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Abstract

State-of-the-art neural models typically
encode document-query pairs using cross-
attention for re-ranking. To this end, models
generally utilize an encoder-only (like BERT)
paradigm or an encoder-decoder (like T5)
approach. These paradigms, however, are
not without flaws, i.e., running the model on
all query-document pairs at inference-time
incurs a significant computational cost. This
paper proposes a new training and inference
paradigm for re-ranking. We propose to
finetune a pretrained encoder-decoder model
using in the form of document to query
generation. Subsequently, we show that
this encoder-decoder architecture can be
decomposed into a decoder-only language
model during inference. This results in
significant inference time speedups since the
decoder-only architecture only needs to learn
to interpret static encoder embeddings during
inference. Our experiments show that this new
paradigm achieves results that are comparable
to the more expensive cross-attention ranking
approaches while being up to 6.8X faster. We
believe this work paves the way for more
efficient neural rankers that leverage large
pretrained models.

1 Introduction

Leveraging transformer architecture to model the
concatenation of a query-document pair is a
well-established approach for document ranking
(Nogueira et al., 2020). Today, modern neural
methods for re-ranking are based on the encoder-
only (e.g., BERT (Devlin et al., 2019)) or encoder-
decoder (e.g., T5 (Raffel et al., 2020)) paradigm
where query-document interactions are modeled
by the encoder’s attention mechanism. Unfortu-
nately, these paradigms are computationally pro-
hibitive given that the model has to be run on all
document-query pairs during inference. To this
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end, it is commonplace to use less powerful but
computationally lightweight dual encoder models
(Nogueira et al., 2019a; Karpukhin et al., 2020;
Xiong et al., 2020; Qu et al., 2021; Gao et al., 2021)
for first-pass retrieval and to only run the more ex-
pensive re-ranker on a small subset of retrieved can-
didates. Even with this setup, cross-attention-based
re-ranking can still be expensive, especially when
larger pretrained Transformer models are used. As
such, this paper is primarily concerned with im-
proving inference-time re-ranking efficiency while
maintaining comparable effectiveness to existing
cross-attention models.

The novelty of this paper lies in a new paradigm
for re-ranking that provides up to 6.8X speedup
without any degradation in shallow-pool effective-
ness. Concretely, we propose a new method for
inference-time decomposition of encoder-decoder
architectures into decoder-only language models.
Given a pretrained sequence-to-sequence model,
we finetune the encoder-decoder model using a
document-to-query multi-task loss. At inference,
we decompose the encoder-decoder architecture
into a decoder-only language model (LM) that
learns to interpret from a memory store of encoded
document tokens representations using attention.
The document-query pair score can be interpreted
as the likelihood of generating the query given the
encoded document term representations.

There are multiple efficiency benefits to our
proposed design. First, significant inference-time
cost savings are unlocked since the document term
memory store can be pre-computed in advance
and acts as a read-only memory. Second, our re-
design also exploits the fact that queries are gen-
erally much shorter than documents. During in-
ference time, only query tokens have to be passed
through the decoder stack when attending to the
pre-computed document representations which al-
lows us to also obtain an additional speed advan-
tage over encoder-only BERT-like models. Third,
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computing the query likelihood is computationally
simple and does not require the typical costs asso-
ciated with autoregressive generation models.

The overall contributions of this work can be
summarized as follows:

• We propose a new re-ranking paradigm,
ED2LM (Encoder-Decoder to Language
Model) for fast and efficient inference-time
re-ranking. Our method is based on inference-
time decomposition of an encoder-decoder
model into a decoder-only language model.

• The proposed method utilizes a new fine-
tuning paradigm by incorporating a new ob-
jective function that combines the generative
query likelihood and the discriminative cross-
entropy loss.

• Via extensive experiments, we show that the
proposed method performs competitively with
T5-based cross-attention re-rankers (Nogueira
et al., 2020) while being up to more than 6.8X
faster during inference.

2 Related Work

Neural text ranking. Traditional ranking sys-
tems focus on numeric input features (Qin et al.,
2021; Yan et al., 2021). Recently, text ranking is
popular given the prevalence of large pretrained
language models. A number of so-called cross-
attention models concatenate a query and a can-
didate document into a string and feed it into the
model (Han et al., 2020; Nogueira et al., 2020;
Chen et al., 2022), which allows the attention mech-
anism of the model to capture interactions across
query and document terms. However, deploying
such models to millions or billions of documents
is usually intractable due to the exorbitant compu-
tational cost. To combat this cost, other studies
have explored more efficient models, e.g., dual-
encoder models (Karpukhin et al., 2020; Qu et al.,
2021; Ren et al., 2021), BERT with late interac-
tion (Khattab and Zaharia, 2020), or using contex-
tual language models to improve term weighting in
traditional inverted indexes (Nogueira et al., 2019a;
Dai and Callan, 2020; Gao et al., 2021).

