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Abstract
We introduce a novel setup for low-resource
task-oriented semantic parsing which incor-
porates several constraints that may arise
in real-world scenarios: (1) lack of similar
datasets/models from a related domain, (2) in-
ability to sample useful logical forms directly
from a grammar, and (3) privacy requirements
for unlabeled natural utterances. Our goal is
to improve a low-resource semantic parser us-
ing utterances collected through user interac-
tions. In this highly challenging but realistic
setting, we investigate data augmentation ap-
proaches involving generating a set of struc-
tured canonical utterances corresponding to
logical forms, before simulating correspond-
ing natural language and filtering the result-
ing pairs. We find that such approaches are
effective despite our restrictive setup: in a low-
resource setting on the complex SMCalFlow
calendaring dataset (Andreas et al., 2020), we
observe 33% relative improvement over a non-
data-augmented baseline in top-1 match.

1 Introduction

We aim to improve the performance of a seman-
tic parser based on previous user interactions, but
without making use of their direct utterances, nor
any associated personal identifiable information
(PII). Such privacy requirements are common in
practical deployment (Kannan et al., 2016), and
semantic parsers are commonly used in real-world
systems such as Siri and Alexa, converting natu-
ral language into structured queries to be executed
downstream (Kamath and Das, 2018).

Constructing semantic parsers can be expensive:
annotating examples consisting of natural language-
logical form pairs often requires trained experts.
Two complementary lines of work has pursued this
concern. First, several works (Zhong et al., 2020;
Cao et al., 2020) tackle low-resource semantic pars-
ing via approaches such as data augmentation. A

1*: Work done during internship at Semantic Machines.

Natural When is Allison’s birthday?

Logical (Yield :output (:start (singleton (:results
(FindEventWrapperWithDefaults :con-
straint (Constraint[Event] :subject (? =
#(String “Allison’s birthday”))))))))

Canonical start time of find event called something
like “Allison’s birthday”

Table 1: An example of natural language, logical form,
and canonical form in the SMCalFlow domain. The
event title, “Allison’s birthday,” is private information.

second line of work (Wang et al., 2015; Xiao et al.,
2016) explores canonical utterances: structured
language which maps directly to logical forms, but
resembles natural language (Table 1). The use of
canonical forms as the target of semantic parsing
has shown benefits in accuracy (Shin et al., 2021;
Wu et al., 2021).

We consider low-resource semantic parsing with
further resource and privacy constraints which may
arise in practical deployment: beyond a small gold
dataset of labeled pairs, we assume only unlabeled
natural utterances which must be masked for PII.
Unlike many prior works, we assume that (1) we do
not have a large dataset of related logical forms in a
different domain, (2) we cannot sample arbitrarily
many useful logical forms, and (3) we must the
preserve privacy of user utterances.

We propose several approaches which are com-
patible with our imposed restrictions, broadly fol-
lowing three steps: (1) generate a set of privacy-
preserving canonical utterances; (2) simulate corre-
sponding natural utterances; and (3) filter the result-
ing canonical-natural utterance pairs to yield addi-
tional “silver” data for training. We more than dou-
ble the performance of a non-data-augmented base-
line on the ATIS domain (Hemphill et al., 1990),
and achieve a 33% relative improvement on the
more realistic SMCalFlow domain (Andreas et al.,
2020). We hope these experiments help motivate
further research interest in parser improvement for
realistic scenarios.
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2 Semantic Parsing in Practice

Our setup assumes access exclusively to:

1. a small “seed” dataset D of natural utterance
with corresponding parses, and

2. a larger set U of unlabeled natural utterances,
for which PII must be masked before use.

In a real-world setting, one might hand-annotate
the seed dataset D to train a system for initial de-
ployment, while then leveraging U to refine a fu-
ture version of the system.

While our setting is highly restrictive, we argue
that it reflects practical constraints. For example, in
practice, the grammar for logical forms—as well as
the synchronous context-free grammar (SCFG) that
maps them to canonical utterances—will often be
written from scratch, precluding transfer learning
methods which leverage a large quantity of similar
data in another domain. Moreover, in complex do-
mains, one cannot expect to sample useful logical
forms directly from a grammar if the grammar is
designed for coverage as in e.g., SMCalFlow (An-
dreas et al., 2020). Therefore, other than D, the
only additional data (excluding additional manual
annotation) are subsequent user inputs in the form
of U , with PII masked to preserve privacy.

