Do Pre-trained Models Benefit Knowledge Graph Completion?
A Reliable Evaluation and a Reasonable Approach

Xin Lv!?, Yankai Lin?, Yixin Cao*, Lei Hou?*, Juanzi Li'>
Zhiyuan Liu'2, Peng Li°", Jie Zhou®
'Department of Computer Science and Technology, BNRist
2KIRC, Institute for Artificial Intelligence, Tsinghua University, Beijing 100084, China
3Pattern Recognition Center, WeChat Al, Tencent Inc., China
4Singapore Management University, Singapore
SInstitute for Al Industry Research (AIR), Tsinghua University, China

lv-x18@mails.tsinghua.edu.cn,

Abstract

In recent years, pre-trained language models
(PLMs) have been shown to capture factual
knowledge from massive texts, which encour-
ages the proposal of PLM-based knowledge
graph completion (KGC) models. However,
these models are still quite behind the SOTA
KGC models in terms of performance. In
this work, we find two main reasons for the
weak performance: (1) Inaccurate evaluation
setting. The evaluation setting under the closed-
world assumption (CWA) may underestimate
the PLM-based KGC models since they intro-
duce more external knowledge; (2) Inappro-
priate utilization of PLMs. Most PLM-based
KGC models simply splice the labels of entities
and relations as inputs, leading to incoherent
sentences that do not take full advantage of the
implicit knowledge in PLMs. To alleviate these
problems, we highlight a more accurate evalua-
tion setting under the open-world assumption
(OWA), which manually checks the correctness
of knowledge that is not in KGs. Moreover, mo-
tivated by prompt tuning, we propose a novel
PLM-based KGC model named PKGC. The
basic idea is to convert each triple and its sup-
port information into natural prompt sentences,
which are further fed into PLMs for classifica-
tion. Experiment results on two KGC datasets
demonstrate OWA is more reliable for evaluat-
ing KGC, especially on the link prediction, and
the effectiveness of our PKCG model on both
CWA and OWA settings.

1 Introduction

Knowledge graph (KG) has gradually become the

cornerstone of many Natural Language Processing

(NLP) tasks (Cui et al., 2017; Zhou et al., 2018), as

one of the most effective ways to represent world
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Figure 1: Evaluation results for link prediction under
different settings. The bolded entities in the dashed
box are all correct answers, but only the red entities are
considered correct under the closed-world assumption.

knowledge. To improve the coverage, researchers
have automated knowledge extraction techniques
or relied on collaborative editing, while these KGs
still hardly cover the massive emerging knowledge
in the real world. This problem motivates knowl-
edge graph completion (KGC), the task of predict-
ing missing links through understanding existing
structures in KGs.

Soon sweeping across the entire NLP field, the
potential of pre-trained language models (PLMs)
for KGC has attracted much attention. Petroni et al.
(2019); Shin et al. (2020) reveal that PLMs have
captured factual knowledge implicitly from mas-
sive unlabeled texts. This could be helpful to com-
plete missing knowledge. KG-BERT (Yao et al.,
2019) first introduces PLMs into KGC. It splices
the labels of entities and relation in the triple as
the input of PLMs to verify its correctness. Kim
et al. (2020) further introduces multi-task learn-
ing on the basis of KG-BERT. However, the above
PLM-based KGC models do not present promis-
ing results, or are even quite behind conventional
knowledge graph embedding (KGE) models (about
20.8% lower than the SOTA model in Hits@10).
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This raises a question: why the learned factual
knowledge in PLMs cannot be beneficial for KGC?

In this work, we find two main reasons for the
weak performance of PLM-based KGC models:
(1) Inaccurate evaluation setting. Most existing
KGC models are evaluated under the closed-world
assumption (CWA), which assumes that any knowl-
edge unseen in given KGs is incorrect. Such a
setting can benefit the automatical dataset construc-
tion without manual annotation. However, the intro-
duction of PLMs brings in much unseen knowledge,
which is considered to be incorrect under CWA,
wrongly lowering the performance. As shown in
Figure 1, for a triple query (England, contains, ?),
the PLM-based KGC model gives many correct
tail entities (highlight with boldface), but only Pon-
tefract is considered correct under CWA since it
exists in KGs. (2) Inappropriate utilization of
PLMs. Existing PLM-based KGC models sim-
ply splice the labels of the entities and relations
in the triples as the input of PLMs. This results
in incoherent sentences, which gaps with the pre-
trained task and thus cannot take full advantage of
the knowledge in PLMs.

To alleviate the above two problems, we propose
a new benchmark setting for rectification of this
line of research and a novel PLM-based model.
To make the KGC evaluation more credible, we
highlight a new evaluation setting based on the
open-world assumption (OWA) — the knowledge
not in KGs is not false, but unknown. Thus, false
positives under CWA shall be removed, as long
as we recognize exact true and false triples from
unknown. For these unknown triples, we conduct
human annotation to check if they are valid.