A few studies that are most closely related to
this work focus on leveraging the generative nature
of pretrained encoder-decoder language models. A
natural practice is to directly use the likelihood
of generating the query given a document to rank

the documents (Zhuang and Zuccon, 2021; Zhuang
et al., 2021b; Lesota et al., 2021). However, these
methods mostly perform substantially worse than
cross-attention ranking models. Another work (dos
Santos et al., 2020) transforms the likelihood of
generating the query into a discriminative loss,
where an “unlikelihood” loss is introduced for neg-
ative query-document pairs. Despite relatively bet-
ter performance than using vanilla maximum likeli-
hood estimation (MLE), we found that their method
still underperforms cross-attention ranking models.
Our proposed method uses a combination of query
generation loss and a cross-entropy loss on a spe-
cific token, which is capable of achieving compara-
ble performance to cross-attention models.

(Ju et al., 2021) proposes query generation as an
auxiliary task during training and shows improved
performance. However, the proposed model still
takes both a query and a document as input in the
main ranking task and hence would be as costly
as cross-attention ranking models during inference.
Finally, the recent differentiable search index (Tay
et al., 2022) proposes end-to-end ranking via text
generation using an encoder-decoder T5 model.

Efficient neural IR. Due to the excessive com-
putational cost of inference in pretrained language
models, there is a series of studies aiming to im-
prove the efficiency.

A major trend is to distill expensive models into
cheaper ones (Hinton et al., 2015; Sanh et al., 2019).
Some distillation approaches have specifically fo-
cused on text ranking applications (Zhang et al.,
2020; Zhuang et al., 2021a; Chen et al., 2021a;
Hofstätter et al., 2020a).

Another trend is to improve model efficiency by
modifying the model architecture. A typical ap-
proach used by ColBERT (Khattab and Zaharia,
2020) and PreTTR (MacAvaney et al., 2020) de-
fer query-document interactions to upper layers so
that part of the model can be pre-computed. Our
model can be categorized into this class of models,
except that the late interaction is naturally aligned
with the decomposition of encoder-decoder models.
This alignment allows us to better leverage knowl-
edge learned by the model during pretraining, and
can be the reason behind our stronger performance
compared to ColBERT and PreTTR.

There are a couple of other efficient model struc-
tures, such as early exiting (Soldaini and Moschitti,
2020; Xin et al., 2020), Transformer-Kernel (TK)
model (Hofstätter et al., 2020b), and contextualized
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Figure 1: Overview of the proposed ED2LM.

offline relevance weighting (Chen et al., 2021b).
In terms of storage cost, Cohen et al. (2021) pro-
posed the succinct document representation which
reduces the dimension of token representation to
compress document representations. These tech-
niques are orthogonal to our study and can be com-
bined with our work to further improve the time
and storage efficiency.

3 The Proposed Method

This section describes the ED2LM model. See
Fig. 1 for an overview of the approach.

3.1 Overview

The proposed ED2LM model is based on the T5
encoder-decoder architecture. It encodes the docu-
ments without looking at the queries and produces
ranking scores by decoding the queries and attend-
ing to the document representations.

In particular, for a query-document pair, the doc-
ument tokens are encoded with a stack of Trans-
former layers as in BERT (Devlin et al., 2019),
where the tokens attend to one another before go-
ing through the position-wise feed-forward layer.
The output of the encoder is in the form of dense
representations for the document tokens. During
decoding, the query tokens are decoded with a stack
of decoder layers, where the query tokens first at-
tend to other query tokens before going through a
multi-head attention block to attend to the docu-
ment tokens from the encoder.

Inspired by T5 (Nogueira et al., 2020) for rank-
ing and the use of BART for discrimination (dos
Santos et al., 2020; Lewis et al., 2020), a special

true/false token is appended to the end of the query
before the end of the query sequence (EOS). During
training, inspired by (Ju et al., 2021), the model is
trained to generate the query tokens and determine
the relevance of the query-document pair. During
inference, only the score for the true/false token is
used for ranking.

3.2 ED2LM for Re-ranking
In this section, we describe the details of training
and inference for ED2LM.

3.2.1 Fine-tuning
During fine-tuning, ED2LM involves an encoder-
decoder architecture which maps RLD discrete
symbols to RLQ discrete symbols. Here, LD refers
to the length of the document and LQ refers to the
query length.