3 Related Work

Compared to prior work in low-resource semantic
parsing, our task setup’s constraints require differ-
ent approaches.

First, we consider semantic parsing on an en-
tirely new grammar for logical forms, rather than
adapting to new domains starting from a preexist-
ing grammar (Zhao et al., 2019; Zhong et al., 2020;
Burnyshev et al., 2021; Kim et al., 2021; Tseng
et al., 2021). For example, Zhong et al. (2020) takes
a natural-language-to-SQL model for one database
to propose language-SQL training examples for
another database.

Second, we assume one cannot sample useful
canonical utterances directly from the grammar, un-
like Zhong et al. (2020) and Cao et al. (2020). For
example, Cao et al. (2020) use a backtranslation-
esque approach leveraging large numbers of unla-
beled natural and canonical utterances.

Moreover, we do not even assume direct access
to unlabeled natural utterances, due to real-world
privacy considerations (Kannan et al., 2016; Cam-
pagna et al., 2017). Many works on low-resource

Figure 1: Illustration of one of our proposed methods
for data augmentation (USER-RANK) in low-resource
semantic parsing. We first obtain canonical forms from
unlabeled user data using a parser trained on seed data,
replacing PII. Next, we simulate corresponding natural
language for the generated canonical forms. Finally,
we filter the canonical-natural pairs to obtain our final
silver data pairs for augmentation.

semantic parsing, such as those mentioned previ-
ously, do not consider the privacy aspect.

Nevertheless, recent work (Shin et al., 2021; Wu
et al., 2021; Yin et al., 2021; Schucher et al., 2021)
has demonstrated decent performance given just
a small seed dataset D, by combining pretrained
language models with constrained decoding. For
example, Shin et al. (2021) use only 300 labeled
examples in the complex SMCalFlow dialogue do-
main (Andreas et al., 2020). However, using pre-
trained models to directly generate silver training
data, with a method such as DINO (Schick and
Schütze, 2021), is unsuitable in semantic parsing:
the models are unaware of either the underlying
grammar or the space of parsable queries. One of
our contributions is to explore more effective uses
of pretrained models for data augmentation in a
practical semantic parsing scenario.

Finally, the detection of PII in user data is an
applied topic of interest (Pilán et al., 2022), such as
for safely summarizing call transcripts (Transcribe)
or the automatic detection of doxing (Karimi et al.,
2022). In our work we implement a solution meant
as a proof of concept for our exploration, based on
detecting and replacing named entities.
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4 Practical Augmentation

While finetuning a pretrained model on the seed
dataset D can yield a reasonable parser P (Shin
et al., 2021; Wu et al., 2021), we aim to increase
performance via data augmentation. However, our
realistic setup precludes many prior approaches.
We propose to generate silver data via three main
steps, shown in Figure 1: (1) generate a set C of
canonical utterances c, (2) simulate a set N of
corresponding natural utterances n, and (3) filter
the resulting (c, n) pairs. We suggest multiple ap-
proaches for these steps, and benchmark their effi-
cacy in Sec. 5. The entire procedure can be iterated
multiple times as the parser improves.

4.1 Generating Canonical Utterances

First, we generate canonical utterances c. In princi-
ple, one could sample directly from a task-specific
grammar, but the results may not be useful in prac-
tice (Sec. 5). The remaining options are to generate
c conditioned on either unlabeled natural utterances
U or the seed data D.

Generation conditioned on U (USER). We need
to mask all PII, but this is difficult to guarantee in
the original natural language domain. Therefore,
we first train a parser P on D, and parse each ut-
terance in U to obtain a set of canonical utterances
C′. In the more structured domain of C′ we can
guarantee masking and replacing all PII to yield
the final set C. Critically, it is not necessary that
the initial C′ are correct parses of U ; we only need
a realistic distribution over canonical utterances,
and the initial U is no longer parallel to the final C
anyway due to replacing PII. Hence it is acceptable
if the parser P ’s errors are numerous but unbiased.
In any case, the final C will be somewhat tied to the
true distribution of user utterances in U .