We further propose a novel PLM-based KGC
model, PKGC, to better induce the implicit knowl-
edge hidden in the PLM’s parameters. Motivated
by the prompt-based models (Petroni et al., 2019;
Shin et al., 2020), the basic idea is to convert each
triple into natural prompt sentences instead of sim-
ply splicing their labels. In specific, we manually
define the prompt template for each relation type
and further introduce soft prompts to better express
the semantics of triples. Moreover, benefiting from
prompt tuning, PKGC can flexibly consider the
contexts of triples, such as definition and attributes
by inserting them as the support prompt at the end
of the triple prompt.

We conduct experiments on two KGC datasets
sampled from Wikidata and Freebase, and re-

evaluate the KGE-based and PLM-based KGC
models under OWA instead of CWA. According
to our experimental results, we find that: (1) OWA
provides a more accurate evaluation for KGC, es-
pecially for the more knowledgeable PLM-based
KGC model and the more open link prediction
task. (2) By converting triples and supporting infor-
mation into natural prompt sentences, our PKGC
model can effectively utilize the PLM’s knowledge
in the KGC task, and thus is less sensitive to the
amount of training data. (3) The reason for the
good performance of our model is not only that
PLMs have seen part of relevant knowledge in mas-
sive text, but also that our model has the reasoning
ability and can combine knowledge from PLMs
and KGs to infer unknown knowledge.

2 Related Work

2.1 Evaluation of KGC

Most exitsing KGC models (Ji et al., 2021) are
evaluated under CWA, since the datasets can be
constructed automatically. However, CWA is es-
sentially an approximate assumption, which may
bring inaccurate evaluation results.

OWA is rarely used to evaluate the performance
of KGC models since it requires manual annota-
tion for unseen triples. In recent years, there are
two datasets CoDEx (Safavi and Koutra, 2020) and
InferWiki (Cao et al., 2021), which provide evalu-
ation datasets for triple classification under OWA.
Besides, Safavi et al. (2020) evaluat the calibration
of knowledge graph embeddings under OWA. Al-
though these works are partially performed under
OWA, they only use OWA as an additional experi-
mental setting. In this work, we first systematically
compare the differences between different models
and different tasks under CWA and OWA. We find
that CWA cannot accurately reflect the real perfor-
mance of KGC models, which is more evident for
PLM-based KGC models and link prediction task.

2.2 KGC Models

KGE models are the early mainstream approach for
KGC. KGE models can be divided into three cate-
gories: (1) translation-based models (Bordes et al.,
2013; Sun et al., 2019); (2) tensor-factorization
based models (BalaZevic et al., 2019; Nickel et al.,
2016) and (3) non-linear models (Dettmers et al.,
2018; Nguyen et al., 2017). In addition, there are
some KGE models that further introduce additional
information, such as text (Xie et al., 2016; Veira
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et al., 2019) and attributes (Lin et al., 2016).

In addition to KGE models, there are some PLM-
based models that attempt to obtain knowledge
from PLMs, which are detailed in the following.

PLM-based KGC models fine-tune the PLMs
on the KGC task to leverage both the implicit
knowledge in PLMs and the structured knowledge
in KGs. KG-BERT (Yao et al., 2019) is the first
model that uses PLMs to perform KGC. It simply
splices the labels of entities and relations in triples
as the input to PLMs. Based on KG-BERT, Kim
et al. (2020) further introduce multi-task learning,
and Talukdar et al. (2021) focuses on zero-shot
learning setting. Compared with our model, these
model all simply splices the labels in triples, which
results in incoherent sentences and cannot fully
exploit the implicit knowledge in PLMs.

Prompt-based knowledge probing models
aims at probing how much knowledge the PLM
contains. Therefore, they do not fine-tune the PLM
on KGC tasks. LAMA (Petroni et al., 2019) is
the first prompt-based knowledge probing work,
which converts a triple query into sentences with

[MASK] and uses the output of [MASK] as the
predicted entity. Based on LAMA, there are some
models (Shin et al., 2020; Zhong et al., 2021; Liu
et al., 2021) improved from automatic template
generation and adding soft prompts. These models
focus on probing and do not use the knowledge
already in KGs. In addition, most of them can only
predict entities with a single token, so these models
cannot be realistically used for KGC yet.

3 Preliminary

Knowledge graph is a network composed of en-
tities and relations. It can be defined as XG =
{€,R, T}, where £ is the set of entities and R is
the set of relations. 7 = {(h,r,t)} CEXR x &
is the triple set, where h and ¢ are the head and tail
entities, and r is the relation between them.

Knowledge graph completion task aims at com-
pleting missing triples (h,r,t) ¢ T for the knowl-
edge graph. There are two main methods to do
this task, namely link prediction and triple classifi-
cation, where the former mainly predicts missing
entities for triple queries (h,r,?) or (?,r,t), and
the latter aims to determine whether a given triple
(h,r,t) is correct or not.