Task formulation. The input to the model is a
sequence of document tokens and the output of the
model is a sequence of query tokens. In order to im-
bue our model with discriminative capabilities, we
append the class token (true/false) that represents
the query-document pair at the end of the query.
The ranking score of a query-document pair is the
normalised probability of the true token at the end
of the query. Given a query q and a document d,
the ground-truth correctness of d relative to q is
denoted as a binary label y.

Loss function. The loss function optimized for
fine-tuning has two components. The first compo-
nent is the maximum likelihood estimation (MLE)
loss of the individual question tokens, which is
defined as:

LossQL = −
∑

i∈0···LQ−1
log(P (qi|q:i; d)) (1)

Since we want the model to learn the correctness
of the question using the trailing true/false tokens,
we also compute the likelihood of those tokens as
follows.

p+ = P (true,eos|q; d)

p− = P (false,eos|q; d)

The cross-entropy loss LossCE can then be written
as:

LossCE = −ylogp+ − (1− y)logp− (2)

The final training loss can the be written as:

Loss = LossCE + yLossQL (3)
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The cross-entropy loss is applied to all examples
whereas the query likelihood loss only applies to
the positive examples. Our fine-tuning loss is
trained with teacher forcing.

Scoring. The normalised scores from the true
and false tokens are combined as in (Nogueira et al.,
2020).

3.3 Efficient Re-ranker
This section discusses using ED2LM for more effi-
cient inference, by decoupling the encoder-decoder
into a decoder-only language model.

3.3.1 Decomposing Encoder-Decoder to
Decoder-only LM

The key idea for fast inference is to only extract
the decoder from the trained Encoder-Decoder
model. Recall a decoder-stack is comprised of
decoder-side causal self-attention and encoder-
decoder cross-attention.

X ′` = CausalSelfAttention(X`, X`) (4)

Y` = MultiheadAttention(M`, X
′
`) (5)

where X ∈ RLQ×dmodel is the input to the de-
coder stack at layer `. M refers to a sequence
of memory tokens. In this case, we note that M
here refers to computed encoder representations
that pass through the encoder-stack. During fine-
tuning, this encoder-stack is trained end-to-end.
However, this paradigm generalizes these embed-
dings as “memory”, which can be extended to other
use cases or applications. We can also interpret this
memory as a form of soft prompt.

3.3.2 Reading from Memory
The decoder reads from M . In the standard setup,
M are static representations that originate from the
final output of the encoder in the Seq2Seq architec-
ture and the MultiheadAttention is the encoder-
decoder cross attention. Here, M can be com-
pressed along the presentation dimension (dmodel)
as in (MacAvaney et al., 2020; Gao et al., 2021; Co-
hen et al., 2021), which is orthogonal to our studies,
or along the sequence dimension (LD), which is in-
troduced below. We find that this generalization is
a practically useful way to interpret the ED2LM ar-
chitecture. We propose to explore not only standard
M from encoder outputs but also compressed mem-
ory stores from Funnel Transformers (Dai et al.,
2020). Herein, we employ the Funnel Transformer
with b blocks in the encoder, leading to 2b storage

compression, by reducing the RLD for 2b. Between
each block, a mean-pooling layer is used to down-
sample the input sequence by two in the sequence
length dimension.

4 Experiment Setup

This section describes our experimental setup.

Dataset and metrics. We employ the MS
MARCO (Nguyen et al., 2016) passage re-ranking
task, for which we report the official evaluation
metric MRR@10 on the 6980 development queries
using the binary labels from the dev dataset. We
also use the 43 test queries from the TREC Deep
Learning (DL) Track 2019 (Craswell et al., 2020)
and the 54 test queries from 2020 (Craswell et al.,
2021). The TREC data sets include graded rele-
vance judgments. We report the official evaluation
metrics NDCG@10 as well as mean average preci-
sion (MAP). When computing MAP, following the
official TREC setup, we map passage judgments
2 and 3 to relevant and 0 and 1 to non-relevant.
Statistical significance is reported using a paired
two-tailed t-test. We use a maximum sequence
length of 256 tokens for paragraphs and 32 tokens
for queries in our experiments, similar to (Hofstät-
ter et al., 2020b,a).

