the spectrum in terms of language closeness, Por-
tuguese and Galician belong to their own language
sub-branch, the Galician-Portuguese branch, as
do Catalan and Occitan in the Occitano-Romance
branch.

3.2 Steps of Analysis

We will first analyse our models and try to under-
stand what they learned based only on their raw
scores and prediction errors, as was done by Four-
rier et al. (2021) and Meloni et al. (2021), to see
the amount of linguistic information we can extract
as such.

Then, we will probe the models, in order to com-
pare the insights we got from a ‘black box’ analysis
to insights obtained when probing specifically for
linguistic or historical information. We therefore
design the following probing tasks.

3.2.1 Synchronic Probes

Cognates are representative of their language pho-
netics, and we want to study whether the models
learn deeper linguistic information while training
on them.

Phonotactics To study whether our models learn
phonotactics (the allowed arrangement of sounds
and sound patterns in a language),5,6 we adapt the
bigram shift probing task (Conneau et al., 2018) to
test whether encoders are sensitive to legal phone
orders. A binary classifier is trained to distinguish
between hidden representations of normal words
and words whose phones have been inverted.

Phonology To study whether our models learn
phonologically meaningful representations, we
study our high-dimensionality hidden representa-
tion for each item of our vocabulary, as suggested
in Madsen et al. (2021). We reduce the dimension-
ality of our encoded representations using PCA
(Pearson, 1901) and t-SNE (der Maaten and Hin-
ton, 2008) and look at the emerging underlying
organisation of the phonetic space, as was done in
Jacobs and Mailhot (2019) and Shibata et al. (2020)
for, respectively, seq2seq phonetic and LSTM syn-
tactic representations analysis.

5e.g. In Spanish, a word can start with [est] but not [st].
6Phonotactics, in a sense, is the ‘syntax’ of phonology.

3.2.2 Diachronic Probes

Cognates carry the historical information of the
evolution of their respective languages. We want
to see how much of this information was explicitly
learned by the model.

Sound Correspondences and Contextualised
Changes Cognates are usually identified by
sound correspondence sets, which they also help
define (see Sec. 1). Meloni et al. (2021) provide
sample sets containing minimal examples of sound
correspondences, as artificial subwords in some Ro-
mance languages and the associated Latin parent.
To see if our models learn these sound correspon-
dences, we study if they can reconstitute these sets.

Proto-form Reconstruction Cognates descend
from a common ancestor word, their proto-form.
When a multilingual neural model learns map-
pings between cognates in related languages, the
shared joint intermediate representation tends to-
wards their common denominator.7 A plausible
candidate would be a mapping of a common ances-
tor space, as proto-form have the overall smallest
distance to all their children. To study whether
the model contains historical information about the
proto-forms, we design a probing task where we
train a decoder to predict a Latin word from the
fixed encoded representation of its children Ro-
mance cognates.

4 Detailed Experimental Setup

4.1 Data

Extraction and Pre-processing Monolingual8

and bilingual9 cognate lexicons are extracted from
EtymDB2 (Fourrier and Sagot, 2020b), an etymo-
logical database, using the scripts provided. All
data is then phonetised using espeak (Dudding-
ton, 2007-2015), with relevant phonetizers for CA,
ES, IT, FR, PT, RO, and approximating the phone-
tization of OC as CA, RUP as RO, and GL as PT.10

We segment the data at the character level then
split it 85/7.5/7.5% for the train/dev/test sets (see

7As each encoder must store information for all decoders,
and each decoder read information from any encoder, the
multilingual intermediate representation converges.

8Our monolingual cognate lexicons contain words that
descend directly from our languages’ common ancestors and
are likely to belong to cognacy relations.

9Bilingual cognate lexicons contain attested cognate pairs.
10These approximations should hold for our study, as these

languages have the most linguistic features in common.
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App. A.1.2). The split is repeated 3 times with
different shufflings for statistical significance.

Description There is considerable variability in
the number of word pairs between our bilingual
datasets (see Appendix, Table 5): OC→RUP (two
of our least resourced languages) contains 81 pairs,
whereas PO→ES contains 1930 pairs. Monolin-
gual datasets vary from 553 words for OC to 6005
words for IT, with CA, ES, FR, IT, and PT sets
containing more than 2000 words, and GL, OC,
RO and RUP less than 1500.11 The total number of
phones per pair varies accordingly; the number of
unique phones per language pair stands between 32
and 56, depending on the number of shared phones
between languages. Average word length varies
between 5.3 and 8.3 phones.

4.2 Models

Name #source #target With
mono Sharing

SMT 1 1 No -
Bi-NMT 1 1 No None
Bi-NMT+m 1 1 Yes None
M-NMT 9 (all) 9 (all) No None
M-NMT+m 9 (all) 9 (all) Yes None

+shared_emb 9 (all) 9 (all) Yes Embeddings
+shared_all 9 (all) 9 (all) Yes All

Table 1: Model type setups

The summary of all our encoder-decoder models
is developed in Table 1. Our baselines are SMT
models trained for each language direction (SMT),
more adapted to very low-resource setups. We
train bilingual NMT models, without (Bi-NMT) or
with (Bi-NMT+m) added monolingual data,12 and
multilingual models without (M-NMT) or with
(M-NMT+m) monolingual data, using one en-
coder and one decoder per language. We also
study the impact of sharing components in our
likely best setup (in terms of data size seen by
the model: M-NMT+m), and either share embed-
dings layers (M-NMT+m+shared_emb) or share
full encoders and decoders across all languages
(M-NMT+m+shared_all). Training details can be
found in Appendix A.2.

11We use monolingual data to reinforce the decoders lan-
guage modelling capabilities, see next section. We expect that
such a variation in size will impact learning.

12Bi-NMT+m models train on a single language pair, aug-
mented with the monolingual target data, provided to the de-
coder through its own encoder; they allows the target decoder
to see as much target data as possible, to reinforce it language
modelling capacities.

Figure 2: Percentage of language pairs for which a given
model (left) outperforms an other (bottom).13

5 Blackbox Analysis

5.1 Raw BLEU Results
The full BLEU score tables of all our models on all
our language pairs are in Appendix A.5.

5.1.1 Best Setup Choice
We synthesise the respective performance of our
models in Fig. 2, comparing their BLEU scores.
This heatmap indicates the percentage of language
pairs for which a model (left) is better than another
model (bottom). Both Bi-NMT models perform
worse than the SMT baseline (with and without
monolingual data). Multilinguality improves the
performance, as the M-NMT model outperforms
the baseline in 58% of cases. However, the best
results are obtained when the models see the most
data; the different M-NMT+m models outperform
all other models for 80% of language pairs mini-
mum. Another slight increase is obtained by shar-
ing embeddings, as the M-NMT+m+shared_emb
outperforms the M-NMT+m model in 58% of cases.
We will therefore focus on the M-NMT+m and M-
NMT+m+shared_emb models, our two best setups.