Closed-world assumption (CWA) believes that
the triples that do not appear in a given knowledge
graph are wrong. This means that if the dataset con-

sists of training/validation/test set, and the model
is tested on the test set, only the triples that have
appeared in the entire dataset are considered to be
correct. We can easily evaluate the performance of
models without annotation under CWA. However,
CWA is essentially an approximation and cannot
guarantee the accuracy of the evaluation results.

Open-world assumption (OWA) believes that
the triples contained in the knowledge graph are
not complete. Therefore, the evaluation under the
open-world assumption is more accurate and closer
to the real scenario, but requires additional human
annotations to carefully verify whether the com-
pleted triples that are not in the knowledge graph
are correct or not.

4 Methodology

4.1 Framework

In this paper, we propose a novel PLM-based KGC
model named PKGC, which can leverage the im-
plicit knowledge in PLMs and the structured knowl-
edge in KGs to infer new knowledge.

Specifically, on the one hand, we convert a triple
into prompt sentences to use the knowledge in
PLMs. As shown in Figure 2, given a triple, our
model transforms it into triple prompts P” and
support prompts P°, which are jointly fed into
a pre-trained language model. Formally, the fi-
nal input texts 7' to the PLM can be defined as
T = [cLS]PT PS[SEP] and the output of
[CLS] in the language model is used to predict
the label of the given triple. On the other hand,
we feed positive/negative triples to our model for
triple classification and use cross-entropy loss for
training. In this way, our model can exploit the
structural information in KGs.

In the following sections, we will introduce the
design strategy of triple prompts(Section 4.2) and
the production method of support prompts (Section
4.3) in detail. In addition, we will also explain the
training method of our model in Section 4.4.

4.2 Triple Prompts

To better exploit the implicit knowledge in PLMs,
we transformed each triple into triple prompts. Mo-
tivated by LAMA (Petroni et al., 2019), for every
relation 7 € R, we manually design a hard tem-
plate for the relation to represent the semantics of
the associated triples. For example, in Figure 2, the
hard template for relation member of sports team is
“[X] plays for [Y].”. By replacing [X] and [Y] with
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Lebron James: American basketball player.

Definition
Lakers: American professional basketball team. e °

________________________ -

The sport number of Lebron James is 23. !
| .
The Founding year of Lakers is 1947. /l Attribute
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Triple: (Lebron James, member of sports team, Lakers)

Figure 2: Illustration of our PKGC model for triple classification. Triples are transformed into triple prompts (left
part) and support prompts (right part) to do the classification using PLMs.

the labels of the head and tail entities, we can ob-
tain the preliminary triple prompts PpT . In Figure
2, PpT is “Lebron James plays for Lakers.”.

To make triple prompts more expressive, in-
spired by Han et al. (2021), we also add some soft
prompts to Pg to form the final triple prompts
PT. Formally, we have a vector lookup table
P e RIRI*7xd for soft prompts, where n is the
total number of soft prompts contained in the triple
prompts for one triple, and d is the dimension of the
word vector corresponding to the language model.
As shown in Figure 3, the template and entity label
split the triple prompts into six positions and we can
insert soft prompts in them respectively. The num-
ber of soft prompts at each position is 1, na, - - - ng.
In our model, we have n = "0 _ n;. For the k-th
soft prompt [SP];, in the triple prompts, when it
is input to the language model, the corresponding
word vector will be replaced with a vector from
P,ie.,pF = Plidge(r) 1 € RY, where idx(r) is the
ranking index of relation 7. In other words, pF is
the k-th vector corresponding to the relation 7 in P.
As the training progresses, the vector lookup table
P will be updated so that it can better represent
the semantics of the corresponding triples together
with the hard templates.

4.3 Support Prompts

In addition to the triple information in the knowl-
edge graph itself, there are many support informa-
tion that can help knowledge graph completion,

® ® ® ® ® ®

__Template __ Entity Label __ Template __ Entity Label __ Template __ .

Figure 3: Illustration of inserting soft prompts into triple
prompts. The "Template" in the sentence represents the
words in the hard template. We can insert several soft
prompts in six positions (underlined) at most, and the
sum of the numbers of these soft prompts is n.

such as definition and attribute. In previous knowl-
edge graph embedding models (Veira et al., 2019;
Lin et al., 2016), it is usually necessary to change
the model structure to introduce specific types of
additional information, which will bring a lot of
additional overhead and is not conducive to the uni-
fication of multiple types of support information.

Due to the generality of the language, it is easy to
introduce various support information in our model
without changing the model structure. As shown
in Table 1, we define templates to convert support
information into the corresponding sentences. For
atriple (h,r,t), there may be more than one corre-
sponding attribute. In order to avoid too complex
models, in this work, we use a random strategy
to select attributes, i.e., randomly selecting an at-
tribute for each entity in a triple.

