ﬁ’h‘ LaPraDoR: Unsupervised Pretrained Dense Retriever
for Zero-Shot Text Retrieval

Canwen Xu'*, Daya Guo**, Nan Duan?®, Julian McAuley'
1University of California, San Diego, 2Sun Yat-sen University, *Microsoft Research Asia
{exu, jmcauley} Qucsd.eduy, 2guody5@mail2. sysu.edu.cn,
3nanduan@microsoft.com

Abstract

In this paper, we propose LaPraDoR, a pre-
trained dual-tower dense retriever that does
not require any supervised data for training.
Specifically, we first present Iterative Con-
trastive Learning (ICoL) that iteratively trains
the query and document encoders with a cache
mechanism. ICoL not only enlarges the num-
ber of negative instances but also keeps rep-
resentations of cached examples in the same
hidden space. We then propose Lexicon-
Enhanced Dense Retrieval (LEDR) as a sim-
ple yet effective way to enhance dense re-
trieval with lexical matching. We evaluate
LaPraDoR on the recently proposed BEIR
benchmark, including 18 datasets of 9 zero-
shot text retrieval tasks. Experimental results
show that LaPraDoR achieves state-of-the-art
performance compared with supervised dense
retrieval models, and further analysis reveals
the effectiveness of our training strategy and ob-
jectives. Compared to re-ranking, our lexicon-
enhanced approach can be run in milliseconds
(22.5x faster) while achieving superior perfor-

mance.l

1 Introduction

Dense retrieval uses dense vectors to represent doc-
uments and retrieve documents by similarity scores
between query vectors and document vectors. Dif-
ferent from cross-encoders (Reimers and Gurevych,
2019; Gao et al., 2020; MacAvaney et al., 2020) or
late-interaction models (Khattab and Zaharia, 2020;
Gao et al., 2021a), which predict a match score for
each query-document pair thus are computationally
costly, dense retrieval can be run in milliseconds,
with the help of an approximate nearest neighbor
(ANN) retrieval library, e.g., FAISS (Johnson et al.,
2021).

As a drawback, dense retrieval models of-
ten require large supervised datasets like MS-

*Equal contribution.

'Code and pretrained weights can be found at https:
//github.com/JetRunner/LaPraDoR.

MARCO (Nguyen et al., 2016) (533k training ex-
amples) or NQ (Kwiatkowski et al., 2019) (133k
training examples) for training. Unfortunately,
Thakur et al. (2021) empirically show that models
trained on one dataset suffer from an out-of-domain
(OOD) problem when transferring to another. This
hinders the applications of dense retrieval systems.
On the other hand, creating a large supervised train-
ing dataset for dense retrieval is time-consuming
and expensive. For many low-resource languages,
there is even no existing supervised dataset for re-
trieval and it can be extremely difficult to construct
one.

The recently proposed BEIR benchmark (Thakur
et al., 2021) highlights the generalization ability
of text retrieval systems. The benchmark fea-
tures a setting where models are trained on a
large supervised dataset MS-MARCO (Nguyen
et al., 2016) and then tested on 18 heterogeneous
datasets of 9 tasks. In this paper, we propose
Large-scale Pretrained Dense Zero-shot Retriever
(LaPraDoR), a fully unsupervised pretrained re-
triever for zero-shot text retrieval. While exist-
ing dense retrievers need large supervised data
and struggle to compete with a lexical matching
approach like BM25 (Robertson and Zaragoza,
2009) for zero-shot retrieval, we take a differ-
ent approach by complementing lexical matching
with semantic matching. Without any supervised
data, LaPraDoR outperforms all dense retrievers on
BEIR. LaPraDoR achieves state-of-the-art perfor-
mance on BEIR with a further fine-tuning, outper-
forming re-ranking, despite being 22.5x and 42 x
faster on GPU and CPU, respectively.

Training LaPraDoR faces two challenges: (1)
Training Efficiency. For large-scale pretraining,
training efficiency can be important. In contrastive
learning, more negative instances often lead to bet-
ter performance (Giorgi et al., 2021; Wu et al.,
2020; Gao et al., 2021b). However, traditional in-
batch negative sampling is bottlenecked by limited

3557

Findings of the Association for Computational Linguistics: ACL 2022, pages 3557 - 3569
May 22-27, 2022 (©)2022 Association for Computational Linguistics

https://github.com/JetRunner/LaPraDoR
https://github.com/JetRunner/LaPraDoR

GPU memory. To alleviate this problem, we pro-
pose Iterative Contrastive Learning (ICoL), which
iteratively trains the query and document encoders
with a cache mechanism. Compared to existing so-
Iutions MoCo (He et al., 2020) and xMoCo (Yang
et al., 2021), ICoL does not introduce extra en-
coders and can solve the mismatching between
representation spaces, thus demonstrating superior
performance. (2) Versatility. There are different
types of downstream tasks from various domains in
both BEIR and real-world applications. We use a
large-scale multi-domain corpus, C4 (Raffel et al.,
2020), to train our LaPraDoR model. To make
LaPraDoR versatile, besides conventional query-
document retrieval, we also incorporate document-
query, query-query, and document-document re-
trieval into the pretraining objective. We further
share the weights between the query and document
encoders and obtain an all-around encoder that fits
all retrieval tasks.