5.1.2 Impact of Parameters
To study performance on all language pairs sepa-
rately, we generate the heatmap of average BLEU
scores (Fig. 3) from all sources (y-axis) to all tar-
gets (x-axis) for our two best architectures and
the baseline, with high/low scores in red/blue, and
big/small datasets indicated by +/− respectively.
Our models and baseline behave similarly, with

13Sums not equal to 100% indicate that the models have the
same performance on some language pairs (ex: Bi-NMT and
Bi-NMT+m).
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Figure 3: Heatmap of the BLEU scores for our models
of interest.
Languages: source in y, target in x. Data size: + indi-
cates more than 1000 word pairs, − less than 300.

overall good BLEU scores, which seem to be
slightly correlated with data size, except for some
outliers. Firstly, predicting RO and RUP from/to
all other languages has a considerably lower BLEU
than all other pairs, except for RO–RUP itself:
predicting between languages from too dissimilar
language branches (Eastern-Romance and Italo-
Western Romance), unsurprisingly, seems harder
than translating within either of those branches.
Secondly, GL↔PT and OC↔CA have higher
BLEU than we could expect based on data size
only.14 In all setups, it therefore appears to be
easier to predict cognates for closely related lan-
guages.15

5.2 Predictions Analysis

We compare the predictions and errors made by
the models in three cases: the language pair is
highly resourced and gets a good BLEU score (ES-
PT), the language pair has average resources but
contains close languages and gets a good BLEU

14It is important to note that this could also be linked to
similarities introduced by our phonetisation method, as we
used the Catalan phonetizer for Occitan and the Portuguese
phonetizer for Galician.

15We can also observe than the diagonal - predicting from
a language to itself - has lower score for M-NMT: using multi-
lingual models tends to lower the accuracy when going from
one language to itself, most likely because the "conditional
language modeling" decoder for a given language is perturbed
by noise introduced in the intermediate representation space
when learning on other input languages.

score (PT-GL), the language pair has almost no
resource and gets a bad BLEU (RO-FR).

We use the Needleman and Wunsch (1970) dy-
namic programming algorithm, modified by Go-
toh (1982)16 to compute the pairwise alignment
between predictions and gold targets in 1 or 2-
grams.17 We can then better see which predicted
phones match the gold or not, and why.18

5.2.1 General Observations
When looking at the phone level model predictions,
we observe that they can be: (1) correct (equal to
gold); (2) phonetically close to the gold (ex: [B],
a voiced bilabial fricative, instead of [b], a voiced
bilabial plosive); (3) either a known sound corre-
spondence, incorrect in the current example but
attested in others (ex: [v], a voiced labiodental
fricative, instead of [b], a voiced bilabial plosive)
or a wrong prediction (ex: [a], a vowel, instead of
[b], a consonant) (Table 2). In 2-gram, this clas-
sification becomes (1) correct (identical 2-grams);
(2) close (identical/close phone and close phone);
(3) the rest, which can then be divided in (a) ‘one
correct/close and one wrong’, or (b) ‘two wrong’
phones, other patterns almost not occurring.

For our high-resource pair (ES→PT), our mod-
els perform similarly to the baseline: they are cor-
rect in 90% of cases, and more often close than
wrong the rest of the time.

We observe two different behaviours for our
comparatively less-resourced pairs. For the pair
with close languages (PT→GL), multilinguality de-
creases performance (by 2 to 5 points) with respect
to the baseline. For our extremely low-resourced
and sparsely related pair (RO→FR), however, the
multilingual models outperform the SMT baseline
for the first time (by 9 to 15 points), likely thanks
to data augmentation provided by multilinguality.
Sharing embeddings seems to have a significant im-
pact only when the languages are far away and the
data quantity low, as it inverts the ratio of close to
wrong results from 1:3 to 3:2, seemingly increasing
the model language modelling capability.

5.2.2 Error Patterns
Errors can be separated between those which occur
only once, and tend to be nonsensical, and those

16We use the BioPython (Cock et al., 2009) implementation.
17Using 3-grams alignments provided no further insights.
18To remove noise which might be caused by incorrect

alignments, we only keep correspondences occurring more
than once, and in 2-grams, we discard the pairs which con-
tained a blank inserted during the alignment process.
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Pair ES→PT PT→GL RO→FR

Prediction Correct Close Wrong Correct Close Wrong Correct Close Wrong

SMT 90.9% 5.3% 3.8% 95.5% 2.4% 2.1% 62.7% 12.7% 24.5%
1-gram: M-NMT+m 89.1% 5.5% 5.4% 93.6% 3.4% 3.1% 71.6% 8.8% 19.6%

+shared_emb 90.7% 5.1% 4.3% 92.4% 3.9% 3.7% 73.8% 14.6% 11.7%

SMT 83.4% 9.7% 6.9% 93.2% 4.1% 2.6% 49.1% 14.0% 36.8%
2-gram: M-NMT+m 81.5% 9.8% 8.6% 89.3% 6.2% 4.5% 64.4% 8.5% 27.1%

+shared_emb 83.3% 9.6% 7.1% 88.0% 6.8% 5.2% 58.6% 24.1% 17.2%

Table 2: Prediction types frequency for 1 and 2 grams, for three language pairs: ES→PT (good BLEU, big data
size), PT→GL (good BLEU, average data size, close languages), RO→FR (bad BLEU, small data size).

with a higher apparition frequency, which tend to
be plausible and similar between neural models and
baseline. We only analyse frequent errors in the
following section, therefore not studying RO→FR,
whose errors tend to occur only once and be nonsen-
sical (likely the result of the difficulty of learning
on so little data).

Wrong phones in 1-gram or 2-gram case (a) cor-
respond to high-mid vocalic alternations patterns,
([O]/[u], [E]/[1]-[i]), exchange of consonants linked
by a sound correspondence ([v]/[b]), or less fre-
quently, in 2-gram only, to a [k]/[Z] or [w]/[l] con-
fusion.19 2-gram case (b) correspond to metathesis
(phone inversions, ex: [IN]/[n1] or [eR]/[ô1]) 30% of
the time, the rest being nonsensical errors.

These results seem to confirm the observations
made by Meloni et al. (2021) that most errors made
by the models are not arbitrary but tend to correlate
with historical linguistic phenomenon.

5.3 Conclusion

Analysing our models using standard error analysis
methods allow us to conclude that (1) multilingual-
ity helps considerably to predict cognates, which
might reflect information transfer or sharing in the
models, and (2) errors made by the models sug-
gest that they learn (a) phonetic similarity and (b)
linguistic phenomena.

6 Synchronic Probing

Using previously defined probes, we study whether
our models learn synchronic linguistic information.

6.1 Phonotactics

Probe Training We trained MLP classifiers to
detect whether encoded words contain a switched
bigram of phones or not. For a given language, the

19SMT also produce a segment voicing change between
[Nv] and [mb].

encoder used is either randomly initialised or com-
ing from our multilingual models. This experiment
is reproduced for all data shuffles and all languages.
No matter the setup, the classifier performance is
systematically around 50%, no better than random.

Fine-tuning We decide to try fine-tuning our
multilingual models on the classification of bigram
switches, to see if this is information our models
can learn to distinguish. We use the same setup as
for the probing tasks, except that the encoders are
now fine-tuned along the classifier training. The
results are again no better than random.

Conclusion When learning to predict cognates,
the encoder does not spontaneously encode phono-
tactics information, nor does it learn to encode it
when fine-tuned specifically on that. This is inter-
esting, because sound correspondences relations
between cognates are partly linked to phonotac-
tics. If the model does not learn this information
explicitly, it has to learn something else instead.

6.2 Vocabulary Information

We study learned phone proximity by using dimen-
sion reductions techniques (PCA, t-SNE) on the
encoders’ hidden representation. We present here
3-dimensional PCA for the vowels’ representations
(Fig. 4), but observations we make also hold true
for consonants (see Appendix A.4).