It is worth noting that our model does not require
all support information to be present. If it does not
exist, just do not add the corresponding information.
In addition, our model can also support more other
types of support information well, just by manually
defining the corresponding templates as in Table 1.
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Type Template
Definition “[Entity]: [Definition Text].”
Attribute  “The [Attribute] of [Entity] is [Value].”
Table 1: Templates for support information, where

[Entity], [Attribute], [Value] denote the label of entity,
attribute and value respectively. [Definition Text] is the
text corresponding to the entity definition.

4.4 Training

Our model is trained on the triple set D =T UT —
as triple classification. Specifically, 7~ consists of
two types of negative triples: (1) random negative
triples 74N> Which is generated by randomly re-
placing the head or tail entities of the triple in 7
with other entity in £. Random negative examples
are simple, but can cover most entities. (2) KGE-
based negative triples Ty g, which is generated by
replacing the head or tail entity with another en-
tity that the KGE model considers to have a high
probability of holding. KGE negative triples are
more difficult. In our model, there is a hyperpa-
rameter « to control the ratio of Ty, and Ty,

o Tranl a
Le., RAN — O,
Tigel 2~ . g
perparameter K to control the ratio of positive and
negative triples, i.e., |7| = K -|7 ~|. Given a triple
7 = (h,r,t), the classification score for the triple

can be defined as:

Besides, we also have a hy-

s; = Softmax(Wc), (1)

where ¢ € R? is the output vector of the input
token [CLS], W € R%*4 ig a linear neural net-
work. We define the following cross-entropy loss
for optimization:

l 0
L=— 3 (ylog(sh) +(1—y) Og;;’)), @
TETUT —

where y, € {0,1} is the label for triple 7 and
sV, sl € [0, 1] are the value of the first two dimen-

TS T
sions of s..

S Experiments

In experiments, we give the results of models un-
der CWA and OWA.. Specifically, the results under
CWA are for reference, and the results under OWA
can better reflect the real performance of the model.

5.1 Evaluation Protocol

Link Prediction Given a positive triple (h, r,t)
in the test set, we convert it into a triple query

Dataset €] |R| # Train # Valid # Test

Wiki27K 27,122 62 74,793  20,242/1,994 20,244/1,994
FB15K-237-N 13,104 93 87,282 14,082/2,046 16,452/2,048
FB15K-237-NH 13,104 93 87,282 14,082/1,006 16,452/1,004

Table 2: Statistics of the datasets we use, where # Train
, # Valid and # Test denote the number of triples in
the training, validation and test sets, respectively. For
the right two columns, the front and back of the slash
represent the number of triples used for evaluation under
CWA and OWA, respectively.

(h,r,?7) or (?,r,t). The link prediction task re-
quires the model to give a descending order of
the probability that each entity is the missing en-
tity. Following previous work (Dettmers et al.,
2018), we use two evaluation metrics, i.e., MRR
and Hits@N. However, these two metrics are not
applicable in link prediction under OWA since we
cannot get the true label of all possible triples by
manual annotation. For example, given a medium-
sized dataset with 10,000 entities and 10,000 triples
in the test set, we need to know the true labels of
at most 200 million (2 x 10,000 x 10, 000) triples,
which is not possible to get by annotation. There-
fore, we use an alternative evaluation. Specifically,
we sample triples from test set and fill the missing
entity with the top-1 predicted entity. Then, we
manually annotate the correct ratio of these triples.
This evaluation metric is denoted as CR@1.

Triple Classification Triple classification task
aims to judge whether a given triple is correct or not.
This is essentially a binary classification task, so
we use Accuracy and F1 as the evaluation metrics.
In contrast to link prediction, triple classification
task enables a low-cost evaluation of the model’s
performance under OWA, because we only need
to ensure a small number of (consistent with the
number of positive triples in the test set) negative
triples that are really wrong through annotation.

5.2 Datasets

We use two main datasets sampled from Wikidata
and Freebase in our experiments.

As we introduce in Section 2, CoDEx and In-
ferWiki provide evaluation datasets for triple clas-
sification under OWA. However, they have some
problems that do not apply to our task. For example,
the distribution of relations for the negative triples
of CoDEXx differs significantly from the training set,
which violates the assumption of consistent distri-
bution. InferWiki is mainly concerned with the
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Model Wiki27K FB15K-237-N
MRR @1 @3 @10 CR@l MRR @1 @3 @10 CR@1

» TransE (Bordes et al., 2013) 155 32 228 378 160 255 152 30.1 459 420
g TransC (Lv et al., 2018) 175 124 215 339 200 233 129 298 395 440
§ ConvE (Dettmers et al., 2018) 226 164 244 354 215 273 192 305 429 485
m WWV (Veira et al., 2019) 19.8 157 237 365 225 269 13.7 287 443 405
a TuckER (BalaZevi¢ et al., 2019) 24.6 183 26.5 382 33.0 31.2 228 346 48.6 51.0