We employ the training data from Rock-
etQA (Qu et al., 2021), which is derived from
the MS MARCO training dataset as dual-encoder
models trained on it demonstrate strong perfor-
mance. Specifically, we use the hard-question
split (“RQA-Hard”), which only includes the hard-
negative samples and positive samples from MS
MARCO, and the merge split (“RQA-Merge”),
which includes extra unlabeled questions from Ya-
hoo! Answers1, ORCAS (Fisch et al., 2019), and
Natural Questions (Kwiatkowski et al., 2019) on
top of “RQA-Hard”. For validation purposes, we
use the 1500 dev2 validation queries with at least
one relevance judgment from the TREC DL Track
20212. Given our focus on shallow-pool effective-
ness, the model with highest MRR@10 on the
validation dataset is selected. We employ Mesh
Tensorflow (Shazeer et al., 2018) for training and
evaluation. The T5 models have been trained and
inferred as in (Nogueira et al., 2020), and ED2LM
has been primarily trained using the loss defined

1http://answers.yahhoo.com
2https://msmarco.blob.core.windows.

net/msmarcoranking/passv2_dev2_queries.
tsv
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in Eq. 3. We train models for ablation study by
using Eq. 1 and Eq. 2 separately. During training,
a constant learning rate of 1e-3 is used.

Baselines. ED2LM is compared to ranking mod-
els using four variants of T5 (T5-small, T5-base,
T5-large, and T5-xl), BERT-base, BERT-large,
and PreTTR (MacAvaney et al., 2020). The
PreTTR (MacAvaney et al., 2020) model decou-
ples the encoding of the query and the document
on top of the BERT architecture and is directly
comparable to the T5-based ED2LM. We fine-tune
BERT-base models using TF-ranking (Pasumarthi
et al., 2019) and achieve similar results with the
results reported in (Nogueira et al., 2020). We also
re-implement the PreTTR model using TF-ranking.
Therein, following the configurations in (MacA-
vaney et al., 2020), a query and a document are
encoded independently in the first l-layers using
the BERT-base configuration before interacting via
cross-attention. The BERT-base pre-trained check-
point is used for initialisation. We report the results
by setting l = 6, which leads to similar FLOPs and
latency as ED2LM-base (26.1T vs 20.6T).

Variants of ED2LM. We investigate the effec-
tiveness and inference efficiency of ED2LM based
on T5-small, T5-base, T5-large, and T5-xl archi-
tectures, leading to ED2LM-small, ED2LM-base,
ED2LM-large, and ED2LM-xl, respectively. We
experiment with two Funnel-Transformer variants,
where two six-layers funnel blocks (b = 2) and
three eight-layers funnel blocks (b = 3) are used in
the encoder, respectively. They are named ED2LM-
F-6L×2 and ED2LM-F-8L×3, correspondingly.
These configurations lead to a 4X (when b = 2)
and a 8X (when b = 3) reduction in the sequence
length. The Funnel-Transformer variants are pre-
trained using the same task as in T5 on top of the
C4 corpus (Raffel et al., 2020).

Initial rankings. Since we primarily focus on
the re-ranking setting, we consider several retrieval
models to generate initial ranking candidates. For
the MS MARCO passage re-ranking task, we
use BM25 (an implementation from Terrier (Mac-
donald et al., 2012)) to generate the top-1K pas-
sages per query. In addition, we implemented
the docT5query model (Nogueira et al., 2019b,a)
by training a T5 seq2seq model to generate 40
questions (i.e., expansions) per paragraph and use
BM25 to retrieve top-1K passages. This serves as a
high-recall initial ranking, wherein the recall@1K

increases from 86.7 (MRR@10=19.3) in the base
BM25 ranking to 93.76 (MRR@10=25.3) with
document expansion. For the TREC DL Track,
we use the official top-1k initial rankings from
BM25 (Craswell et al., 2020, 2021).

Efficiency metrics. To compare inference effi-
ciency, we report FLOPs and latency as encouraged
by Dehghani et al. (2022). To compute FLOPs we
make use of a public repository 3. To compute la-
tency, we do as follows: each model is exported in
the Tensorflow Saved Model format before serving
via the Tensorflow Model Server 4 on a Intel Xeon
CPU desktop with 8 CPU cores, 16 CPU threads,
and 132 GB RAM. We randomly select 500 queries
and passages from the MS MARCO dataset. As
for PreTTR (MacAvaney et al., 2020), to enable
fair comparisons, we add an additional 500 queries,
leading to a total of 1000 query-passages pairs, to
fully utilise the shared computation of the query
encoder. For each query-passage pair, we time the
inference call to the model server 10 times and
record the minimum. For each model, we report
the 50 and 95-percentile of the 500 timing (1000
for PreTTR) as a two-number summary of latency.
The time for tokenization is included for all models.
For PreTTR and ED2LM, we assume the token rep-
resentations of passages have already been loaded
in the memory akin to (MacAvaney et al., 2020;
Gao et al., 2021).