Language Relatedness Along one dimension,
the space seems to be organised through a linguistic
continuum (with vowels in French together, then
the rest of the Gallo-Romance branch, then the
Eastern-Romance branch, then the Ibero-Romance
branch).20 However, this continuum is not constant
across data shufflings; depending on the data seed,
the model places different languages close to one

20Clustering phones on their respective languages is the
main feature we observe when using t-SNE.
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Figure 4: Vowels PCA, seed 0. Left: coloured on language. Right: coloured on pole of the vocalic triangle

another in the intermediate representation—models
learn a language separation of the space, but not
constant language relationships.

Phonetic Organisation Along the other two di-
mensions appears a pattern of phonetic organisa-
tion seemingly similar to the vocalic diagram,21

which proves stable across all our runs. All our
NMT models, no matter the data shuffling trained
on, seem to have the three phonetic vocalic poles in
their PCA (‘u/o’, ‘i/e’, and ‘a’), more or less some
outliers. These outliers fall in two categories: rare
French phones (e.g. nasal vowels, which do not
exist in the other Romance languages, and there-
fore are harder to place), or, interestingly, phones
actually clustered with the most similar pole ortho-
graphically and not phonetically. For example, O is
linked to ‘u/o’ instead of ‘a’ (and both [O] and [o]
sounds usually come from the letter o), E to ‘i/e’ in-
stead of ‘a’ ([E] and [e] from e). The models appear
to have learned to encode similarly phones occur-
ring in similar contexts, and not phones that are
actually phonetically similar.22 We can therefore
say that, though the models seem to have learned a
‘phonologically meaningful taxonomy of phonemes
without explicit supervision’ (Meloni et al., 2021),
a faithful and not just plausible interpretation (Ja-
covi and Goldberg, 2020) is that they have actually
learned something akin to a ‘phonetic language
model’. However, since sound changes occur reg-

21The vocalic diagram is obtained when organising vowels
along their production height and tongue advancement.

22However, phones occurring in similar contexts in our
cognates usually come from the same original sounds, and
therefore tend to be phonetically similar.

ularly, phones in similar contexts in related lan-
guages will tend to have evolved from a common
ancestor phone: closer intermediate representations
belonging to contextually similar phones tends to
confirm a form of historical mapping.

7 Diachronic Probing

7.1 Do the Models Learn Phone
Correspondences?

Spanish to IT PT FR RO Avg.

SMT 76 73 64 73 71
M-NMT+m 67 61 52 61 60

+shared_emb 61 61 58 64 61

Italian to ES PT FR RO Avg.

SMT 88 64 73 76 75
M-NMT+m 61 70 27 58 54

+shared_emb 70 61 52 55 59

Portuguese to ES IT FR RO Avg.

SMT 88 82 67 76 78
M-NMT+m 76 76 76 70 74

+shared_emb 73 67 55 67 65

French to ES IT PT RO Avg.

SMT 61 67 36 64 57
M-NMT+m 70 70 76 61 69

+shared_emb 73 64 76 48 65

Romanian to ES IT PT FR Avg.

SMT 72 62 59 62 64
M-NMT+m 56 69 66 34 56

+shared_emb 53 69 62 41 56

Table 3: % of cases where our models predicted the
good artificial correspondence among the 5-best predic-
tions (for the Meloni et al. (2021) sets). Best in bold.
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Meloni et al. (2021) provide sets of mini-
mal phonemes test sequences representing known
sound correspondences in RO, FR, IT, ES and PT,
to evaluate their models’ generalisation. For ex-
ample, the minimal set for sound changes linked
to word initial Latin /pl/ is, for an artificial Latin
origin [pla]: RO [pla], FR [pla], IT [pja], ES [La]
and PT [Sa]. We predict 5-best ‘cognates’ for the
provided artificial segments, to see if our models
can generalise sound correspondences too. The
correct results appear in 1st or 2nd position most
of the time (Table 6 in Appendix). Our neural
models reach between 54% and 74% average ac-
curacy from a given language (Table 3),23 and the
statistical baseline tends to perform better overall.
However, sound correspondences where the source
languages are the most divergent in our Romance
family (French and Romanian, see Sec. 3.1) are
better captured with the neural models by 3 to 40
points (for language pairs with enough data, such
as FR→ES, IT, PT, or RO→IT, PT). Adding shared
embeddings increases performance with our more
typical Romance languages as source and decreases
performance for the previous languages, while still
performing better than the baseline. We can there-
fore say that sound correspondences information is
captured by our models.

7.2 Do the Models Capture Diachronic
Information?

We used very small RNN decoders with attention24

as probes, and trained them to predict Latin proto-
forms from the NMT encoded hidden representa-
tions of several models. We trained our probes to
predict from M-NMT+m frozen encoders. Then,
to assess if multilinguality is helpful in capturing
latent historical information, we trained probes on
the source-to-source Bi-NMT+m frozen encoders,
which have learnt a coherent hidden representation
of the source language, but possess no extra lin-
guistic information. To make sure that our probes
are not too expressive, we trained some on an un-
trained encoder frozen after random initialisation,
as an untrained baseline (Conneau et al., 2018;
Zhang and Bowman, 2018). Too expressive net-
works can learn to fit any random noise, and have

23We did not expect our models to reach a 100% accuracy,
as the provided examples are minimal for a set, and not neces-
sarily a sound pair between languages (some sounds could also
appear in other sound correspondences), but reach nonetheless
a comparable accuracy to (Meloni et al., 2021) on their similar
proto-form prediction task.

24Embed./Hidden sizes: 10/20, Luong dot attention.

Model CA ES FR

Top baseline 32.3 ± 4.7 46.7 ± 0.6 31.7 ± 3.6
M-NMT+m 36.8 ± 1.3 38.8 ± 2.4 31.7 ± 0.9
Bi-NMT+m 28.5 ± 3.7 38.0 ± 1.9 29.9 ± 0.8
Untrained baseline 5.2 ± 0.9 3.1 ± 0.5 3.1 ± 1.0

Model GL IT OC

Top baseline 23.8 ± 4.3 50.5 ± 3.0 6.5 ± 1.0
M-NMT+m 26.8 ± 1.9 45.1 ± 0.6 9.6 ± 1.4
Bi-NMT+m 20.7 ± 2.1 44.0 ± 0.6 9.0 ± 3.1
Untrained baseline 2.8 ± 0.5 5.5 ± 1.8 1.8 ± 0.1

Model PT RO RUP

Top baseline 36.4 ± 2.9 18.2 ± 6.2 9.9 ± 1.9
M-NMT+m 35.1 ± 0.6 21.1 ± 2.5 18.1 ± 4.5
Bi-NMT+m 31.1 ± 0.9 26.2 ± 0.8 16.8 ± 0.4
Untrained baseline 4.8 ± 0.7 2.6 ± 0.9 2.5 ± 0.3

Table 4: Probe BLEU test scores for 3 seeds (20 epochs)

therefore no value as probes.25 Lastly, we com-
pare everything to the best possible setup, our top
baseline: a Bi-NMT model trained specifically on
the task of learning Latin from the current source.
On Table 4, we plotted the BLEU test scores ob-
tained at each epoch by the different setups for the
different languages. Our bottom baselines’ low
performance confirms that our probes are selective
enough to prevent rote memorisation of anything.
M-NMT+m encoders, without any fine-tuning on
the prediction of Latin, reach or surpass the perfor-
mance of models specifically trained on this task,
and are outperformed by our Bi-NMT+m encoders
only once.26 Multilinguality therefore introduces
latent linguistic information, which helps recon-
struct the proto-form better than when using bilin-
gual models only.