RotatE (Sun et al., 2019) 21.6 123 256 394 305 279 17.7 320 481 530
~ KG-BERT (Yao etal., 2019) 192 119 219 352 355 203 139 20.1 403 475
§ LP-RP-RR (Kim et al., 2020) 21.7 138 235 379 380 248 155 256 436 525
< PKGC 252 189 285 39.0 440 307 232 328 47.1 585
5 PKGC w/ attribute 255 19.1 288 394 440 31.1 235 329 477 585
&~  PKGC w/ definition 28,5 23.0 305 409 475 332 261 346 48.7 625

Table 3: Link prediction results on two datasets. @X denotes Hits@X. CR@1 is the evaluation metric for OWA in
Section 5.1. All metrics are multiplied by 100. The best score is in bold.

triples that can be inferred from rules. Therefore,
we construct a new dataset named Wiki27K based
on Wikidata and manually annotate real negative
triples. Due to space limitations, we put the de-
tailed steps of dataset construction in Appendix A.

As reported by (Akrami et al., 2020), there are
many mediator (CVT) nodes in Freebase, which
will bring Cartesian production relations. (Akrami
et al., 2020) confirm that the prediction tasks corre-
sponding to these relations are not meaningful and
would improperly improve the model accuracy. In
order to increase the difficulty of the task and to be
closer to the KGC task in real scenarios, we obtain
a dataset FB15K237-N by removing the relations
containing mediator nodes in FB15K-237. Besides,
to make the triple classification harder, we also con-
struct a dataset FB15K-237-NH based on FB15K-
237-N by only modifying the negative triples. It
is only used for triple classification. Specifically,
for every positive triple (h, 7, t) in validation and
test set, we use TransE (Bordes et al., 2013) to
do link prediction and use the highest probability
non-answer entity to replace the missing entity to
generate a hard negative triple. The statistics of our
datasets ! are listed in Table 2.

5.3 Experiment Setup

Baseline Models In experiments, we choose six
KGE models as comparisons, namely TransE (Bor-
des et al., 2013), ConvE (Dettmers et al., 2018),
TuckER (Balazevi¢ et al., 2019), RotatE (Sun et al.,
2019), TransC (Lv et al., 2018) and WWYV (Veira
et al., 2019), the last two of which use concept
and definition information, respectively. In addi-

'Our codes and datasets can be obtained from https:
//github.com/THU-KEG/PKGC.

tion, we also compare with two PLM-based models
KG-BERT (Yao et al., 2019) and LP-RP-RR (Kim
et al., 2020). For our model, we have a base model
PKGC that does not use any support information
and two variants that use two support information,
definition and attribute, respectively.

Implementation Details In our implementation,
we use RoBERTa-Large as the PLM. For the pa-
rameters n, o, K, we choose them from {0, 1, 2, 3,
6}, {0.0, 0.3, 0.5, 0.7, 1.0} and {10, 30, 50, 100},
respectively. More parameter selections are placed
in the Appendix F. We use TuckER (Balazevié
et al., 2019) to generate KGE negative triples for
our model. The details of the manual annotation in
the experiments are placed in the Appendix E. For
TransE and RotatE, we use the codes implemented
by OpenKE (Han et al., 2018). For other baseline
models, we use the codes released by the authors
for re-implementation.

5.4 Link Prediction Results

The experimental results on link prediction are
shown in Table 3, where Hits@ 1 and CR@1 can
evaluate the accuracy of the model to predict the
entity with the highest probability under CWA and
OWA, respectively. From the table, we can learn
that most models have a large difference in per-
formance under Hits@1 and CR@1. This perfor-
mance gap is more evident in PLM-based models.
For example, on Wiki27K, although KG-BERT and
LP-RP-RR are lower than almost all KGE models
on Hit@1, they both outperform them on CR@1.
For KGE models, the performance gap cannot be
ignored as well. We can see that the models do not
have the same ranking of performance under CWA
and OWA, which illustrates the inability of CWA to
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Model Wiki27K FB15K-237-N FB15K-237-NH
Acc. F1 Acc. F1 Acc. F1

«» TransE (Bordes et al., 2013) 65.5/64.2 72.3/71.5 66.2/64.0 71.1/70.4 50.3/49.5 66.2/62.1
E TransC (Lv et al., 2018) 68.7/68.4 71.5/71.2 66.4/64.6 71.3/70.8 51.2/50.4 67.7/64.0
5 ConvE (Dettmers et al., 2018) 70.7/68.8 73.5/73.5 67.3/67.3 71.8/73.7 54.6/55.3 67.3/67.1
m WWV (Veira et al., 2019) 69.9/68.0 72.8/72.5 65.2/65.7 70.8/70.1 50.5/49.6 66.8/62.1
g TuckER (Balazevi¢ et al., 2019) 70.0/69.5 73.1/73.8 68.3/71.0 71.9/74.3 54.3/55.4 67.4/67.3