To summarize, our contribution is three-fold: (1)
We train LaPraDoR, an all-around unsupervised
pretrained dense retriever that achieves state-of-
the-art performance on the BEIR benchmark. (2)
We propose Iterative Contrastive Learning (ICoL)
for training a retrieval model effectively. (3) We
propose Lexicon-Enhanced Dense Retrieval as an
efficient way for combining BM25 with a dense
retriever, compared to the widely-used re-ranking
paradigm.

2 Related Work

Dense Retrieval DPR (Karpukhin et al., 2020)
initializes a bi-encoder model with BERT (Devlin
et al., 2019) and achieves better results than ear-
lier dense retrieval methods. RocketQA (Qu et al.,
2021) exploits a trained retriever to mine hard neg-
atives and then re-train a retriever with the mined
negatives. ANCE (Xiong et al., 2021) dynamically
mines hard negatives throughout training but re-
quires periodic encoding of the entire corpus. TAS-
B (Hofstitter et al., 2021) is a bi-encoder trained
with balanced topic-aware sampling and knowl-
edge distillation from a cross-encoder and a Col-
BERT model (Khattab and Zaharia, 2020), in ad-
dition to in-batch negatives. xMoCo (Yang et al.,
2021) adapt MoCo (He et al., 2020), a contrastive
learning algorithm that is originally proposed for
image representation, to text retrieval by doubling
its fast and slow encoders. Although these dense re-
trieval systems demonstrate effectiveness on some

COS Similarity Function

l

[|
[OO(BOO] [OOQOOJ
| |

Dense
Representation

Query Document
Encoder Encoder

7y 7y kh\\

[Query] [Document] Text

Figure 1: Dual-tower architecture for text retrieval.

datasets, the BEIR benchmark (Thakur et al., 2021)
highlights a main drawback of these dense retrieval
systems - failure to generalize to out-of-domain
data. This motivates pretraining as a solution for
better domain generalization (Gururangan et al.,
2020). Dense retrieval has also been applied in
many other tasks (Guo et al., 2019, 2020).

Pretraining for Retrieval Lee et al. (2019) first
propose to pretrain a bi-encoder retriever with an
Inverse Cloze Task (ICT), which constructs a train-
ing pair by randomly selecting a sentence from a
passage as the query and leaving the rest as the doc-
ument. Chang et al. (2020) propose two pretraining
tasks for Wikipedia and attempt to combine them
with ICT and masked language modeling (MLM).
Guu et al. (2020) pretrain a retriever and a reader
together for end-to-end question answering (QA).
Very recently, DPR-PAQ (Oguz et al., 2021) high-
light the importance of domain matching by using
both synthetic and crawled QA data to pretrain and
then fine-tune the model on downstream datasets
for dialogue retrieval. Condenser (Gao and Callan,
2021a) is a new Transformer variant for MLM pre-
training. It exploits an information bottleneck to
facilitate learning for information aggregation. On
top of that, coCondenser (Gao and Callan, 2021b)
adds an unsupervised corpus-level contrastive loss
to warm up the passage embedding space. Differ-
ent from these works, LaPraDoR is the first pre-
trained retriever that does not require fine-tuning
on a downstream dataset and can perform zero-shot
retrieval.

3 Methodology

3.1 Dual-Tower Architecture

Two Encoders The dual-tower architecture, as
illustrated in Figure 1, is widely used in dense re-
trieval systems (Lee et al., 2019; Karpukhin et al.,
2020; Xiong et al., 2021). The dual-tower archi-

3558

tecture has a query encoder Eg and a document
encoder Ep, which in our work are both BERT-like
bidirectional text encoders (Devlin et al., 2019).
Compared with cross-attention models (Reimers
and Gurevych, 2019; Gao et al., 2020; MacAvaney
et al., 2020), the dual-tower architecture enables
pre-indexing and fast approximate nearest neighbor
search (to be detailed shortly), thus is popular in
production.

Dense Representation Given an input document
(query) * = {[CLS],ws,...,w;, [SEP]}, we
use a document (query) encoder E'p (Eg) to en-
code the input sequence into hidden states h =
{victsy, v1,- .-, U1,V sep] }, Where w; is the i-th
token; [CLS] and [SEP] are special tokens that
mark the start and end of a sentence, respectively.
To obtain a dense representation, we use mean pool-
ing over hidden states h as the representation h,,
of the input . Some prior works (Lee et al., 2019;
Chang et al., 2020; Karpukhin et al., 2020) use
vicLs; as the representation for the input x, but
Huang et al. (2021) empirically find that applying
mean pooling to hidden states h outperforms taking
V[cLs) as the representation.

Similarity Function After obtaining the repre-
sentation for both the query ¢ and the document d,
we use the cosine function as a similarity function
to measure the similarity between them:

Eq(q) - Ep(d)
I EQ()I[1Ep(d)]]

Approximate Nearest Neighbor In practice, for
the dual-tower architecture, the documents are en-
coded offline and their dense representations can
be pre-indexed by a fast vector similarity search
library (e.g., FAISS, Johnson et al., 2021). The
library can utilize GPU acceleration to perform ap-
proximate nearest neighbor (ANN) search in sub-
linear time with almost no loss in recall. Thus,
compared to a cross-encoder (i.e., an encoder that
accepts the concatenation of the query and every
candidate document), a pre-indexed ANN-based
retrieval system is at least 10 times faster (to be
detailed in Section 4.2).

sim(q, d) = ()

3.2 Constructing Positive Instances

In this section, we first introduce how we build the
positive instances with two self-supervised tasks,
namely Inverse Cloze Task (ICT) and Dropout as
Positive Instance (DaPI).