5 Results

In this section, we examine the effectiveness-
efficiency trade-off of ED2LM on the passage re-
ranking task. The results of T5, ED2LM, BERT,
and PreTTR have been displayed in Table 1. In
Table 2, we further summarise the comparisons
(ED2LM vs. baseline models) from Table 1 and
highlight the results that ED2LM provides a bet-
ter trade-off. We also visualise the results from
different models on the MS MARCO benchmark
in Fig. 2 when using docT5query (Nogueira et al.,
2019a) as the initial ranking.

5.1 Trade-off in Re-ranking

Results for the baseline models. We achieve
comparable results as previous studies on all
three benchmarks. In particular, (Nogueira et al.,

3https://github.com/google-research/
electra/blob/master/flops_computation.py

4https://www.tensorflow.org/tfx/
tutorials/serving/rest_simple
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Models
MS MARCO (MRR@10) Trec DL Track 2019 Trec DL Track 2020 FLOPs Latency (ms)

BM25+ docT5query+ nDCG@10 MAP nDCG@10 MAP (T) P50 P95

Baseline Models

PreTTR (p) 36.7 37.4 70.0 39.8 71.5 45.5 26 159 189
BERT-base (b) 36.5 37.2 68.5 41.9 71.9 45.7 52 309 443
T5-small (t5s) 35.9 36.6 68.8 42.3 68.1 42.1 22 123 127
T5-base (t5b) 38.3 39.2 71.1 43.1 73.7 48.6 67 405 425
T5-large (t5l) 39.4 40.3 72.0 42.9 73.0 48.0 202 1111 1140
T5-xl (t5x) 39.6 40.6 71.8 42.2 74.6 49.2 752 2490 2515

Variants of ED2LM

ED2LM-small 37.2 (↑t5s↓t5blx↑b) 37.9 (↑t5s↓t5blx↑b) 69.5 (↓t5l) 40.8 69.6 (↓t5blx) 43.3 (↓t5blx↓b) 5 60 65
ED2LM-base 38.7 (↑t5s↓t5lx↑b↑p) 39.6 (↑t5s↓t5lx↑b↑p) 70.2 42.5 (↑p) 71.5 (↑t5s↓t5x) 47.2 (↑t5s↓t5x) 21 157 185
ED2LM-large 38.0 (↑t5s↓t5lx↑b↑p) 39.0 (↑t5s↓t5lx↑b↑p) 70.3 42.3 (↑p) 72.8 (↑t5s) 47.6 (↑t5s) 73 317 336

ED2LM-xl 39.4 (↑t5sb↑b↑p) 40.4 (↑t5sb↑b↑p) 71.4 44.8 (↑t5sbx↑b↑p) 71.6 (↑t5s↓t5x) 48.2 (↑t5s↑b↑p) 287 811 834

ED2LM with Funnel Blocks

ED2LM-F-6L×2 36.5 (↓t5blx) 37.4 (↑t5s↓t5blx) 68.0 (↓t5blx) 40.5 (↓t5b) 70.4 (↓t5bx) 44.1 (↓t5blx) 9 130 151
ED2LM-F-8L×3 35.4 (↓t5blx↓b↓p) 36.2 (↓t5blx↓b↓p) 69.2 (↓t5l) 40.2 (↓t5bl) 70.5 (↓t5bx) 44.7 (↓t5blx) 7 108 126

Table 1: The re-ranking performance when re-ranking top-1K paragraphs. We note down the significant difference
at 0.05 level with ↑ and ↓ for the variants of ED2LM. The comparisons are relative to T5-small, T5-base, T5-large,
and, T5-xl (with subscriptions t5s, t5b, t5l, t5x), BERT-base (with subscriptions b), PreTTR with six layers of
decoupled encoding (with subscriptions p).
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Figure 2: MRR@10 on MS MARCO dev small (6980 test queries) after re-ranking top-1K documents from
docT5query (Nogueira et al., 2019a) vs. latency. The x-axis is the latency (95 percentile out of 500 calls); y-
axis is the MRR@10 score. The point (ED2LM models) and the cross (baseline models) are the mean MRR@10
and the bar indicates the 95% confidence interval.

2020) reports MRR@10 = 37.2, 38.1, 39.3,
and 39.8 when using BERT-large, T5-base, T5-
large, and T5-xl to re-rank top-1K paragraphs
from BM25 on MS MARCO passage re-ranking
benchmark. Besides, we list the re-ranking results
on MS MARCO from COIL (Gao et al., 2021)
(MRR@10=34.8) and ColBERT (Khattab and Za-
haria, 2020) (MRR@10=34.9) here for references.
For the TREC DL Track, we select the submit-
ted runs that are most comparable to ours, namely,
the top re-ranking run (Yan et al., 2019) in 2019
(nDCG@10 = 72.5 and MAP= 45.3) and the 4th
best re-ranking run (Cao et al., 2020)5 for 2020
(nDCG@10 = 73.7 and MAP= 48.8).