Generation conditioned on D (GPT). A sec-
ond method of generating C is SCFG-constrained
decoding on an autoregressive language model,1

prompting with the seed data D. Specifically, we
prompt with a random concatenation of plans from
D, separated by newlines. The SCFG that defines
canonical utterances constrains the decoding, forc-
ing the model to output a valid canonical utterance.

1Ideally we would use GPT3 (Brown et al., 2020), and
we do so in the ATIS domain, but API limitations in GPT3
together with the requirements of our constrained decoding
force us to use GPT2-XL (Radford et al., 2019) in SMCalFlow.

4.2 Simulated Natural Utterances
For each canonical c in C, we now re-generate a
natural utterance n. While other methods (e.g., fine-
tuning) are possible, here we employ a prompting
approach using GPT3 (Brown et al., 2020). We use
a prompt containing D’s canonical-natural pairs,
ending with the canonical utterance c for which we
want to sample a corresponding n.

4.3 Filtering Silver Data
Many (c, n) pairs we generate may be low-quality,
depending on the task and seed data D available.
To obtain more high-quality pairs, we simulate 20
natural utterances n for each c. We must then filter
the resulting pairs, which we do based on either
reranking or cycle consistency.

Reranking (RANK). We accept the best of 20 sim-
ulated n for each c, and add this (c, n) to our train-
ing data. The reranker combines two scores: (1) the
log-probability that the original D-trained parser P
parses n back to the original canonical c, and (2)
the edit distance between n and c (capped based
on the length of c), which should intuitively be
maximized to encourage linguistic diversity in the
augmented data, perhaps at a small accuracy cost.

Cycle consistency (CYC). We accept a (c, n) pair
if the original parser P parses n back to c. This
assures the resulting pairs’ quality, but may skew
the distribution toward easier examples, which are
less helpful in downstream training.

5 Experiments

Tasks. We evaluate on two domains, both English:

1. ATIS (Hemphill et al., 1990), a flight booking
dataset. We use the Break (Wolfson et al.,
2020) subset.2

2. SMCalFlow (Andreas et al., 2020), a calen-
daring dataset, which we view as the most
complex and realistic.

In each domain, we assume a seed data D of
just 30 pairs, conducting several trials with differ-
ent random samples of seed data to mitigate noise
from this selection. We sample 300 unlabeled nat-
ural utterances U from the dataset, which must be
parsed to canonical forms (using the grammar and
SCFG of Shin et al. (2021)) and then PII-masked

2We also ran preliminary experiments on the DROP (Dua
et al., 2019) and NLVR2 (Suhr et al., 2018) subsets of Break,
but found that the canonical utterances were too unnatural for
any method to perform reasonably (Appendix C).
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before use. Our implementation of PII masking is
based on recognizing and replacing named entities;
see Appendix A for further details.

Methods. We evaluate several methods on each
task, listed below.

1. BASE, a supervised baseline which finetunes
BART (Lewis et al., 2019) on the seed D fol-
lowing Shin et al. (2021), discarding U .

2. USER-RANK, a data augmentation approach
following the USER and RANK methods de-
scribed in Sec. 4.1 and 4.3 respectively, and
depicted in Figure 1.

3. GPT-RANK, a similar approach which gener-
ates c following GPT from Sec. 4.1 instead.

4. USER-CYC, a version which filters (c, n)
pairs via cycle consistency (Sec. 4.3).

5. GRAM-RANK, a weak baseline that samples
initial c directly from the grammar, which we
run only on SMCalFlow since our ATIS gram-
mar is too loosely specified for sampling.

Results. We observe that our best data augmenta-
tion methods (USER-RANK, GPT-RANK) double
the performance of the baseline finetuning method
BASE on ATIS, and outperform it on SMCalFlow
by up to 20% relative gain (Table 2).3 Nonethe-
less, absolute performance remains low due to the
tiny amount of seed data, although we note that
the exact match metric may be unnecessarily harsh,
penalizing some semantically equivalent parses.