Inverse Cloze Task (ICT) First introduced in
Lee et al. (2019), ICT is an effective way to pre-
train a text retrieval model (Chang et al., 2020).
Given a passage p consisting of sentences p =
{s1,...,s,}, we randomly select a sentence s
as query ¢ and treat its context as document d =
{81, 8k—1,Sk+1,- -, Sn}. ICT is designed to
mimic a text retrieval task where a short query is
used to retrieve a longer document which is se-
mantically relevant. Also, unlike some pretraining
tasks, e.g., Wiki Link Prediction or Body First Se-
lection (Chang et al., 2020), ICT is fast and does not
rely on a specific corpus format (e.g., Wikipedia)
thus can be scaled to a large multi-source corpus
(e.g., C4, Raffel et al., 2020).

Dropout as Positive Instance (DaPI) DaPI is
originally proposed in SimCSE (Gao et al., 2021c¢)
as a simple strategy for perturbing intermediate
representations and thus can serve as data augmen-
tation.> A similar idea is also presented in Liu et al.
(2021). We apply a dropout rate of 0.1 to the fully-
connected layers and attention probabilities in the
Transformer encoders, as in BERT (Devlin et al.,
2019). The same input is fed to the encoder twice to
obtain two representations, of which one is used as
the positive instance of the other. Gao et al. (2021c)
conduct experiments and conclude that the dropout
strategy outperforms all commonly-used discrete
perturbation techniques including cropping, word
deletion, masked language modeling and synonym
replacement. Note that different from SimCSE, we
only calculate gradients for one of the two passes.
In our experiments, we find that the addition of
DaPI only increases the memory use by 2%, since
it mostly reuses the computational graph for the
ICT objective.

3.3 Iterative Contrastive Learning

Previous studies (Giorgi et al., 2021; Wu et al.,
2020; Gao et al., 2021b) show that the number of
negative instances is critical to the performance of
the model. Since the batch size on a single GPU
is limited, we propose Iterative Contrastive Learn-
ing (ICoL) to mitigate the insufficient memory on
a single GPU and allow more negative instances
for better performance. We illustrate LaPraDoR
training in Figure 2.

Iterative Training We iteratively train the query
encoder and document encoder. To be specific, we

2To avoid confusion with the SimCSE model, we address
the dropout strategy as DaPI here.

3559

['qq ﬁqd
AP 00000
Q0000 =~ Enqueue
1
Q Documen
2 || e | (@owee
4 $ = | (eee0e®
[Query] [Document] Cache Queue

(a) Query encoder training.

Lag Laq

‘-“q

Enqueue, Q’O O O O O OP O O
¥

Q D
60000 | Sm, || s |
@©0000) A -
Cache Queue [Query j[Document j

(b) Document encoder training.

Figure 2: Training of LaPraDoR with Iterative Contrastive Learning (ICoL). We iteratively train the query encoder
and document encoder while freezing the other (marked with an ice cube icon <*). For L4 and L4,, we obtain
additional negative instances from the cache queue. For each batch of data, we enqueue the representation encoded
by the frozen encoder into the cache queue as future negative instances. The cache queue is cleared when switching

the encoder to train from one to the other.

first arbitrarily select an encoder to start training.
Here we assume to start with the query encoder
E¢q. The training loss consists of two terms. First,
we calculate the loss for query-query retrieval with
DaPI to optimize the negative log likelihood of the
positive instance:

qu(Qi) {q;rj q;l’ T ’q;n})
osim(aia;”) Q)

=—1lo
& osim(aia;”) + Z;}ZI osim(ai.a; ;)

where ¢; and q;" are the same query that are
encoded by Eg with different dropout masks;
{q; 1o i, ..} is a set of randomly sampled neg-
ative instances; sim(-,-) is the cosine similarity
function defined in Equation 1.

The second term is to retrieve the corresponding
document d;r with the query ¢;, where ¢; and d;r
are a pair constructed with ICT. Similarly, we op-
timize the negative log likelihood of the positive
instance by:

Eqd(qi, {dj_, d;l, e 7di_,n’dé,17 e

sim(qi,dj)

vdgjo})

(&

QSim(qi’dz_) —+ Zn 1 eSim(qi’d;j)
]:

+ ZL%'l eSim(qi’dé,k)

= — log

3)
where {d; |, ...,d; ,} is a set of freshly sampled
documents that are encoded at the current step ¢;
{dg s déﬁ‘g} is a set of representations that are
currently stored in the cache queue Q. Then, we
optimize the sum of the two losses with a weight
coefficient A:

Eq == qu +)\qu (4)

Note that the query ¢; only needs to be encoded
once and can be used for calculation of both £,
and L.