5The 1st-3rd best runs (Qiao et al., 2021) in 2020 used
TREC DL 2019 data for fine-tuning.

Effectiveness-efficiency trade-off. ED2LM de-
couples the encoding of the document and query,
thereby allowing for caching the document repre-
sentation offline. After pre-computing the docu-
ment presentation as in PreTTR (MacAvaney et al.,
2020), ED2LM achieves a highly favorable trade-
off. From Table 1 and 2, we make the following
observations. (1) ED2LM-small and ED2LM-base
perform at least as good as T5-small and T5-base,
respectively, while providing more than a 2X speed
up. For ED2LM-base, its effectiveness is not signif-
icantly different from T5-large on both TREC DL
Tracks and under-performs by 0.7 (38.7 vs 39.4)
on MS MARCO, while providing a 6.2X speed up.
When comparing with BERT-base and PreTTR,
both ED2LM-small and ED2LM-base perform at
least as good (for MRR@10 and nDCG@10) and
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ED2LM→ Small Base Large xl F-6L×2 F-8L×2

T5-small
F:4.4x/L:2.0x

- - -
F:2.4x/L:0.8x F:3.1x/L:1.0x

r:↑/n:~/m:~ r:~/n:~/m:~ r:~/n:~/m:~

PreTTR
F:5.2x/L:2.9x F:1.2x/L:1.0x

- -
F:2.9x/L:1.3x F:3.7x/L:1.5x

r:~/n:~/m:~ r:↑/n:~/m:↑ r:~/n:~/m:~ r:↓/n:~/m:~

BERT-base
F:10.4x/L:6.8x F:2.5x/L:2.4x

- -
F:5.8x/L:2.9x F:7.4x/L:3.5x

r:↑/n:~/m:↓ r:↑/n:~/m:~ r:~/n:~/m:~ r:↓/n:~/m:~

T5-base -
F:3.2x/L:2.3x

- - - -r:~/n:~/m:~

T5-large -
F:9.6x/L:6.2x F:2.8x/L:3.4x

- - -
r:↓/n:~/m:~ r:↓/n:~/m:~

T5-xl - -
F:10.3x/L:7.5x F:2.6x/L:3.0x

- -
r:↓/n:~/m:~ r:~/n:↓/m:~

Table 2: The comparison of the effectiveness-efficiency trade-off for ED2LM derived from Table 1. Each row
includes one baseline model, and individual columns are one of the ED2LM variants. In each comparison (cell),
the upper part is the efficiency comparison, where F indicates FLOPs and L is the latency (P95). In the lower
part, the comparisons for the effectiveness are summarised. ↑, ↓, and, ~ denote the significant better, worse, and,
no significant difference (at level 0.05) when comparing ED2LM models with the baseline. Herein, r indicates
MRR@10 on MS Marco dev small dataset (re-ranking top-1k from BM25); n and m denote nDCG@10 and
MAP, respectively, on TREC DL Track. We highlight comparisons that ED2LM could provide better effectiveness
(MRR@10 or nDCG@10) or smaller latency.

are up to 6.8X faster. (2) ED2LM-large performs
on par with T5-large on the TREC DL Tracks, but
under performs on MS MARCO by 1.4; whereas
ED2LM-xl achieves similar MRR@10 on MS
MARCO (39.4 vs 39.6), but performs worse in
terms of nDCG@10 on TREC DL Track 2020. Fur-
thermore, in Fig. 2 (MRR@10 on MS MARCO vs
the latency (P95) by re-ranking the top-1K from
docT5query) the leftmost ED2LM-small achieves
better effectiveness than T5-small, PreTTR, and
BERT-base. Likewise, ED2LM-base achieves sim-
ilar latency as PreTTR and is 2.3X more efficient
than BERT-base but achieves higher MRR@10. In
the meantime, though more efficient, ED2LM-xl
and ED2LM-large perform close to their counter-
parts, once again confirming the observations. We
argue that, on the one hand, co-training of query
likelihood and the discriminative cross-entropy
leads to better ranking quality, which is especially
true for the smaller variants (small and base); On
the other hand, not attending to the query dur-
ing document encoding leads to performance de-
creases, which dominates the outcomes in larger
model variants (like large and xl).