8 Conclusion

After training and selecting the best multilingual
machine translation models for the task of cognate
prediction, we confirmed the black-box analysis
previously made of similar models (they capture
language relatedness information and phonetic sim-
ilarity). We then probed our models and discovered
that latent linguistic information learned by the
model seemed to encode a phonetic ‘contextual
language model’ rather than explicit phonology or
phonotactics. We also discovered that our mod-

25‘As long as a representation is a lossless encoding, a
sufficiently expressive probe with enough training data can
learn any task on top of it’ (Hewitt and Liang, 2019)

26The M-NMT+m+shared_emb encoders reach half the
performance of the M-NMT+m model: sharing embeddings
seems to capture considerably less diachronic information,
possibly because the phonetic information of all languages are
mashed together.
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els learn diachronic information: they are able to
produce sound correspondences, and, even more
interestingly, they contain enough historical lin-
guistic information to allow the reconstruction of
the proto-form with no fine-tuning, performing at
least as well as models trained specifically for this
task. We can therefore conclude that synchronic
multilingual cognate prediction models learn la-
tent diachronic information, though further work is
needed to understand more precisely under which
form this information is stored.
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A Appendix

A.1 Data Presentation

A.1.1 Data size

FROM CATALAN (CA) TO CA ES FR GL IT OC PT RO RUP

#words 2612 1233 466 449 970 324 1031 235 144
#phones 16472 16171 5706 5724 12511 3486 13601 2162 1307
#unique phones 36 41 47 44 56 35 44 42 40
Avg word length 7.31 7.56 7.12 7.37 7.45 6.38 7.60 5.60 5.54

FROM SPANISH (ES) TO CA ES FR GL IT OC PT RO RUP

#words 1236 4967 693 732 1880 230 1930 463 291
#phones 16198 34176 8931 9760 25686 2534 26156 4700 2898
#unique phones 41 35 46 44 54 38 44 42 39
Avg word length 7.55 7.88 7.45 7.67 7.83 6.51 7.78 6.08 5.98

FROM FRENCH (FR) TO CA ES FR GL IT OC PT RO RUP

#words 466 694 3772 215 715 110 600 135 86
#phones 5707 8941 21225 2641 9332 1126 7665 1183 737
#unique phones 47 46 46 42 54 41 43 37 36
Avg word length 7.13 7.44 6.63 7.15 7.53 6.12 7.39 5.39 5.30

FROM GALICIAN (GL) TO CA ES FR GL IT OC PT RO RUP

#words 449 732 215 1464 558 138 882 176 106
#phones 5724 9759 2641 9509 7196 1455 11117 1703 1005
#unique phones 44 44 42 35 51 41 37 38 37
Avg word length 7.37 7.67 7.15 7.50 7.45 6.27 7.30 5.84 5.74

FROM ITALIAN (IT) TO CA ES FR GL IT OC PT RO RUP

#words 973 1885 717 558 6005 234 1557 618 378
#phones 12534 25742 9346 7190 44073 2660 21199 6834 4046
#unique phones 56 54 54 51 49 50 55 50 47
Avg word length 7.44 7.83 7.52 7.44 8.34 6.68 7.81 6.53 6.35

FROM OCCITAN (OC) TO CA ES FR GL IT OC PT RO RUP

#words 324 230 109 138 234 553 222 117 81
#phones 3486 2534 1120 1455 2659 3026 2391 1044 724
#unique phones 35 38 41 41 50 33 42 38 36
Avg word length 6.38 6.51 6.14 6.27 6.68 6.47 6.39 5.46 5.47

FROM PORTUGUESE (PT) TO CA ES FR GL IT OC PT RO RUP

#words 1031 1930 596 883 1556 223 4891 399 261
#phones 13606 26158 7624 11125 21188 2399 33046 3991 2569
#unique phones 44 44 43 37 55 42 37 39 38
Avg word length 7.60 7.78 7.40 7.30 7.81 6.38 7.76 6.00 5.92

FROM ROMANIAN (RO) TO CA ES FR GL IT OC PT RO RUP

#words 236 465 136 175 621 117 398 1088 412
#phones 2173 4715 1193 1696 6859 1044 3984 5833 4251
#unique phones 42 42 37 38 50 38 39 32 32
Avg word length 5.60 6.07 5.39 5.85 6.52 5.46 6.01 6.36 6.16

FROM AROMANIAN (RUP) TO CA ES FR GL IT OC PT RO RUP

#words 146 292 87 107 378 81 259 412 817
#phones 1327 2907 745 1015 4038 724 2551 4251 4531
#unique phones 40 39 37 37 47 36 38 32 29
Avg word length 5.54 5.98 5.29 5.74 6.34 5.47 5.92 6.16 6.55

Table 5: Detailed dataset statistics for our lexicons.

A.1.2 Data segmentation and splitting
We segmented the data at the character (not subword) level using the SentencePiece (Kudo and
Richardson, 2018) library; more precisely, we trained a character-level model per language for all models,

3796



except M-NMT+m+shared_emb and M-NMT+m+shared_all, where sharing embeddings or encoders
meant sharing the vocabulary across all languages: in this last case, we used a single segmentation model
for all languages (which tend to have similar phone distributions, apart from the rarest phones, such as
nasal vowels in French). The vocab size parameter was 100, superior to the total number of unique phones.

As this is not a common task, there is no "standard" for splitting this kind of data set. We tried to
balance training on the maximum amount of data possible (85%) without loosing accuracy (by asserting
that our runs are statistically significant, launching all experiments with 3 different data splits).

A.2 Training Details
For our SMT baseline, we use the Moses toolkit to train an SMT model for each language direction.
The data is aligned with GIZA++ (Och and Ney, 2003), while a 3-gram language model is trained with
KenLM (Heafield, 2011) on the pair of interest target data, then models are tuned using MERT.

For our NMT models, we use RNN encoder-decoder models with attention (Cho et al., 2014; Luong
et al., 2015), since Transformers (Vaswani et al., 2017) have been shown to under-perform for this task
because of data scarcity (Fourrier et al., 2021). We use the fairseq toolkit (Ott et al., 2019); the encoders
are composed of one embedding layer followed by a bidirectional GRU (embedding dimension: 20, hidden
dimension: 50, 1 layer), and the decoders are composed of one embedding layer and one unidirectional
GRU with its own attention (same parameters). Each model can share encoders/decoders/embedding
layers or not across languages. Each model is trained using the Adam optimizer (learning rate: 0.005) and
the cross entropy loss, stopping on the first of either 15 epochs or convergence of the BLEU score on the
development set used during training.

A.3 Sound Correspondence Prediction
We also compute the average position for the correct result among the 5-best predictions , and observe that
all models have similar behaviours: when answers are correctly predicted, they usually are predicted in
first or second position on average (the neural models being better than the baseline for our linguistically
more original languages, Romanian and French).