RotatE (Sun et al., 2019) 72.3/64.0 75.1/71.3 67.9/63.2 72.3/69.9 51.7/51.9 66.8/64.8
~ KG-BERT (Yao etal., 2019) 83.7/82.4 84.3/83.1 71.8/72.7 72.8/73.6 56.4/57.6 63.3/63.6
§ LP-RP-RR (Kim et al., 2020) 84.3/83.6 85.1/84.4 73.8/74.4 73.0/74.5 58.3/59.1 65.1/65.7
< PKGC 87.0/87.8 87.1/88.0 79.6/81.4 79.5/81.2 63.8/64.8 68.7/68.7
E PKGC w/ attribute 87.6/87.8 87.5/87.9 79.5/81.2 79.5/81.4 64.1/65.0 68.7/69.6
A& PKGC w/ definition 90.0/90.0 90.1/90.2 82.5/84.4 83.0/84.7 65.7/66.9 70.5/71.3

Table 4: Triple classification results on three datasets. The values before and after the slash are the results under
CWA and OWA, respectively. All metrics are multiplied by 100. The best score is in bold.

bring accurate evaluation results on the link predic-
tion task. This work is only a preliminary discovery
of the huge performance difference between KGC
models under CWA and OWA. We think that the
existing KGC models should be systematically and
comprehensively re-evaluated under OWA, and we
leave it for future work.

By comparing the results of our model with
baseline models, we find that although our model
does not have a significant performance advantage
under CWA, it significantly outperforms previous
models (both KEG and PLM-based models) under
OWA. This suggests that the approach of convert-
ing triples into sentences in our model can make
better use of the implicit knowledge in PLMs. For
our model, adding support information can achieve
performance improvements, of which definition
brings better obvious improvement. The possible
reason is that the definition is unique and does not
need to be randomly selected like attributes. There-
fore, it introduces less noise and is more accurate.

5.5 Triple Classification Results

In Table 4, we give the experimental results of all
models on the triple classification task. Specif-
ically, we give the results under both CWA and
OWA. By comparing the performance of the model
under CWA and OWA side-by-side, we can find
that most models have a small performance gap.
This is probably explained by the small proportion
of false negative triples in the triple classification
task. Specifically, in triple classification, there are
about 5% of false negative triples on average, and
for the Hits@1 of the link prediction, there are on
average more than 30% of false negative triples.
From the table, we can know that our model sig-

nificantly outperforms baseline models under both
assumptions. Specifically, compared to the KGE
models, both our model and other PLM-based KGC
models achieve better results, which indicates that
the introduction of PLMs can help the model to
better determine whether the triple is correct or not.
There may also be a reason that the PLM-based
KGC models are trained using the classification
loss and may be better suited for the triple classifi-
cation task. Comparing all variants of our model,
the definition brings better results, which is consis-
tent with the performance in link prediction, and
the reasons should be similar.

5.6 Analysis

In order to further analyze what benefits the PLM
can bring to our model and why it can bring these
benefits, we conduct some triple classification ex-
periments under OWA. Our analysis can be divided
into the following three questions. Due to space
limitations, we put more analysis in the Appendix.
Q1: PLMs have seen many facts in the massive
texts. Is it because they remember these facts to
help our model achieve better results?

Al: Partially yes. It is worth noting that it
is non-trivial to answer this question rigorously.
Therefore, we do an approximate experiment
based on distant supervision. Specifically, for a
triple (h,r,t), if h and t appear in a sentence in
Wikipedia %, we consider this sentence to imply the
fact of (h,r,t). In our experiments, for each triple
(h,r,t) in the validation and test set, we count the
number of sentences in Wikipedia that contain both
h and t. For BERT, which is mainly pre-trained on
Wikipedia texts, we can assume that the number of

https://www.wikipedia.org/
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Figure 4: The experimental results on FB15K-237-N
corresponding to Q1 (left) and Q2 (right). The hori-
zontal coordinates of the left and right figures are the
number of sentences corresponding to the triples in the
test set and the proportion of the training set used for
training, respectively.

sentences corresponding to the triple can represent
the number of times BERT has seen this fact.

In experiments, we divide the test set into sev-
eral disjoint parts based on the number of sentences
corresponding to each triple and obtain the perfor-
mance of our model (with BERT-Large), ConvE
and TuckER on them. The experimental result
is shown in the left part of Figure 4. From the
figure, we know that there is an increase in the per-
formance of our model as the number of sentences
corresponding to the triple grows, while ConvE and
TuckER are essentially constant or slightly decreas-
ing. This indicates that our model does perform
better on the triples that PLMs have seen more
times. In addition, it is worth noting that even on
the test set with zero relevant sentence, our model
still outperforms both KGE models, which indi-
cates that our model also has the ability to reason
and can fuse the knowledge from PLMs and KGs
to infer new knowledge.

Q2: Can the introduced PLMs make our models
less sensitive to the amount of training data?
A2: Yes. Unlike KGE models that require train-
ing all entity and relation vectors from scratch, our
model is based on PLMs that have been well pre-
trained. Therefore, we conjecture that our model is
insensitive to the amount of training data. To vali-
date it, we train models using different proportions
of the training set and get the performance.