ED2LM-F: Storage compression with Funnel
Transformer. The results for the two variants
of ED2LM with Funnel blocks are summarised
in the bottom block of Table 1 and the rightmost

columns in Table 2. In terms of storage, ED2LM-
F-6L×2 provides 4X compression and ED2LM-F-
8L×3 provides 8X compression by reducing the
sequence length in the encoder. It can be seen that,
ED2LM-F-6L×2 outperforms T5-small and per-
forms as well as BERT-base and PreTTR. Further-
more, while ED2LM-F-8L×3 provides 8X com-
pression, the effectiveness drops below that of T5-
small and BERT-base on the MS MARCO bench-
mark. However, it achieves on-par results relative
to T5-small and BERT-base on the TREC DL Track
in terms of both nDCG@10 and MAP. As for effi-
ciency, ED2LM-F-8L×3 is similar to T5-small and
PreTTR, but is 3.5X faster than BERT-base.

5.2 Ablation Analysis

The use of RocketQA-Merge dataset for train-
ing. In our experiments, we find that the rank-
ing quality of the proposed ED2LM, as well
as PreTTR model, benefit considerably from
RocketQA-Merge. We demonstrate the training
performance (upper part) in Table 3 on Rock-
etQA and the MS MARCO training dataset. It
can be seen that T5 achieves similar performance
on both training data sets. In the meantime,
ED2LM achieves MRR@10=37.5 when trained
on the MS MARCO training dataset, and can
achieve 38.7 when trained on the “RQA-Merge”
dataset. This is also true for PreTTR, which sees
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Models MS Marco
Training Data Loss MRR@10

PreTTR MS Marco - 35.2
T5-base MS Marco - 38.4
T5-base RQA-Hard - 38.0

ED2LM-base MS Marco - 37.5
ED2LM-base RQA-Hard - 37.3

ED2LM-base MS Marco LUL (dos Santos et al., 2020) 31.2
ED2LM-base RQA-Merge LUL (dos Santos et al., 2020) 33.6
ED2LM-base RQA-Merge MLE (Eq. 1) 30.2
ED2LM-base RQA-Merge CE (Eq. 2) 38.2

Table 3: Ablation study. In the upper half, the uses of alternative training data are explored. In the lower half,
different loss functions are used to train ED2LM, including the LUL loss from (dos Santos et al., 2020), negative
log-likelihood loss on questions as in (Nogueira et al., 2019a), and the cross-entropy loss on true/false token as
in (Nogueira et al., 2020).

an MRR@10 increase from 35.2 to 36.7. We con-
jecture that the decoupled encoding of query and
documents, as in ED2LM and PreTTR, requires
more queries for training whereas models that use
full cross-attention benefit less from the extra train-
ing data. The training performance of ED2LM-
base on RocketQA-Hard in Table 3 provides evi-
dences for this, where ED2LM-base achieves an
even lower MRR@10. RocketQA-Hard is a subset
of RocketQA-Merge and includes hard negative
samples but without the extra queries. Therefore,
we conclude that more unique questions for train-
ing is one of the ED2LM’s key ingredients.

Alternative loss functions for training. In (dos
Santos et al., 2020), the unlikelihood loss (re-
ferred as LUL) was used to train a BART (Lewis
et al., 2020) model for question answering. In
this section, we train ED2LM using the LUL loss
from (dos Santos et al., 2020) on both the MS
MARCO and RQA-Merge training sets. We also
use the negative log-likelihood loss in Eq. 1 (as in
docT5query (Nogueira et al., 2019a)) and the cross-
entropy loss in Eq. 2 (as in (Nogueira et al., 2020))
to train ED2LM separately. From Table 3 (lower
part), LUL leads to significantly worse MRR@10
than using the loss in Eq. 3 (33.6 vs 38.7), but out-
performs the use of negative log-likelihood loss
from Eq. 1 as in (Zhuang et al., 2021b). When only
using the cross-entropy loss of the true/false token
(Eq. 2), effectiveness is slightly worse than when
using the loss in combination with query likelihood
(38.2 vs 38.7), mirroring the findings from (Ju et al.,
2021). Therefore, we conclude that the use of both
true/false tokens and query likelihood for training
(as in Eq. 3) is another key ingredient for ED2LM.

6 ED2LM for Question Generation

Question generation has played an important role
for different downstream tasks (Shakeri et al., 2020;
Puri et al., 2020; Del Tredici et al., 2021). We
conjecture that the combination of generation and
ranking loss used in ED2LM has the potential to im-
prove question generation when compared to mod-
els trained with generation loss only. We evaluate
this conjecture by comparing questions generated
by vanilla generator trained with question likeli-
hood only (Nogueira et al., 2019b) and ED2LM in
different scenarios: manual inspection, assessment
with automatic metrics and synthetic training data
generation. For question generation task, an extra
“eos” token (namely, the end of sequence token)
is inserted between the question and the true/false
token. Our pilot experiments show that this change
does not influence the ranking performance but
boosts the generation quality of ED2LM. We adopt
the top-k sampling decoding (Fan et al., 2018) (set
k = 10) in question generation for all models.