After a predefined number of steps, the £ be-
comes frozen as the training for E'p starts. Simi-
larly, for d;, a document encoded by Ep, we have
the training objective:

Edd(di’ {d:r7 dz‘jlu s 7d;n})
esim(di,d;r) (5)

= —log esim(di,dj—) 4 2?21 esim(dud;j)

Edq<di7 {qrj_a Q7:17 oo 7qi_,n7 qé717 s
sim(di,qj)

9oo})

€

esim(di,qj) + Zn) esim(di,qzj)
]:

- T, s

= — log

(6)

Lg= ﬁdq + ALad @)

where df and qj are positive instances constructed
by DaPI and ICT, respectively; {d.,,...,d; .}
is a set of randomly sampled document ne’ga—
tives; {qi_’l, .. ,q;n} is a set of freshly sampled
queries encoded at step i; {qg ;. - ,qé'g} are
the cached query representations. To speed up
training, we apply the in-batch negatives tech-
nique (Yih et al., 2011; Henderson et al., 2017;
Gillick et al., 2019) that can reuse computation and
train b queries/documents in a mini-batch simulta-
neously.

Cache Mechanism To enlarge the size of nega-
tive instances, we maintain a cache queue Q that

3560

stores previously encoded representations that can
serve as negative instances for the current step, ex-
tending an earlier study (Wu et al., 2018). Our
cache queue is implemented as first-in-first-out
(FIFO) with a maximum capacity m, which is
a hyperparameter set based on the GPU memory
size. When training with multiple GPUs, Q can be
shared across GPUs. Since the representations in
the queue are encoded with a frozen encoder and
thus do not require gradients, m can be set large
to supplement the numbers of negative instances.
When @ is full, the earliest cached representations
will be dequeued. When we switch the training
from one encoder to the other, the queue will be
cleared to ensure that all representations in Q lie
in the same hidden space and are encoded with the
currently frozen encoder.

ICoL vs. MoCo Previously, similar to our
method, MoCo (He et al., 2020) exploits a queue
for storing encoded representations. Specifically,
MoCo consists of a slow encoder and a fast encoder
to encode queries and documents, respectively. The
slow encoder is updated as a slow moving average
of the fast encoder to reduce inconsistency of en-
coded document representations between training
steps. A queue is maintained to allow the encoded
document representations to be reused in later steps
as negative instances.

However, we argue there are a two limitations
that make MoCo not ideal for training a text re-
trieval model: (1) As pointed out by Yang et al.
(2021), unlike the image matching task in the origi-
nal paper of MoCo, in text retrieval, the queries and
documents are distinct from each other thus not in-
terchangeable. Yang et al. (2021) propose xMoCo,
which incorporates two sets of slow and fast en-
coders, as a simple fix for this flaw. (2) The cached
representations are in different hidden spaces. Al-
though the fast encoders in both MoCo and xMoCo
are updated with momentum, the already-encoded
representations in the queue will never be updated.
This creates a semantic mismatch between newly
encoded and cached old representations and creates
noise during training. In ICoL, all representations
used for contrastive learning are aligned in the same
hidden space. Besides, ICoL is more flexible than
xMoCo since it does not introduce additional fast
encoders and even the weights of its query encoder
and document encoder can be shared. We con-
duct experiments to compare ICoLL with MoCo and
xMoCo in Section 4.2.1.

3.4 Lexicon-Enhanced Dense Retrieval

Although dense retrieval achieves state-of-the-art
performance, its performance significantly degen-
erates on out-of-domain data (Thakur et al., 2021).
On the other hand, BM25 (Robertson and Zaragoza,
2009) demonstrates good performance without
training. Early attempts at combining lexical match
with dense retrieval often formulate it to a re-
ranking task (Nguyen et al., 2016). First, BM25 is
used to recall the top-k documents from the corpus.
Then, a cross-encoder is applied to further re-rank
candidate documents. Recently, COIL (Gao et al.,
2021a) highlights the importance of lexical match
and incorporates exact lexical matching into dense
retrieval. Different from these works, we propose a
fast and effective way, namely Lexicon-Enhanced
Dense Retrieval (LEDR) to enhance dense retrieval
with BM25. The similarity score of BM25 is de-
fined as:

BM25(q,d) = Y IDF(t)hy(q, t)ha(d, t)

tegnd
TF, (1 + k2)
he(gq,t) = —2——=~
q(q7) TFt’q +k2
TF; 4 (1 + K
ha(d,t) = a1+ k1)

TFya+ky (1= b+ bl)

(®)
where TF; 4 and TF; 4 refer to term frequency of
term ¢ in document d and query g, respectively;
IDF(¢) is the inverse document frequency; b, k1
and ko are hyperparameters. For inference, we
simply multiply the BM25 score with the similarity
score for dense retrieval:

score(q,d) = sim(q,d) x BM25(q,d) (9)

In this way, we consider both lexical and seman-
tic matching. This combination makes LaPraDoR
more robust on unseen data in zero-shot learning.