Of interest is that GPT-RANK outperforms BASE

despite using only the seed D, and not extra un-
labeled U . Moreover, iterating the data augmen-
tation procedure (USER-RANK-3X, GPT-RANK-
3X) can further improve performance compared to
BASE (relative 150% on ATIS, 33% relative on SM-
CalFlow), by improving the initial parser P used
for parsing unlabeled U or for filtering pairs (c, n),
although we observed in preliminary experiments
that further iterations yielded diminishing benefits.

In contrast, USER-CYC performs poorly on
ATIS, indicating that the CYC filtering is perhaps
too restrictive for certain domains. Even on SM-
CalFlow where performance is decent in compari-
son, the successful cycles are overwhelmingly for
relatively trivial canonical utterances (e.g., “Hello!
How are you?”). We additionally observe that
nearly one-third of cycles are successful, much

3Although the standard deviations appear large, the varia-
tion between trials is largely due to randomness in selecting
the seed data D. For example, USER-RANK is better than
BASE on SMCalFlow with p = .0004 on a paired t-test.

Method ATIS SMCalFlow

BASE 6.8 ± 3.5 13.2 ± 3.4
USER-RANK 13.4 ± 4.1 15.5 ± 3.7
GPT-RANK 13.7 ± 3.2 15.9 ± 2.7
USER-CYC 6.0 ± 2.3 15.0 ± 4.0
GRAM-RANK 13.4 ± 2.8

USER-RANK-3X 17.3 ± 1.3 17.6 ± 4.6
GPT-RANK-3X 16.7 ± 3.5 16.1 ± 3.0

Table 2: Main results on ATIS and SMCalFlow for dif-
ferent methods. Top-1 parsing match percentage eval-
uated over 5 (ATIS) or 10 (SMCalFlow) trials on dif-
ferent seed datasets D. For the two highest-performing
methods, USER-RANK and GPT-RANK, we iterate data
augmentation 3 times on SMCalFlow, yielding USER-
RANK-3X and GPT-RANK-3X. USER-RANK-3X per-
forms best overall.

more than the actual validation set accuracy of
15%, indicating that our auto-generated user ut-
terances remain less challenging and diverse com-
pared to real user utterances. Meanwhile, GRAM-
RANK is no better than the unaugmented baseline
BASE: sampling plans directly from a grammar
is ineffective in a complex, realistic domain like
SMCalFlow.

5.1 Analysis
We conduct additional analyses on SMCalFlow.

Reranking. First, we run ablations on reranking
in USER-RANK (Table 3). While our edit distance
heuristic described in Sec. 4.3 makes little differ-
ence, reranking of some form is crucial. Mean-
while, there are many possibilities for other rerank-
ing procedures.

Method SMCalFlow

BASE 13.2 ± 3.4
USER-RANK-3X 17.6 ± 4.6
USER-NOEDITRANK-3X 17.3 ± 4.7
USER-NORANK 12.8 ± 3.5

Table 3: SMCalFlow reranking ablations. Since the
version without reranking (USER-NORANK) is no bet-
ter than the baseline, we do not iterate the data augmen-
tation procedure. The edit distance heuristic makes lit-
tle difference in this case (USER-NOEDITRANK-3X vs.
USER-RANK-3X), but reranking is crucial.

Effect of Masking PII. We rerun our full pipeline
for USER-RANK on SMCalFlow, removing only
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the step where we resampled PII, in order to iso-
late the effect of doing so (Table 4, USER-RANK-
KEEPPII). As one might expect, replacing PII hurts
performance, albeit slightly. Of course, if PII is
not a concern, then many other data augmentation
schemes from prior work become possible again.

Method SMCalFlow

USER-RANK 15.5 ± 3.7
USER-RANK-KEEPPII 16.2 ± 2.8

Table 4: SMCalFlow ablation where we do not resam-
ple PII. As expected, performance is slightly better if
we do not need to resample PII.

Additional Seed Data. We explore using a larger
seed dataset D on both ATIS and SMCalFlow (90
and 100 data points respectively, instead of 30).
On SMCalFlow, we observe that USER-RANK’s
gains over the baseline largely disappear (Table 5).
Thus, improved data augmentation methods which
still yield gains with larger seed datasets are an
important direction for future exploration.