Spanish to Italian Portuguese French Romanian

SMT 1.5 2.4 1.4 1.8
M-NMT+m 1.5 2.0 2.0 1.7
+shared_emb 1.2 1.4 2.0 1.8

Italian to Spanish Portuguese French Romanian

SMT 1.4 2.7 1.4 2.0
M-NMT+m 1.4 2.1 2.6 1.7
+shared_emb 1.7 2.0 1.9 1.9

Portuguese to Spanish Italian French Romanian

SMT 1.4 1.6 1.1 2.5
M-NMT+m 1.7 1.9 1.7 1.4
+shared_emb 1.5 1.9 2.3 1.7

French to Spanish Italian Portuguese Romanian

SMT 1.4 2.8 3.2 1.6
M-NMT+m 1.5 1.9 1.2 1.9
+shared_emb 1.6 1.9 2.0 2.2

Romanian to Spanish Italian Portuguese French

SMT 2.7 2.6 3.5 2.3
M-NMT+m 1.3 2.1 1.4 2.0
+shared_emb 1.2 1.9 1.7 1.8

Table 6: Average position of the correct result in 5-best
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A.4 Consonants PCA and t-SNE

We plot the PCA (Figure 5) and t-SNE (Figure 6) for consonants, coloured on either manner or place,
and observe the same patterns are mentioned in the paper. Letters seem to be grouped phonetically at a
first glance, but are actually grouped by orthographic context more than phonetic similarity: ([b], [B], [v]
together, or [g], [G], [k] together, and so forth).

Figure 5: Consonant PCA, seed 0, coloured on manner above and on place below
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Figure 6: Consonant t-SNE, seed 0, coloured on manner above and on place below

A.5 Complete Models BLEU Score Tables
The tables introduced here are the complete BLEU score tables for all our models language pairs, in 1-best
and 10-best prediction. The standard deviation and mean are computed across all data shufflings used
to train our models. These tables therefore represent 255 models (81 language directions * 3 bilingual
models * 3 shuffling seeds, + 4 multilingual models trained on all directions at once * 3 shuffling seeds).

3799



FROM CA TO CA ES FR GL IT OC PT RO RUP

1-best
SMT 100.0± 0.0 72.0± 3.6 68.4± 2.3 63.4± 0.8 57.3± 0.6 85.0± 5.8 74.2± 3.0 32.6± 10.7 39.4± 3.7
Bi-NMT 99.6± 0.1 64.1± 3.4 45.0± 4.8 34.7± 2.3 43.9± 3.0 39.2± 7.8 52.8± 1.5 5.7± 3.0 4.8± 0.3
Bi-NMT+m 99.6± 0.1 74.0± 1.5 60.7± 4.6 58.4± 2.8 53.4± 2.7 77.6± 9.9 73.9± 2.9 19.9± 15.6 19.7± 8.2
M-NMT nan± nan 64.9± 2.7 61.2± 5.9 58.7± 4.1 52.7± 1.7 63.2± 2.0 63.3± 4.5 38.4± 1.2 46.9± 5.5
M-NMT+m 89.7± 0.9 74.6± 2.4 74.5± 4.3 73.0± 2.5 58.8± 0.4 75.9± 4.3 77.2± 2.4 50.2± 11.4 49.2± 8.0

+shared_emb 89.2± 1.7 74.0± 0.1 73.4± 1.8 67.0± 2.7 62.1± 0.9 84.9± 5.7 77.0± 5.0 39.3± 11.6 47.3± 7.7
+shared_all 59.3± 1.3 65.0± 2.8 66.7± 4.9 62.4± 4.3 51.5± 1.7 81.2± 5.8 69.2± 3.6 45.0± 11.7 43.7± 6.5

10-best
SMT 100.0± 0.0 89.8± 0.6 86.6± 2.5 81.2± 3.2 81.3± 2.3 90.2± 4.7 91.4± 2.1 63.7± 10.4 57.2± 4.5
Bi-NMT 99.9± 0.1 85.4± 1.2 69.9± 3.9 56.1± 3.9 64.1± 3.8 63.5± 5.3 78.3± 1.2 20.4± 9.6 12.6± 3.1
Bi-NMT+m 99.9± 0.1 90.2± 0.3 81.0± 2.2 76.4± 2.8 76.5± 2.7 83.8± 8.6 88.6± 2.2 35.4± 18.8 35.9± 2.9
M-NMT nan± nan 87.1± 1.4 84.3± 3.6 79.6± 3.4 77.2± 1.6 80.6± 1.2 86.1± 3.1 63.0± 6.0 71.8± 3.6
M-NMT+m 97.8± 0.3 90.9± 1.5 89.9± 3.1 89.8± 3.1 85.7± 1.3 88.8± 4.1 92.4± 1.1 71.2± 7.9 74.5± 6.9

+shared_emb 97.9± 0.5 91.8± 0.9 89.6± 3.4 84.4± 3.8 88.0± 0.4 92.5± 4.5 91.7± 1.3 66.1± 6.4 77.1± 6.9
+shared_all 75.2± 1.0 87.6± 1.3 89.7± 2.0 83.9± 4.1 77.1± 2.0 93.9± 3.4 89.9± 1.6 63.8± 8.4 73.5± 10.9

FROM ES TO CA ES FR GL IT OC PT RO RUP

1-best
SMT 71.2± 0.4 100.0± 0.0 62.4± 0.9 67.4± 4.1 63.0± 0.5 48.6± 9.4 76.7± 2.6 34.4± 3.4 38.3± 5.5
Bi-NMT 73.9± 4.6 99.5± 0.1 51.6± 3.4 56.0± 3.0 57.7± 2.6 3.0± 0.2 65.9± 8.3 19.2± 5.1 5.7± 2.6
Bi-NMT+m 81.2± 2.9 99.5± 0.1 59.1± 4.4 69.4± 0.8 67.2± 2.2 37.8± 3.4 76.7± 2.6 26.2± 1.0 22.9± 13.1
M-NMT 72.1± 4.7 nan± nan 57.5± 2.7 70.5± 4.4 53.4± 2.5 75.7± 9.5 69.0± 3.7 37.6± 7.7 48.8± 9.0
M-NMT+m 79.0± 1.9 88.6± 1.1 67.3± 2.0 72.1± 6.2 63.1± 1.2 86.1± 3.3 73.7± 2.1 46.8± 2.7 45.9± 6.4

+shared_emb 80.8± 0.8 90.3± 2.5 71.4± 0.2 74.8± 2.6 64.8± 1.2 84.2± 8.0 76.4± 4.8 48.2± 5.6 42.4± 8.4
+shared_all 72.4± 3.0 61.8± 0.4 64.5± 1.9 67.3± 3.5 49.5± 3.7 78.7± 8.9 69.8± 2.5 38.2± 5.2 42.2± 8.1

10-best
SMT 90.3± 1.6 100.0± 0.0 79.6± 2.5 87.2± 2.1 86.3± 0.8 78.0± 5.4 91.9± 0.9 60.4± 6.8 53.7± 7.1
Bi-NMT 89.3± 2.8 100.0± 0.0 69.6± 2.3 75.8± 1.1 82.7± 2.4 8.8± 1.8 85.2± 6.2 44.1± 0.8 14.0± 5.9
Bi-NMT+m 91.9± 1.9 100.0± 0.0 79.0± 1.0 84.7± 2.3 86.4± 2.3 60.0± 2.6 91.4± 1.1 48.3± 2.4 41.6± 8.2
M-NMT 89.9± 2.5 nan± nan 80.6± 4.2 86.5± 4.6 80.0± 2.0 92.5± 4.5 87.6± 2.0 62.4± 7.2 71.0± 6.7
M-NMT+m 93.8± 1.4 97.9± 0.4 83.8± 2.0 88.8± 3.3 86.1± 0.1 94.9± 2.5 91.5± 0.7 68.4± 6.9 69.2± 3.1