4 Experiments

4.1 Experimental Setting

Benchmark We use BEIR (Thakur et al., 2021),
a recently released benchmark for zero-shot evalua-
tion of information retrieval models. BEIR includes
18 heterogeneous datasets, focusing on evaluating
a retrieval system that works across different do-
mains (bio-medical, scientific, news, social media,
etc.). The benchmark uses Normalized Discounted
Cumulative Gain (nDCG) (Jarvelin and Kekiléinen,
2002) as the evaluation metric, which is a measure

3561

Model Dense Retrieval Lexical Late Interaction Re-ranking Lexicon-Enhanced Dense
DPR ANCE GenQ TAS-B BM25f ColBERT BM25+CE LaPraDoRf LaPraDoR FT
Encoding Qry/s (GPU/CPU) 4000/170 4000/170 4000/170 7000/350 - 4000/170 7000/350 7000/350 7000/350
Speed Doc/s (GPU/CPU) 540/30 540/30 540/30 1100/70 - 540/30 1100/70 1100/70 1100/70

Index size 3GB 3GB 3GB 3GB 0.4 GB 20 GB 0.4 GB 3.4GB 34GB
Retrieval GPU 19 ms 20 ms 14 ms 14 ms - 350 ms 450 ms 20 ms 20 ms
Latency CPU 230 ms 275 ms 125 ms 125 ms 20 ms - 6100 ms 145 ms 145 ms
MS-MARCO nDCG@10 0.177 0.388 0.408 0.408 0.228 0.401 0.413 0.262 0.366
TREC-COVID 0.332 0.654 0.619 0.481 0.656 0.677 0.757 0.728 0.779

BIOASQ 0.127 0.306 0.398 0.383 0.465 0.474 0.523 0.500 0.511

NFCorpus 0.189 0.237 0.319 0.319 0.325 0.305 0.350 0.346 0.347

NQ 0.474 0.446 0.358 0.463 0.329 0.524 0.533 0.359 0.479

HotpotQA 0.391 0.456 0.534 0.584 0.603 0.593 0.707 0.625 0.666

FiQA 0.112 0.295 0.308 0.300 0.236 0.317 0.347 0.317 0.343

Signal-1M 0.155 0.249 0.281 0.289 0.330 0.274 0.338 0.343 0.344

TREC-NEWS 0.161 0.382 0.396 0.377 0.398 0.393 0.431 0.470 0.480

Robust04 0.252 0.392 0.362 0.427 0.408 0.391 0.475 0.490 0.484

Zero-shot ArguAna 0.175 0.415 0.493 0.429 0.315 0.232 0.311 0.507 0.508
(nDCG@10) Touche-2020 0.131 0.240 0.182 0.162 0.367 0.202 0.271 0.322 0.333
CQADupStack 0.153 0.296 0.347 0.314 0.299 0.350 0.370 0.222 0.290

Quora 0.248 0.852 0.830 0.835 0.789 0.854 0.825 0.863 0.875

DBPedia 0.263 0.281 0.328 0.384 0.313 0.392 0.409 0.361 0.391

SCIDOCS 0.077 0.122 0.143 0.149 0.158 0.145 0.166 0.185 0.184

FEVER 0.562 0.669 0.669 0.700 0.753 0.771 0.819 0.671 0.763
Climate-FEVER 0.148 0.198 0.175 0.228 0.213 0.184 0.253 0.228 0.261

SciFact 0.318 0.507 0.644 0.643 0.665 0.671 0.688 0.697 0.687

Avg. 0.237 0.389 0.410 0.415 0.423 0.431 0.476 0.457 0.485

Table 1: Experimental results on the BEIR benchmark (Thakur et al., 2021). The estimated average retrieval latency
and index sizes are for a single query in DBPedia. The encoding speed is reported on a 8-core Intel Xeon Platinum
8168 CPU @ 2.70GHz and a single Nvidia V100 GPU, respectively. “LaPraDoR FT” is a LaPraDoR model
fine-tuned on MS-MARCO with the official BEIR training script. fUnsupervised method.

of ranking quality and often used to measure effec-
tiveness of search algorithms or retrieval models.
Details of the BEIR benchmark and the evaluation
metric are included in Appendix A.

Model Settings In our preliminary experiments
on Wikipedia (see Table 2), we find that sharing
weights between the query encoder E¢ and docu-
ment encoder F'p has no negative effect on down-
stream performance. For weight sharing between
Eg and Ep, we simply copy the weights of Eg to
E'p when switching to training of Ep, vice versa.
This design eliminates nearly half of the param-
eters. An additional benefit is that weight shar-
ing makes the encoder versatile to handle not only
query-document retrieval, but also query-query and
document-document retrieval.

In our preliminary experiments on Wikipedia,
we observed a diminishing return when increasing
the model size from 6 layers to 12 layers, or 24
layers. Thus, we initialize our encoder with the
6-layer DistilBERT (Sanh et al., 2019), which has
~67M parameters. For BM25, we use the imple-
mentation and default settings of Elastic Search?.
BM25 scores after the top 1,000 retrieved text are

Shttps://github.com/elastic/
elasticsearch

set to 0 to save computation.

Training Details For pretraining, we optimize
the model with the AdamW optimizer with a learn-
ing rate of 2e-4. The model is trained with 16
Nvidia V100 32GB GPUs with FP16 mixed preci-
sion training. The batch size for each GPU is set
to 256. The maximum lengths set for queries and
documents are 64 and 350, respectively. Training
switches between F and Ep every 100 steps. The
cache queue has a maximum capacity m of 100k.
The loss weight hyperparameter A is fixed to 1. For
our main results, we train LaPraDoR on C4 (Raffel
et al., 2020) for 1M steps, which takes about 400
hours. For the ablation study, since training on C4
is very costly, we train LaPraDoR on Wikipedia*
for 100k steps. When calculating the loss, we apply
a re-scaling trick of multiplying the cosine simi-
larity score by 20 for better optimization (Thakur
et al., 2021). Our implementation of LaPraDoR is
based on Hugging Face Transformers (Wolf et al.,
2020) and Datasets (Lhoest et al., 2021).