The experimental results are shown in the right
part of Figure 4. From the figure, we can see
that the performance of our model only decreases
slightly as the amount of data used for training
decreases. As a comparison, the performance of
both KGE models, ConvE and TuckER, decreases
significantly. This indicates that our model is less
sensitive to the amount of training data compared

Wiki27K  FB15K-237-N
Acc. Fl Acc. F1

Model

PKGC (w/ BERT-base) 86.2 864 80.9 80.7
PKGC (w/ RoBERTa-base) 85.5 85.7 77.0 78.5
PKGC (w/ KEPLER) 857 859 773 78.8
PKGC (w/ LUKE-base) 86.1 863 82.0 827

Table 5: Triple classification results with different pre-
trained language models.

to the KGE models and has the potential to be used
for sparse knowledge graph completion.
Q3: In recent years there have been some PLMs
containing knowledge. Can using them give bet-
ter results for our model?
A3: Partially yes. We compare the performance
of our model using different PLMs. Specifically,
we choose two PLMs containing knowledge, KE-
PLER (Wang et al., 2021) and LUKE (Yamada
et al., 2020). KEPLER uses the RoBERTa-base ar-
chitecture and jointly optimizes the knowledge em-
bedding and language modeling objectives. LUKE
continued to pre-train on the Wikipedia corpus with
200K steps based on RoBERTa. For a fair compar-
ison, we choose the base version for every PLM.
We conduct experiments on FB15K-237-N and
Wiki27K. The experimental results are shown in
Table 5. As we can see from the table, compared
to RoBERTa-base, LUKE-base can bring more per-
formance gains than KEPLER. This is probably
because LUKE needs to specify the label and po-
sition of the entity in the input, which makes it
easier to use the entity information in the PLM.
However, both LUKE-base and KEPLER perform
worse than BERT-base on Wiki27K. One possi-
ble reason is that these two PLMs are trained on
RoBERTa instead of BERT. And from the table,
we can see that BERT-base performs better than
RoBERTa-base. A similar phenomenon is reported
by Shin et al. (2020). The possible reason is that
BERT is mainly trained on Wikipedia corpus and
contains more factual knowledge.

6 Conclusion and Future Work

With the rapid development of pre-trained language
models, some PLM-based KGC models are pro-
posed. However, there is still a performance gap
between these models and SOTA KGE models. In
this work, we find two main reasons for the weak
performance: (1) Inaccurate evaluation setting. (2)
Inappropriate utilization of PLMs. To alleviate
these problems, we highlight a more accurate eval-
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uation setting OWA and propose a novel PLM-
based KGC model. In our experiments, we verify
that CWA cannot bring accurate evaluation results.
Moreover, the experimental results show that our
model can achieve better results than the previous
method. In our future work, we plan to comprehen-
sively and systematically re-evaluate the existing
KGC models to reveal their real performance.
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A Dataset Construction

Our Wiki27K is built on Wikidata *. The detailed
steps for building Wiki27K are:

(1) For all entities in Wikidata, we score the en-
tity in four areas: frequency of the entity, whether
the entity has English Wikipedia links, whether
the entity has non-English Wikipedia links, and
whether the entity has Freebase links. We normal-
ize the entity frequencies of all entities to a contin-
uous value from O to 1. For the last three metrics,
the score is 1 if the corresponding link is present;
otherwise, it is 0. The final score for each entity is
obtained by summing the above four items. We ran-
domly select 27,122 entities among the top 30,000
entities in the score ranking to form our entity set
E.

(2) For each relation r in Wikidata, we define
its frequency as the size of corresponding triple
set, i.e., |[{(h,r,t)|h € ENt € E}|. We sort the
relations in descending order by their frequency
and select the top 200 relations to form the set of
relations R,,. Besides, we also use the set of rela-
tions from CoDEx (Safavi and Koutra, 2020) and
LAMA (Petroni et al., 2019), denoted as R. and
‘R, respectively. The final relation set is defined as
R=RuyN(R:URy).

(3) We select (h, r,t) whose h,7 € Eandr € R
from Wikidata to form our triple set 7.

(4) We randomly shuffle the triple set and com-
pose the training/validation/test set at a ratio of
8:1:1.

(5) There exists some symmetry relation r in R,
i.e., if (h,r,t) holds, then (¢, 7, h) also holds. If
(h,r,t) is present in the training set and (¢,r, h)
exists in the validation set or the test set, the model
is able to make predictions easily. To avoid this
information leakage and to make the dataset more
difficult, inspired by FB15K-237 (Toutanova et al.,
2015), for each symmetric relation r, we remove
(h,r,t) from the training set if (¢, 7, h) is in the
validation or test set. In our dataset, the symmetric
relations being processed include shares border
with and twinned administrative body.

B Recall and Re-ranking Framework

For a triple query (h,r,?) in link prediction, the
KGC models need to replace the tail entity with
each entity in the entity set and then calculate the
score. After that, the model can give the ranking

3We use the 20210414 snapshot of Wikidata.