+shared_emb 93.9± 1.1 98.6± 0.5 85.5± 2.8 90.6± 3.1 87.2± 0.6 91.8± 6.8 93.5± 2.6 71.0± 2.9 69.3± 5.6
+shared_all 91.4± 2.0 79.9± 1.5 80.2± 4.0 88.6± 4.2 80.0± 1.8 92.6± 4.7 91.2± 0.6 64.5± 2.6 65.9± 4.5

FROM FR TO CA ES FR GL IT OC PT RO RUP

1-best
SMT 67.7± 2.7 63.4± 1.1 100.0± 0.0 55.9± 6.7 50.0± 3.9 32.6± 5.3 58.4± 2.9 21.5± 2.3 18.5± 6.8
Bi-NMT 40.1± 3.6 39.3± 5.4 98.7± 0.4 10.0± 5.8 28.9± 3.4 5.1± 0.7 31.2± 7.5 3.8± 1.5 2.3± 0.3
Bi-NMT+m 62.1± 3.2 58.1± 5.9 98.7± 0.4 34.3± 4.4 48.1± 5.4 7.2± 2.6 51.0± 2.1 8.4± 2.3 8.8± 2.9
M-NMT 66.0± 3.8 53.7± 2.6 nan± nan 62.8± 6.9 45.6± 3.2 62.8± 8.3 54.8± 3.5 21.8± 6.4 30.9± 19.8
M-NMT+m 74.9± 7.9 64.5± 1.5 83.8± 1.6 68.7± 4.9 53.2± 4.3 75.9± 10.8 64.8± 2.1 28.4± 3.0 21.4± 13.3

+shared_emb 70.9± 3.8 65.9± 4.1 81.9± 4.3 69.5± 5.6 56.3± 3.9 81.3± 10.3 65.2± 3.0 34.6± 6.4 14.5± 5.6
+shared_all 66.3± 3.8 54.0± 4.0 53.0± 5.7 57.9± 4.4 46.1± 5.4 67.3± 5.6 54.6± 2.0 28.0± 9.5 18.4± 8.8

10-best
SMT 85.1± 0.9 79.9± 3.1 100.0± 0.0 72.7± 5.5 70.9± 4.4 60.1± 2.8 77.1± 2.4 32.1± 10.9 28.4± 12.7
Bi-NMT 59.5± 1.7 60.5± 5.8 99.2± 0.3 24.7± 5.6 49.9± 7.4 9.2± 1.2 51.4± 7.8 8.6± 1.3 9.1± 0.8
Bi-NMT+m 79.0± 2.6 73.2± 5.7 99.2± 0.3 55.5± 5.0 66.7± 6.1 21.1± 5.1 69.4± 1.1 15.5± 5.8 23.6± 18.4
M-NMT 83.6± 2.3 79.8± 2.0 nan± nan 82.2± 5.5 70.2± 4.4 81.4± 2.5 76.7± 2.6 46.6± 8.7 60.4± 27.2
M-NMT+m 89.8± 4.0 85.8± 1.9 94.9± 0.9 86.7± 3.0 78.8± 1.1 85.1± 12.1 82.0± 2.8 57.8± 2.5 54.4± 20.8

+shared_emb 89.4± 2.1 84.9± 2.3 93.3± 2.0 88.2± 5.6 76.9± 3.7 95.5± 3.2 80.7± 1.1 64.1± 7.9 42.1± 16.1
+shared_all 84.7± 3.8 76.7± 4.5 66.8± 4.2 82.2± 4.2 66.8± 3.3 92.5± 5.4 74.8± 0.7 47.0± 10.9 40.7± 14.3

FROM GL TO CA ES FR GL IT OC PT RO RUP

1-best
SMT 59.6± 4.1 74.9± 4.2 56.4± 9.0 100.0± 0.0 57.7± 6.6 54.6± 8.1 86.4± 1.6 29.7± 8.1 46.1± 13.6
Bi-NMT 38.8± 3.9 58.9± 3.0 11.4± 5.6 98.9± 1.3 30.5± 3.1 3.6± 0.5 72.7± 4.4 6.6± 1.0 4.7± 1.2
Bi-NMT+m 63.2± 1.7 73.2± 4.4 40.9± 7.2 98.9± 1.3 48.9± 7.7 22.6± 6.7 85.0± 0.7 15.2± 5.3 19.8± 2.2
M-NMT 69.0± 1.1 68.6± 4.7 59.6± 4.9 nan± nan 56.3± 3.8 67.9± 9.2 75.5± 1.9 45.7± 13.6 39.6± 4.6
M-NMT+m 69.4± 3.5 72.8± 2.8 64.1± 8.6 86.6± 5.0 59.8± 6.8 71.3± 14.2 82.9± 1.9 52.1± 11.0 62.3± 6.2

+shared_emb 72.7± 2.1 74.3± 1.5 61.5± 11.3 91.1± 1.1 62.6± 0.9 75.5± 4.0 87.1± 0.6 57.5± 11.6 57.1± 17.6
+shared_all 68.3± 3.5 68.9± 3.9 55.9± 10.7 64.2± 5.7 59.1± 5.8 69.3± 10.9 78.7± 3.9 51.0± 11.3 59.5± 4.7

10-best
SMT 85.8± 0.4 89.0± 1.6 72.5± 4.4 100.0± 0.0 77.0± 5.7 78.1± 6.8 93.9± 2.2 59.3± 5.1 58.5± 14.5
Bi-NMT 58.9± 2.5 79.3± 2.4 22.8± 5.1 99.5± 0.6 48.3± 2.2 8.1± 2.7 87.2± 2.4 11.7± 2.3 12.6± 4.8
Bi-NMT+m 77.1± 1.1 87.5± 0.8 53.7± 8.3 99.5± 0.6 68.0± 6.6 48.0± 9.6 93.9± 1.0 31.1± 6.1 42.4± 7.9
M-NMT 85.3± 4.7 85.7± 2.7 76.3± 5.6 nan± nan 79.6± 5.3 89.5± 9.2 93.4± 2.0 66.3± 4.2 81.3± 3.0
M-NMT+m 89.3± 3.7 89.5± 2.4 86.4± 5.3 96.4± 2.1 82.2± 5.1 88.2± 5.3 96.4± 2.3 77.0± 4.8 85.0± 6.8

+shared_emb 91.1± 1.0 90.2± 2.0 84.9± 2.8 98.7± 0.6 85.3± 5.2 94.1± 1.4 95.2± 1.1 78.8± 5.5 80.9± 5.6
+shared_all 88.2± 5.3 84.7± 1.1 80.4± 6.6 85.2± 4.2 76.9± 6.3 87.3± 7.8 93.3± 2.6 68.5± 7.0 80.0± 5.0

FROM IT TO CA ES FR GL IT OC PT RO RUP

1-best
SMT 63.3± 3.1 74.8± 1.7 61.6± 2.8 58.2± 7.5 100.0± 0.0 44.7± 13.8 70.4± 3.1 48.6± 3.1 49.2± 0.9
Bi-NMT 35.5± 3.9 70.8± 0.6 31.7± 8.6 30.7± 2.9 99.6± 0.1 6.5± 5.2 61.5± 1.3 29.8± 2.6 21.9± 5.0
Bi-NMT+m 68.0± 0.8 73.0± 2.8 59.6± 6.4 55.2± 7.8 99.6± 0.1 35.6± 14.6 70.6± 1.5 44.7± 4.3 34.1± 4.7
M-NMT 61.0± 4.3 60.0± 4.8 55.1± 3.8 61.6± 4.0 nan± nan 55.8± 4.7 58.7± 3.5 51.9± 2.9 50.6± 3.8
M-NMT+m 73.3± 1.4 72.3± 1.7 64.3± 7.5 69.1± 5.4 81.8± 0.9 73.4± 5.8 72.9± 3.3 51.7± 2.2 52.8± 5.0