6.1 Question Generation with Less
Hallucination

Manual inspection of the generated questions.
We investigate the reasons why ED2LM can
significantly outperform deep query likelihood
(MRR@10=38.7 vs 30.2 from Table 3) by a big
margin. We compare the questions generated by
ED2LM and T5 trained with query likelihood as
in Eq. 1. We sample 66 documents from the
MS MARCO passage corpus with at least one
correct query in the MS MARCO development
dataset, and collect 10 unique generated queries
from both ED2LM and T5, ending up with 660
query-documents pairs for annotation. These pairs
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Paragraph

An experience modifier is an adjustment factor assigned to an Employer’s FEIN by the rating bureau
(NCCI or State Bureau). The factor compares your loss data to other employers with the same class
codes, and is expressed as a credit or debit on your policy.

Model Question Answerable ?

T5 is a modifier factor English No
T5 what is experience modifier rating No

ED2LM what is an experience modifier in an insurance policy Yes
ED2LM experience modifier definition Yes

Table 4: Example generations from ED2LM-base and T5-base.

are labeled by eight annotators with a single bi-
nary question: “Is the generated query (question)
answered by the given document (passage)?”. We
avoid potential bias during annotation by not in-
forming the annotators which system generated
which questions. According to the annotated data,
70.6% of the queries generated by ED2LM are an-
swerable by the source document, while 52.1% of
the queries generated by T5 are answerable. We
conjecture that the use of Eq. 3 for training makes
the query generator stick to the document better,
leading to fewer hallucinations, thus producing bet-
ter ranking when the decoder is used as a ranker.

Question vs. paragraph overlap. We measured
the overlap between generated questions and their
respective source passages using a set of 3k gener-
ated questions from each system. Intuitively, ques-
tion generators that hallucinate less are more likely
to stick to the text from the source paragraph. The
overlap is computed as the macro-average of the
question-paragraph word-level overlap, and is nor-
malised using the length of the question. While
T5 has an overlap rate of 55.62% (i.e., 55.62%
of question tokens also appear in the source para-
graph), ED2LM has an overlap rate of 62.14%,
which is more than 6% higher than T5 model. In
Table 4, we present example questions generated
by T5 and ED2LM and their source paragraphs.
Although T5 questions are somewhat related to the
paragraph, the paragraph is not a good answer for
them. For example, in Table 4, the first question T5
hallucinates the word English, which compromises
the question quality.

6.2 Synthetic Training Data for Retrieval
Finally, we demonstrate the advantages of the gen-
erated questions from ED2LM by using them to
train a dual-encoder based passage retrieval model,
following the configurations in (Lu et al., 2021).

Specifically, we train a BERTlarge dual encoder
model using the synthetic question-passage pairs
generated by ED2LM and T5 respectively and re-
port the results on MS MARCO dev set. For each
passage, we generate three synthetic questions. We
also extract hard negatives by randomly sampling
passages from the same document. During train-
ing, we use both in-batch negatives and hard nega-
tives. During inference, we retrieve top 1000 pas-
sages for each question from the passage collection
containing about 8.8 million passages and report
MRR@10. The model using ED2LM generated
data achieves MRR@10=30.4, whereas the model
using T5 generated data gets MRR@10=26.5. We
argue that the boost is due to that the synthetic
training data from ED2LM is with less generation
hallucination (18% according to the manual anno-
tation), thus including few training noise.

7 Conclusion

In this work, we propose a novel model named
ED2LM. ED2LM encodes documents and decodes
the query using a trailing binary class token ap-
pended to the query for ranking. By training on
a dataset with more unique questions (namely,
“RocketQA-Merge” (Qu et al., 2021)) and opti-
mizing both query likelihood and a discriminative
loss over the true/false token, ED2LM achieves
competitive results compared to corresponding T5
models. When used as a decoder-only language
model during inference, ED2LM provides up to
6.8X speedup without sacrificing effectiveness. We
further demonstrate that ED2LM could generate
questions with less hallucination. For future works,
we plan to investigate the uses of ED2LM for dif-
ferent (generation) tasks such as multi-sentence
compression (MRC) (Zhao et al., 2019), headline
generation (Shen et al., 2019), and list question
answering (Katti et al., 2021).
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