Model Wiki27K  FB15K-237-N
Acc. Fl  Acc. F1
KG-BERT 824 83.1 727 73.6
LP-RP-RR 83.6 844 744 745
PKGC (w/o soft prompts) 87.1 87.2 80.5 80.6
PKGC 87.8 88.0 814 81.2

Table 6: Ablation study on soft prompts. PKGC (w/o
soft prompts) denotes our model without soft prompts,
i.e., the hyper-parameter n = 0.

of the tail entity according to the score ranking.
Therefore, link prediction requires a large amount
of computation. For the traditional KGE models,
most of them run efficiently and can complete the
evaluation quickly. However, due to the introduc-
tion of PLMs, PLM-based models run much less
efficient compared to the KGE models. This per-
formance inefficiency can greatly increase the eval-
uation time of link prediction. Take KG-BERT as
an example, it takes nearly one month to get the
evaluation result of link prediction on a dataset,
which is obviously unacceptable.

To alleviate this problem, in this work, we use a
recall and re-ranking framework. Specifically, for
a triplet query (h,r,?), we first use a KGE model
(TuckER is used in experiments) to get the ranking
of the tail entities. After that, we select the top X
ranked entities and use a PLM-based KGC model
to recalculate the scores. Based on these scores, we
can re-rank the top X entities.

C Ablation Study on Soft Prompts

We do an ablation study to verify the effectiveness
of soft prompts, and the experimental results are
shown in Table 6. For PKCG, we set the hyper-
parameter n to 6, i.e., nl,...,n6 are all 1 (refer
to Table 9). From Table 6, we can know that our
model without soft prompts has a small drop in
performance. However, it still performs better than
the previous PLM-based KGC models. This shows
that soft prompts can indeed enhance the expres-
siveness of triple prompts. Besides, even without
soft prompts, our model is able to utilize the im-
plicit knowledge in PLMs better than the previous
model.

D Analysis on Relation

We provide in Table 7 the five relations that are
most affected by the CWA on the Wiki27K and
FB15K-237-N, respectively. In other words, they
are the five relations with the highest number of
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Wiki27K

FB15K-237-N

1 country /people/person/profession
2 headquarters location /location/location/contains
3 diplomatic relation /education/educational_institution/school_type
4 located in the administrative territorial entity /people/person/nationality
5 time period Jolympics/olympic_games/participating_countries
Table 7: The five relations that are most affected by the CWA on two datasets.
Dataset a K X n ni,no ns, ng, ns,Ng n ‘ ni, N2, N3, N4, N5, Ng
Wiki27K 0.5 30 30

s 4y Ly by Ly

FB15K-237-N 0.5 30 30
FB15K-237-NH 0.5 30 30

s Ly Ly
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Table 8:
datasets.

The best hyper-parameters on different

false negative triples. From the table, we can see
that most of the relations that are strongly influ-
enced by CWA are 1-N, N-1 or N-N relations. For
these relations, it is difficult for the knowledge
graph to cover all the correct tail or head entities,
which results in incomplete knowledge. For exam-
ple, for a head entity England and a relation /loca-
tion/location/contains, many entities can be used
as correct tail entities, because England contains
a large number of geographic locations. However,
it is difficult for the existing knowledge graph to
cover all the correct entities, which makes this kind
of relation more influenced by CWA.

E Manual Annotation

For CR@1 in link prediction, we randomly sample
200 triples from the test set for evaluation. After
that, we get the triples with the highest prediction
probability for each model and merge them into a
triple set by breaking them up. By doing so, the
annotators do not know which model the triples
originate from at the time of annotation, which
ensures fairness. For triple classification, we en-
sure that the distribution of relations (for negative
triples) in the validation/test set are consistent with
that in the training set.

In the specific annotation, we invited three col-
lege students to determine the correctness of each
triple, and only the triples with the same opinion
will be directly retained. The rest triples need to
be discussed to determine and then get a unified
opinion.

0] 000000

1,0,0,0,0,0
0,1,0,0,0,0
0,0,1,0,0,0
0,0,0,1,0,0
0,0,0,0,1,0
0,0,0,0,0,1

1,1,0,0,0,0
2 0,0,1,1,0,0
0,0,0,0,1,1
1,1,1,0,0,0
0,0,0,1,1,1

6] LLLILILI

3

Table 9: The combinations of nq, ns, - - - ng for every n.

F Hyper-parameters Selection

As introduced in Section 5.3, the parameter n is
selected from {0, 1,2, 3,6}, where n is composed
of n1,na,---ng. For every n, we choose some
combinations of n1,ns, - - - ng to form it. We de-
tail the combinations in Table 9. For the pa-
rameter X mentioned above, we select it from
{20, 30, 50, 100,200}. We select the best hyper-
parameters using the Hits@ 1 metric and the final
results are shown in Table 8.
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