+shared_emb 72.8± 0.5 70.2± 3.9 66.5± 4.1 69.3± 5.4 81.4± 1.5 73.4± 8.3 73.5± 3.5 58.9± 2.8 50.9± 1.9
+shared_all 68.9± 4.1 60.8± 0.8 54.0± 6.1 59.6± 8.3 70.0± 3.3 71.2± 18.2 62.5± 2.1 44.2± 1.8 44.2± 1.1

Table 7: Results of our different models for the cognate prediction task - 1

3800



FROM IT TO CA ES FR GL IT OC PT RO RUP

10-best
SMT 83.8± 2.1 89.1± 0.4 76.7± 3.0 78.3± 6.5 100.0± 0.0 68.1± 9.7 87.9± 1.7 70.2± 4.6 70.6± 1.5
Bi-NMT 56.0± 5.7 85.2± 1.6 53.4± 8.4 50.1± 1.5 99.9± 0.1 12.4± 4.2 83.5± 2.4 51.7± 1.7 41.2± 6.4
Bi-NMT+m 82.8± 0.9 87.3± 1.1 77.4± 6.4 74.8± 3.5 99.9± 0.1 51.1± 15.5 86.2± 0.6 67.2± 2.4 58.0± 3.8
M-NMT 81.8± 1.5 82.2± 3.0 76.5± 5.0 81.4± 4.4 nan± nan 79.9± 2.9 81.9± 2.1 70.5± 4.5 72.7± 4.4
M-NMT+m 90.4± 1.8 88.0± 0.6 80.0± 3.4 86.6± 2.4 96.7± 0.8 84.1± 9.8 90.0± 0.9 80.1± 1.4 73.4± 1.0

+shared_emb 89.6± 0.6 89.4± 1.7 80.6± 3.9 87.3± 3.1 96.5± 0.6 85.7± 9.3 89.7± 1.5 77.1± 2.0 72.2± 0.3
+shared_all 83.5± 0.7 81.3± 2.0 76.6± 7.1 80.6± 4.5 91.9± 1.6 83.3± 10.1 87.3± 1.4 71.4± 4.0 67.4± 6.9

FROM OC TO CA ES FR GL IT OC PT RO RUP

1-best
SMT 88.2± 1.8 57.8± 7.1 34.1± 5.0 57.5± 9.3 53.1± 3.0 100.0± 0.0 44.0± 6.0 21.2± 10.4 30.7± 13.8
Bi-NMT 60.6± 10.6 7.3± 1.1 3.4± 1.4 4.1± 2.0 8.2± 2.6 97.8± 1.1 4.0± 0.9 3.2± 1.4 4.6± 1.4
Bi-NMT+m 84.9± 1.2 42.4± 4.7 11.6± 6.1 19.1± 6.2 42.9± 2.5 97.8± 1.1 39.5± 7.4 10.2± 2.4 7.5± 0.3
M-NMT 75.2± 8.8 56.7± 7.8 49.1± 11.0 64.7± 8.0 55.4± 2.1 nan± nan 59.4± 2.6 47.3± 6.5 69.9± 5.5
M-NMT+m 84.8± 2.4 69.5± 4.8 54.6± 5.5 71.5± 7.4 72.0± 4.5 82.3± 6.3 59.5± 10.6 58.9± 5.6 61.1± 5.0

+shared_emb 86.3± 7.1 73.8± 11.2 53.5± 1.5 76.1± 13.2 69.0± 7.1 84.2± 3.8 60.0± 16.2 70.1± 13.0 74.1± 5.3
+shared_all 86.5± 2.2 60.5± 10.0 41.2± 8.7 64.7± 10.3 58.4± 6.8 59.1± 3.4 57.2± 7.8 51.3± 18.7 57.5± 11.5

10-best
SMT 92.4± 2.6 80.0± 8.4 42.2± 5.3 74.0± 8.2 71.5± 2.6 100.0± 0.0 72.1± 3.4 35.9± 10.4 45.8± 6.4
Bi-NMT 75.2± 6.1 13.6± 3.2 8.3± 4.6 7.7± 3.5 18.6± 3.3 99.4± 0.8 8.0± 1.6 8.4± 1.9 10.4± 1.3
Bi-NMT+m 93.0± 2.4 63.6± 8.3 19.5± 9.8 38.0± 17.4 61.3± 1.9 99.4± 0.8 53.4± 8.5 25.1± 8.4 17.4± 4.9
M-NMT 91.0± 6.5 85.3± 6.0 61.9± 9.1 79.7± 5.5 79.5± 2.5 nan± nan 84.3± 3.9 76.4± 4.5 88.9± 11.5
M-NMT+m 94.9± 2.5 89.2± 6.0 70.5± 5.9 88.8± 6.4 88.5± 3.3 92.4± 3.1 86.7± 3.3 70.7± 4.2 88.1± 4.9

+shared_emb 97.1± 2.1 86.1± 7.2 67.9± 4.6 91.4± 3.2 85.6± 8.8 94.1± 1.3 86.8± 8.3 79.3± 4.0 86.0± 10.4
+shared_all 94.4± 2.4 83.1± 6.6 66.2± 5.1 85.1± 6.2 77.1± 6.2 72.0± 2.1 85.3± 3.1 71.5± 10.3 80.5± 12.3

FROM PT TO CA ES FR GL IT OC PT RO RUP

1-best
SMT 75.0± 0.1 75.4± 0.3 63.2± 5.0 89.2± 0.7 59.4± 5.9 50.8± 4.7 100.0± 0.0 42.2± 1.9 45.5± 2.3
Bi-NMT 66.0± 4.1 69.2± 1.0 39.0± 7.8 75.3± 3.5 50.8± 3.1 6.3± 1.6 99.3± 0.4 11.9± 5.7 10.9± 3.0
Bi-NMT+m 75.9± 3.0 74.9± 2.1 56.2± 2.7 86.0± 2.1 59.5± 4.2 29.2± 5.9 99.3± 0.4 28.8± 6.8 27.3± 3.8
M-NMT 74.0± 3.3 69.2± 2.3 63.9± 3.6 77.2± 0.3 55.4± 3.7 72.4± 6.6 nan± nan 48.8± 6.4 62.1± 5.6
M-NMT+m 78.7± 3.9 75.8± 4.0 67.8± 0.5 83.9± 1.7 63.8± 1.6 89.1± 3.3 89.0± 1.7 55.7± 5.9 61.0± 12.6

+shared_emb 78.0± 3.4 73.1± 2.9 70.3± 4.1 82.2± 3.0 61.4± 2.3 81.9± 5.7 88.4± 1.9 52.9± 7.2 61.7± 3.2
+shared_all 76.4± 3.0 67.3± 0.7 63.4± 3.6 78.0± 3.7 55.1± 2.9 71.2± 5.4 64.2± 2.2 47.7± 5.6 56.1± 8.8