We test LaPraDoR under two settings: (1) No su-
pervised data at all. We directly use the pretrained
model for zero-shot retrieval on BEIR. (2) Fine-

*https://huggingface.co/datasets/
wikipedia

3562

https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://huggingface.co/datasets/wikipedia
https://huggingface.co/datasets/wikipedia

In-Batch ICoL

Model (shared) MoCo xMoCo ICoL (shared)
#Encoder 1 2 4 2 1

MS-MARCO nDCG@10 0.255 0222 0255 0255 0.262
TREC-COVID 0.705 0.537 0.724 0.706 0.710

BIOASQ 0.451 0.260 0423 0468 0459

NFCorpus 0.315 0271 0312 0317 0314

NQ 0.332 0279 0355 0.355 0.351

HotpotQA 0.599 0552 0.584 0.598 0.610

FiQA 0.213 0.156 0242 0.256 0.251

Signal-1M 0.329 0307 0323 0327 0.335

TREC-NEWS 0.441 0.405 0441 0444 0445

Robust04 0.419 0439 0439 0465 0470

Zero-shot ArguAna 0.477 0.465 0491 0496 0.503
(nDCG@10) Touche-2020 0.302 0.261 0330 0331 0.328
CQADupStack 0.109 0.052 0.118 0.132 0.140

Quora 0.832 0.834 0.822 0.828 0.839

DBPedia 0.349 0318 0359 0374 0364

SCIDOCS 0.173 0.154 0.170 0.173 0.178

FEVER 0.537 0.540 0.651 0.686 0.653
Climate-FEVER 0.206 0.183 0244 0242 0.242

SciFact 0.660 0.659 0.667 0.683 0.689

Avg. 0.414 0371 0428 0.438 0438

Table 2: Comparison of different methods for con-
trastive learning. The models are trained on Wikipedia.

tuning on MS-MARCO (Nguyen et al., 2016) and
zero-shot transfer to the other datasets. This is the
original setting for BEIR. We use BEIR’s official
script® to fine-tune LaPraDoR. The batch size is set
to 75 per GPU and the learning rate is 2e-5.

Baselines For dense retrieval, we compare our
model to the dual-tower models: DPR (Karpukhin
et al., 2020), ANCE (Xiong et al., 2021), TAS-
B (Hofstitter et al., 2021) and GenQ (Thakur et al.,
2021). For lexical matching, we use the BM25 re-
sults reported in Thakur et al. (2021). We also con-
sider a late interaction baseline ColBERT (Khattab
and Zaharia, 2020). The model computes multi-
ple contextualized embeddings for each token of
queries and documents, and then maximizes a sim-
ilarity function to retrieve relevant documents. For
re-ranking, we use the BM25+CE baseline imple-
mented in Thakur et al. (2021) that uses BM25 to
retrieve top-100 documents and a cross-encoder
model to further re-rank. As shown in Table 1, the
latency for both lexical and dense retrieval is low
whereas re-ranking introduces significantly higher
latency, with late-interaction in-between. Details
of the baselines can be found in Appendix B.

4.2 Experimental Results

We list the results of LaPraDoR on the BEIR bench-
mark in Table 1. Our model achieves state-of-the-
art performance on BEIR to date (November 15,
2021). Without any supervised data, LaPraDoR

Shttps://github.com/UKPLab/beir/blob/
main/examples/retrieval/training/train_
msmarco_v3.py

LaPraDoR
Full w/o LEDR | Full

LaPraDoR FT
w/o LEDR w/o PT w/o LEDR & PT

Model

TREC-COVID 0.728 0.227 0.779 0.492 0.735 0.482
BIOASQ 0.500 0.205 0.511 0.308 0.489 0.281
NFCorpus 0.346 0.311 0.347 0.335 0.323 0.267
NQ 0.359 0.181 0.479 0.473 0.454 0.443
HotpotQA 0.625 0.303 0.666 0.495 0.642 0.484
FiQA 0.317 0.203 0.343 0.314 0.308 0.245
Signal-1M 0.343 0.186 0.344 0.231 0.354 0.247
TREC-NEWS 0.470 0.345 0.480 0.374 0.449 0.350
Robust04 0.490 0.319 0.484 0.368 0.459 0.332
ArguAna 0.507 0.459 0.508 0.469 0.495 0.412
Touche-2020 0.322 0.094 0.333 0.182 0.346 0.156
CQADupStack 0.222 0.220 0.290 0.288 0.306 0.250
Quora 0.863 0.787 0.875 0.847 0.867 0.840
DBPedia 0.361 0.250 0.391 0.338 0.384 0.303
SCIDOCS 0.185 0.133 0.184 0.155 0.173 0.127
FEVER 0.671 0.368 0.763 0.646 0.750 0.664
Climate-FEVER 0.228 0.138 0.261 0.209 0.247 0.206
SciFact 0.697 0.555 0.687 0.599 0.678 0.529
Avg. 0.457 0.294 ‘ 0.485 0.396 0.470 0.368