Method ATIS (90 seed) SMCalFlow (100 seed)

BASE 21.4 ± 1.8 31.6 ± 0.3
USER-RANK 21.4 ± 1.7 31.7 ± 1.0

Table 5: Results with more seed data. We use a seed
datasetD of size 90 (ATIS) or 100 (SMCalFlow) rather
than 30, with 3 trials per method. The gains from data
augmentation largely disappear at this scale, so we do
not do additional augmentation iterations.

Examples and Error Analysis. Finally, in Table
6 we show several SMCalFlow example parses
by the baseline BASE compared to our highest-
performing method USER-RANK-3X. Compared
to BASE, USER-RANK-3X is often better at seg-
menting names (Example 1), and is also more likely
to be semantically similar to the gold parse in cases
where BASE is wildly incorrect (Example 2). Nev-
ertheless, in the latter example, USER-RANK-3X

is still marked wrong, suggesting that our exact
match metric may somewhat underrepresent the
performance of all models. Finally, both meth-
ods struggle on more complex and/or composite
intents (Example 3). Additional examples illus-
trating these phenomena are shown in Appendix
B.

Example 1

Previous Agent

Natural please make a meet with my doctor
sarah

BASE create event with " doctor"

USER-RANK-3X create event with " doctor sarah"

Gold Canonical create event with " doctor sarah"

Example 2

Previous Agent Let me know if there’s anything else
I can help you with.

Natural no

BASE does there exist an event tomorrow
9 military

USER-RANK-3X Looks good!

Gold Canonical Thanks for your help!

Example 3

Previous Agent

Natural Please accept the bowling
fundraiser and tell sammy I
will bring refreshments.

BASE create event called " bowling
fundraiser" starting month 4 11 2019
5 PM

USER-RANK-3X create event called " bowling
fundraiser"

Gold Canonical respond Accepted with comment "
I will bring refreshments" to find
event called something like " bowl-
ing fundraiser"

Table 6: Example parses by the baseline BASE and our
best method USER-RANK-3X on SMCalFlow. Each ex-
ample contains the previous agent utterance (if it exists)
and user utterance in the first two lines, followed by the
BASE parse, USER-RANK-3X parse, and gold parse.

6 Conclusion

We have discussed a challenging setting for low
resource semantic parsing based on real-world re-
source and privacy constraints. In addition to a seed
dataset, the only resources allowed are unlabeled
natural utterances which must be PII-masked. We
observe that data augmentation approaches lever-
aging pretrained language models can still improve
over supervised baselines which use only the seed
dataset. At the same time, substantial room remains
for improvement: there are many alternatives to our
reranking procedure for silver data, and our method
loses some effectiveness when more labeled data
is provided. We hope that our exploratory obser-
vations help lay a foundation for further work in
realistic data augmentation approaches for seman-
tic parsing.
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Ethical Considerations

We believe our work makes a positive impact by
focusing heavily on the need for privacy consid-
erations when exploring low-resource settings for
semantic parsing. However, as our methods rely
heavily on large pretrained language models such
as GPT3, we may inherit similar biases which such
models are known for (Brown et al., 2020).
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A Masking and Replacing Personal
Identifiable Information

A.1 ATIS

The ATIS grammar is somewhat loosely defined
and does not clearly indicate the instances of PII.
This would be problematic in a real production
setting due to making it difficult to guarantee mask-
ing out all PII. However, for our experiments we
simply truecase the data and apply named entity
recognition using spaCy (Honnibal et al., 2020),
which we find is highly successful from a qualita-
tive inspection. We treat detected named entities as
PII.

To remove PII, we devise two methods: 1. mask-
ing and 2. generating entirely new plans. In 1., we
apply the above method to detect PII, mask it with
the entity type, and ask GPT3 to infill (Figure 2).
In 2., correponding to our GPT-RANK method, we
feed GPT3 example plans from the seed data and
ask for an entirely new plan that does not contain
PII (Figure 3).

Figure 2: An example of infill masking PII.

A.2 SMCalFlow

Since the SMCalFlow grammar (described in detail
in Appendix A.2 of Shin et al. (2021)) is type-
annotated, we define three categories of PII: names,
event titles, and locations. Each category is easily
identifiable from the logical form, so it suffices to
sample a new value from the same category in the
logical form to guarantee that PII is replaced.