10-best
SMT 86.9± 1.1 91.6± 0.7 83.1± 4.9 96.2± 1.0 80.9± 3.6 76.4± 9.6 100.0± 0.0 67.8± 4.8 74.2± 2.1
Bi-NMT 80.1± 3.3 88.5± 0.5 61.0± 5.2 89.1± 2.3 73.6± 2.5 11.7± 1.5 99.8± 0.1 24.2± 1.3 36.5± 3.3
Bi-NMT+m 86.5± 2.7 89.5± 0.8 76.0± 4.0 93.9± 1.6 82.0± 3.6 43.6± 3.7 99.8± 0.1 43.2± 4.6 51.3± 2.4
M-NMT 88.5± 2.2 89.0± 1.4 85.8± 2.8 93.0± 1.1 80.0± 3.6 90.4± 2.4 nan± nan 70.3± 5.9 83.8± 2.2
M-NMT+m 90.0± 3.1 92.1± 1.0 86.6± 3.0 94.5± 1.9 85.1± 2.1 96.4± 4.3 98.7± 0.7 77.8± 4.2 80.3± 11.6

+shared_emb 89.7± 2.8 91.4± 1.0 89.0± 2.6 95.8± 1.3 85.2± 2.8 95.4± 3.9 97.7± 1.1 73.6± 9.8 84.4± 3.2
+shared_all 87.0± 1.1 88.6± 2.3 85.5± 1.9 92.9± 1.3 75.9± 2.1 93.1± 4.2 84.6± 3.0 69.6± 2.8 85.0± 1.5

FROM RO TO CA ES FR GL IT OC PT RO RUP

1-best
SMT 32.9± 5.3 37.6± 5.8 20.2± 2.6 29.7± 10.4 43.5± 5.6 25.5± 2.8 32.7± 0.6 100.0± 0.0 66.3± 1.7
Bi-NMT 10.4± 3.4 22.6± 4.5 6.3± 1.4 2.1± 0.5 33.1± 8.7 7.1± 2.5 14.9± 6.2 98.5± 1.4 59.0± 8.3
Bi-NMT+m 18.1± 4.8 34.2± 3.0 7.2± 3.3 15.9± 2.5 44.7± 7.0 12.9± 1.8 21.7± 7.3 98.5± 1.4 67.4± 9.8
M-NMT 47.9± 2.4 48.5± 2.1 37.9± 9.2 47.0± 3.9 42.0± 6.6 51.0± 17.3 42.0± 5.6 nan± nan 58.1± 8.3
M-NMT+m 47.2± 4.0 56.4± 7.4 36.9± 10.7 55.6± 4.1 53.2± 2.2 59.1± 13.5 45.7± 3.4 70.4± 2.3 70.7± 9.4

+shared_emb 57.7± 7.1 54.2± 3.7 36.0± 4.7 54.6± 6.6 55.1± 4.9 63.0± 13.4 50.7± 6.3 70.4± 1.8 75.6± 8.0
+shared_all 53.7± 5.3 33.1± 5.6 37.8± 6.3 50.9± 6.8 37.3± 2.2 56.8± 11.5 38.4± 7.3 48.1± 0.9 63.4± 7.4

10-best
SMT 57.9± 3.9 63.7± 7.6 38.1± 6.1 47.0± 6.4 72.1± 4.2 44.5± 9.6 58.3± 2.3 100.0± 0.0 87.4± 2.0
Bi-NMT 22.5± 10.8 45.4± 0.7 10.0± 0.4 6.0± 0.2 58.1± 5.6 14.2± 3.8 30.8± 4.8 99.6± 0.5 80.8± 9.8
Bi-NMT+m 38.2± 8.4 58.3± 4.5 16.2± 5.2 32.9± 8.8 64.9± 4.3 27.2± 3.9 51.5± 4.0 99.6± 0.5 85.7± 8.8
M-NMT 79.6± 4.8 75.7± 5.9 56.6± 16.0 66.9± 2.0 71.3± 4.5 74.7± 15.3 70.2± 3.7 nan± nan 80.1± 9.2
M-NMT+m 75.9± 5.6 80.5± 8.0 52.8± 8.8 76.2± 5.9 80.8± 3.9 77.9± 7.5 75.8± 3.7 89.3± 3.3 87.2± 4.9

+shared_emb 80.8± 5.5 82.7± 4.6 65.2± 6.1 81.0± 5.3 82.4± 2.1 83.0± 14.0 76.0± 2.4 89.5± 1.0 90.2± 7.0
+shared_all 74.6± 9.8 64.5± 6.2 60.8± 7.1 69.7± 8.4 67.0± 3.3 66.9± 14.3 68.3± 4.6 64.5± 1.6 84.8± 6.3

FROM RUP TO CA ES FR GL IT OC PT RO RUP

1-best
SMT 29.2± 2.4 32.4± 1.9 21.7± 2.9 29.5± 13.2 36.6± 4.1 26.1± 12.4 42.0± 5.5 63.3± 7.3 100.0± 0.0
Bi-NMT 2.7± 0.7 3.3± 0.7 5.7± 1.0 3.1± 1.9 26.7± 2.6 5.2± 2.0 27.1± 3.0 48.8± 5.1 95.2± 1.8
Bi-NMT+m 16.4± 4.5 23.4± 1.9 9.1± 1.7 15.4± 9.1 30.6± 0.4 14.4± 5.3 28.9± 12.6 64.8± 5.4 95.2± 1.8
M-NMT 50.1± 12.7 36.7± 6.3 32.0± 12.7 33.4± 1.9 44.4± 4.9 29.9± 3.1 56.8± 5.6 57.7± 3.0 nan± nan
M-NMT+m 60.0± 4.8 51.8± 7.4 24.6± 14.4 49.6± 8.0 44.7± 3.5 63.5± 7.9 60.4± 7.1 67.9± 4.7 70.4± 6.0

+shared_emb 59.2± 8.4 47.2± 3.5 46.7± 5.0 54.6± 6.7 48.9± 4.3 41.7± 11.4 61.6± 5.6 66.7± 3.4 75.6± 3.2
+shared_all 46.9± 20.6 25.1± 6.7 35.2± 18.3 37.3± 12.1 34.0± 5.0 53.6± 9.9 39.0± 12.7 52.6± 6.4 59.8± 2.1

10-best
SMT 53.8± 14.2 60.4± 7.7 32.4± 11.5 45.7± 6.8 62.6± 0.7 35.2± 11.3 62.7± 9.1 83.1± 7.4 100.0± 0.0
Bi-NMT 8.3± 4.1 15.6± 6.8 13.4± 3.8 7.0± 2.3 44.6± 2.0 7.3± 1.0 46.6± 5.3 72.0± 7.0 98.4± 1.3
Bi-NMT+m 25.1± 6.0 51.8± 4.7 17.8± 5.4 22.1± 10.9 51.9± 1.8 31.1± 15.8 51.8± 9.9 80.9± 8.1 98.4± 1.3
M-NMT 77.4± 9.0 72.3± 1.5 62.2± 11.2 66.9± 8.0 69.4± 6.0 46.7± 12.2 79.0± 1.5 79.5± 0.7 nan± nan
M-NMT+m 73.6± 10.6 80.1± 6.5 53.4± 18.4 78.7± 12.1 72.5± 3.3 77.2± 7.1 81.6± 5.6 83.2± 4.0 89.2± 4.4

+shared_emb 79.2± 12.5 78.6± 11.0 63.4± 9.6 77.6± 7.2 74.7± 1.9 82.3± 3.3 80.8± 1.5 83.4± 5.6 89.9± 3.2
+shared_all 69.1± 13.9 60.9± 7.2 62.4± 14.9 62.3± 1.5 64.0± 3.4 73.6± 18.8 72.9± 4.8 77.9± 8.4 76.4± 0.9

Table 8: Results of our different models for the cognate prediction task - 2
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