Table 3: Effect of pretraining (PT) and Lexicon-
Enhanced Dense Retrieval (LEDR). Pretraining is on C4.
The results of “w/o PT” directly use DistilBERT (Sanh
et al., 2019) for fine-tuning, which is also used to initial-
ize our model.

outperforms the previous state-of-the-art for zero-
shot dense retrieval, TAS-B (Hofstitter et al., 2021),
on 13 tasks (out of 18) of BEIR with an average ad-
vantage of 0.042, though TAS-B applies additional
query clustering and knowledge distillation. When
further fine-tuned on MS-MARCO, LaPraDoR can
outperform all baselines, including late interaction
and re-ranking, whose latency on GPU is 17.5x
and 22.5x higher than our method. Compared to
dense retrieval, we only add 0.4 GB of BM25 in-
dices and almost no additional latency.

4.2.1 Effect of Iterative Contrastive Learning

We set a baseline that only uses in-batch negatives
and compare our proposed Iterative Contrastive
Learning (ICoL) to MoCo (He et al., 2020) and
xMoCo (Yang et al., 2021) for training LaPraDoR
on Wikipedia in Table 2. The aforementioned two
flaws of MoCo hinder its performance and lead to
a performance drop instead of an improvement. In
contrast, our ICoL approach outperforms the in-
batch baseline on all datasets. It also beats the com-
petitive MoCo variant for text retrieval, xMoCo,
on 15 out of 18 tasks. ICoL only uses two en-
coders (which can be further shared) which can
alleviate the GPU memory problem and thus can fit
more in-batch negatives. Meanwhile, MoCo uses
two encoders and xMoCo uses four (two sets of
MoCo’s encoders). Moreover, we observe no per-
formance drop on average if we share the encoder
between query and document (as we do when train-
ing LaPraDoR on C4). Thus, we can eliminate half
of the parameters by simply sharing the encoder.

3563

https://github.com/UKPLab/beir/blob/main/examples/retrieval/training/train_msmarco_v3.py
https://github.com/UKPLab/beir/blob/main/examples/retrieval/training/train_msmarco_v3.py
https://github.com/UKPLab/beir/blob/main/examples/retrieval/training/train_msmarco_v3.py

Model LaPraDoR w/o DaPI w/o ICT
TREC-COVID 0.710 0.714 0.612
BIOASQ 0.459 0.457 0.270
NFCorpus 0.314 0.316 0.257
NQ 0.351 0.353 0.221
HotpotQA 0.610 0.608 0.431
FiQA 0.251 0.247 0.145
Signal-1M 0.335 0.330 0.306
TREC-NEWS 0.445 0.448 0.336
Robust04 0.470 0.458 0.307
ArguAna 0.503 0.497 0.389
Touche-2020 0.328 0.310 0.248
CQADupStack 0.140 0.137 0.064
Quora 0.839 0.839 0.774
DBPedia 0.364 0.363 0.242
SCIDOCS 0.178 0.173 0.113
FEVER 0.653 0.639 0.376
Climate-FEVER 0.242 0.231 0.118
SciFact 0.689 0.690 0.533
Avg. 0.438 0.434 0.319

Table 4: Effect of ICT and DaPI in the loss function.
The “w/o ICT” variant is equal to the original SImCSE
approach (Gao et al., 2021c). The pretraining is on
Wikipedia.

4.2.2 Effect of Pretraining and
Lexicon-Enhanced Dense Retrieval

We conduct an ablation study for both pretraining
and Lexicon-Enhanced Dense Retrieval to verify
the effectiveness of these designs. As shown in Ta-
ble 3, Lexicon-Enhanced Dense Retrieval (LEDR)
improves performance of dense retrieval on most
tasks for both fully unsupervised and fine-tuned
LaPraDoR. Furthermore, as illustrated in Table 4,
we test the effectiveness of the two components in
our loss function. We can see that both ICT and
DaPI significantly contribute to the performance of
our model (p < 0.01) while ICT has a large impact
on the final performance.

4.3 Case Study

We conduct a case study to intuitively demonstrate
the effectiveness of LaPraDoR. As shown in Fig-
ure 3, for Q1, the lexical method (i.e., BM25) can
successfully find the corresponding document in its
top-2 retrieved results. However, due to lower lexi-
cal overlap, the score of the ground truth is lower
than that of the first document. Although the phrase
“prepare for his departure” in the first document in-
dicates that Aeneas has not left Carchage yet and
provides strong evidence that this document is in-
correct, BM2S5 fails to correctly rank the ground
truth due to its lack of ability in semantic match-
ing. By incorporating both lexical and semantic
matching, LaPraDoR can successfully retrieve the
ground truth.

Qt:
Where did Aeneas go when he left Carthage?

BM25 (Top 1): X

Dido and Aeneas are accompanied by their train. ... Dido and Aeneas are together within
the activity ... Aeneas is stopped by the Sorceress's elf, who is disguised as Mercury ...
Aeneas is to wait no longer in beginning his task of creating a new Troy on Latin soil.
Aeneas consents to the wishes of what he believes are the gods, but is heart-broken that he
will have to leave Dido. He then goes off-stage to prepare for his departure from Carthage.