We sample names from a distribution balanced
for ethnicity and gender. For event titles and loca-
tions, we sample them from GPT3 by prompting
with seed data canonical forms containing event ti-
tles and/or locations, and then prefixing the genera-
tion with find event called something
like " (event titles) or a mix of weather at
" and find event at " (locations). We cut
off the generation once the next " appears.

INPUT: return ground transportation ;return
#1 in boston ;return #2 between the air-
port ;return #3 and downtown

return flights ;return #1 that are nonstop
;return #2 from san diego ;return #3 to
new york

return flights ;return #1 from denver ;re-
turn #2 to pittsburgh ;return #3 leaving
after 6pm ;return #3 leaving before 7pm
;return #1 of both #4 and #5

GPT3: return flights ;return #1 that are
nonstop ;return #2 between denver
;return #3 and oakland ;return #4
leaving after noon ;return #5 arriving
after 5pm

Figure 3: INPUT is an example prompt, consisting of
several plans from the seed data, given to GPT3 to gen-
erate new plans to begin the data augmentation proce-
dure in GPT-RANK.

B Example Parses

We include some additional example parses for
USER-RANK-3X compared to BASE on SM-
CalFlow, as well as GPT-RANK-3X compared to
BASE on ATIS, when both start with the same seed
data (Tables 7, 8, 9).

We additionally provide some qualitative analy-
sis on the SMCalFlow examples. Most examples
that both methods get correct are relatively sim-
ple intents (Example 1). However, there are also
many examples where one or both methods output
a parse which a human might judge semantically
equivalent to the true parse (Examples 2 and 3),
suggesting that our exact match metric might un-
derrepresent the true strength of the models.

The next few examples illustrate cases in which
USER-RANK-3X improves over BASE, for example
by being better at segmenting names (Examples 4).
BASE is also sometimes just wildly incorrect on
examples where USER-RANK-3X matches the gold
exactly, or at least closely in meaning (Examples 5
and 6). Of course, given the tiny amount of initial
training data, USER-RANK-3X is not immune to
these types of errors either (Example 7).
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Example 1

Previous Agent I’ve deleted your event matching
"doctor’s appointment".

Natural thank you

BASE Thanks for your help!

USER-RANK-3X Thanks for your help!

Gold Canonical Thanks for your help!

Example 2

Previous Agent Ok, I won’t do anything for now. Let
me know what else I can help you
with.

Natural Make an appointment for tomorrow
from 1pm to 6pm

BASE create event starting tomorrow 1 PM
to 6 PM

USER-RANK-3X create event starting tomorrow 1 PM
to 6 PM

Gold Canonical create event starting tomorrow 1 PM
ending 6 PM after that datetime

Example 3

Previous Agent Next is your tour potential develop-
ment sites on Thursday the 28th from
3:00 to 5:00 PM.

Natural I want to delete that one.

BASE delete the event

USER-RANK-3X delete find event

Gold Canonical delete the event

Example 4

Previous Agent Does one of these work?

Natural When is Easter next year?

BASE start time of find event called some-
thing like " Easter next year"

USER-RANK-3X start time of find event called some-
thing like " Easter" starting next year

Gold Canonical Easter next year

Table 7: Example parses by the baseline BASE and our
best method USER-RANK-3X on SMCalFlow.

Example 5

Previous Agent

Natural list to me my calendar please

BASE create event on today afternoon

USER-RANK-3X find event

Gold Canonical find event

Example 6

Previous Agent The "library" is on Monday the 30th
from 10:00 to 10:30 AM.

Natural Ok! now tell me when does my Cof-
fee Date start?

BASE ERROR: can’t answer trivia

USER-RANK-3X start time of find event called some-
thing like " Coffee Date"

Gold Canonical start time of find event called some-
thing like " Coffee Date"

Example 7

Previous Agent

Natural Hey, I was wondering who the orga-
nizer is for the museum event next
week.

BASE ERROR: can’t answer trivia

USER-RANK-3X ERROR: can’t answer trivia

Gold Canonical organizer of find event called some-
thing like " museum" during next
week

Table 8: Additional example parses by the baseline
BASE and our best method USER-RANK-3X on SM-
CalFlow.
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Example 8

Previous Agent

Natural I want a flight from houston to mem-
phis on tuesday morning

BASE return flights ;return #1 from houston
;return #2 to memphis ;return #3 on
tuesday morning

GPT-RANK-3X return flights ;return #1 from houston
;return #2 to memphis ;return #3 on
tuesday morning

Gold Canonical return flights ;return #1 from houston
;return #2 to memphis ;return #3 on
tuesday ;return #4 in the morning

Example 9

Previous Agent

Natural What ground transportation is avail-
able from the pittsburgh airport to
downtown and how much does it cost

BASE return transportation ;return #1 that
is ground ;return #2 to downtown
pittsurgh; return cost of #4

GPT-RANK-3X return transportation ;return #1 that is
ground ;return #2 from the pittsburgh
;return #3 to downtown pittsburgh; re-
turn cost #4

Gold Canonical return ground transportation ;return
#1 which is available ;return #2 from
the pittsburgh airport ;return #3 to
downtown ;return the cost of #4

Table 9: Additional example parses by the baseline
BASE and our best method GPT-RANK-3X on ATIS.

C Preliminary Experiments on Other
Break Subsets

We additionally ran preliminary experiments on
the DROP (Dua et al., 2019) (reading comprehen-
sion) and NLVR2 (Suhr et al., 2018) (language-
vision reasoning) subsets of Break (Wolfson et al.,
2020). We used a similar setup to our ATIS and
SMCalFlow experiments, with 30 initial seed data
D and 300 unlabeled user utterances U .

However, across multiple trials of multiple meth-
ods (BASE, USER-RANK, GPT-RANK, USER-
CYC), we never observed performance above 2%
on either domain. This may be partially due to the
diversity of the data; for example, DROP is an amal-
gamation of data from several sources. However,
we hypothesize that this across-the-board poor per-
formance is primarily the result of an SCFG for
canonical utterances which results in somewhat un-
natural language (Table 10), and that performance
could be greatly improved with a better SCFG.
Given the current form of our canonical utterances
in DROP and NLVR2, it is challenging to learn the
task given just 30 seed examples. In comparison,
the SMCalFlow canonical utterances (Table 1 in
the main text) are much more natural.

DROP Natural Which player had the short-
est touchdown reception of the
game?

DROP Canonical return touchdown receptions ;re-
turn shortest of #1 ;return player
of #2

NLVR2 Natural If there are two carts, but only one
of them has a canopy.

NLVR2 Canonical return carts ;return number of #1
;return if #2 is equal to two ;return
canopy ;return #1 that has #4 ;re-
turn number of #5 ;return if #6 is
equal to one ;return if both #3 and
#7 are true

Table 10: Examples of natural utterances with corre-
sponding canonical utterances for DROP and NLVR2
domains. The language of the canonical utterances is
relatively unnatural.

We additionally inspect some inaccurate exam-
ple predictions by BASE on DROP and NLVR2,
which are often wildly incorrect (Table 11). We
also show some example (c, n) pairs generated by
our data augmentation procedure, demonstrating
the failure to propose good natural language n
given the limited data and unnatural canonical c
(Table 12).
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DROP Natural Which player threw more yards
in the game, Young or Man-
ning?

DROP Top-1 Parse return that was the highest ;re-
turn that was more of #1 ;return
number of #2 for each #1 ;return
#1 where #3 is lower than one
;return number of #4

NLVR2 Natural If there are bananas with stick-
ers on them

NLVR2 Top-1 Parse return, ;return number of #1 ;re-
turn if #2 is equal to one

Table 11: Predictions by BASE on DROP and NLVR2
which are wildly incorrect. Our data augmentation
methods fare no better.

DROP Canonical return the five

DROP Simulated Natural Fact-checkers failed to
catch five factual errors.

NLVR2 Canonical return left image ;return
#1 that are dirty ;return
if #2 is in one of the im-
ages

NLVR2 Simulated Natural If any of the trucks are
dirty.

Table 12: Example simulated natural utterances gener-
ated by prompting GPT3 on DROP and NLVR2, after
reranking and selecting the best of 20 generations. The
correspondence between canonical and simulated natu-
ral utterances remains imperfect.
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