BM25 (Top 2): /

After the sojourn in Carthage, the Trojans returned to Sicily where Aeneas organized
funeral games to honor his father, who had died a year before. ... Aeneas descended into
the underworld where he met Dido (who turned away from him to return to her husband)
and his father, who showed him the future of his descendants and thus the history of Rome.

LaPraDoR (Top 1): </

After the sojourn in Carthage, the Trojans returned to Sicily where Aeneas organized
funeral games to honor his father, who had died a year before. ... Aeneas descended into
the underworld where he met Dido (who turned away from him to return to her husband)
and his father, who showed him the future of his descendants and thus the history of Rome.

Q2: What's the distance between Mars and Sun?

BM25 (Top 1): X

From an observation of a transit of Venus in 1032, the Persian astronomer and polymath
Avicenna concluded that Venus is closer to Earth than the Sun. In 1672 Giovanni Cassini
and Jean Richer determined the distance to Mars and were thereby able to calculate the
distance to the Sun.

BM25 (Top 5): </
Mars's average distance from the Sun is roughly 230 million kilometres (143,000,000 mi),
and its orbital period is 687 (Earth) days ...

LaPraDoR (Top 1): </
Mars's average distance from the Sun is roughly 230 million kilometres (143,000,000 mi),
and its orbital period is 687 (Earth) days ...

LaPraDoR w/o LEDR (Top 1): %

Mars is the focus of much scientific study about possible human colonization. Mars'
surface conditions and past presence of water, make it arguably the most hospitable planet
in the Solar System besides Earth. Mars requires less energy per unit mass (delta-v) to
reach from Earth than any planet, except Venus.

Figure 3: Examples from the NQ dataset (Kwiatkowski
et al., 2019). The key clues are highlighted.

For Q2, with the powerful semantic matching,
LaPraDoR successfully retrieves the ground truth
whereas BM25 fails to distinguish among the docu-
ments that contain both the keywords Mars and Sun.
On the other hand, after removing lexical matching,
LaPraDoR without LEDR suffers from noise: the
key entity Sun does not appear in its top-1 retrieved
document. LEDR helps filter out such noise and
allows the dense retriever to focus on fine-grained
semantic matching. Please find more cases from
other datasets on Appendix C.

5 Conclusion and Future Work

In this paper, we introduce LaPraDoR, an unsu-
pervised pretrained dense retriever that achieves
state-of-the-art performance on the zero-shot text
retrieval benchmark BEIR. We propose Iterative
Contrastive Learning (ICoL) for efficiently train-
ing LaPraDoR and Lexicon-Enhanced Dense Re-
trieval (LEDR) to combine lexical matching with
LaPraDoR. Our experiments verify the effective-
ness of both ICoL and LEDR, shedding light on
a new paradigm for unsupervised text retrieval.
For future work, we plan to extend unsupervised
LaPraDoR to multilingual and multi-modal re-
trieval.

3564

Broader Impact

Ethical Concerns LaPraDoR is trained with web-
crawled data, which may contain inappropriate con-
tent. However, due to the nature of text retrieval,
our retriever has lower ethical risk compared to a
generative auto-regressive language model (Ben-
der et al., 2021). Meanwhile, our unsupervised
retrieval model enables high-performance text re-
trieval for low-resource languages where there is
no supervised query-document dataset. This con-
tributes to equality and diversity of language tech-
nology.

Carbon Footprint To conduct all experiments
in this paper, we estimate to have consumed 3,840
kWh of electricity and emitted 1,420.8 kg (3,132.3
Ibs) of CO2. All emitted carbon dioxide has already
been offset by the cloud service provider.

Acknowledgments

We would like to thank the anonymous review-
ers for their insightful comments. We would
like to thank the authors of BEIR (Thakur et al.,
2021), Nandan Thakur and Nils Reimers, for their
support. Canwen wants to thank Minghua Liu’s
Labrador, Jojo, for the inspiration to name this pa-
per. This project is partly supported by NSF Award
#1750063.

References

J Allan. 2004. Overview of the trec 2004 robust retrieval
track. In TREC, volume 13.

Petr Baudis and Jan Sedivy. 2015. Modeling of the
question answering task in the yodaqa system. In
CLEF, volume 9283 of Lecture Notes in Computer
Science, pages 222-228. Springer.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In FAccT, pages 610-623. ACM.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In EMNLP, pages 1533—-1544.
ACL.

Alexander Bondarenko, Maik Frobe, Meriem Be-
loucif, Lukas Gienapp, Yamen Ajjour, Alexander
Panchenko, Chris Biemann, Benno Stein, Henning
Wachsmuth, Martin Potthast, and Matthias Hagen.
2020. Overview of Touché 2020: Argument Re-
trieval. In Working Notes Papers of the CLEF 2020
Evaluation Labs, volume 2696 of CEUR Workshop
Proceedings.

Vera Boteva, Demian Gholipour Ghalandari, Artem
Sokolov, and Stefan Riezler. 2016. A full-text learn-
ing to rank dataset for medical information retrieval.
In ECIR, volume 9626 of Lecture Notes in Computer
Science, pages 716—722. Springer.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2020. Pre-training tasks
for embedding-based large-scale retrieval. In ICLR.
OpenReview.net.

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug
Downey, and Daniel S. Weld. 2020. SPECTER:
document-level representation learning using citation-
informed transformers. In ACL, pages 2270-2282.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171-4186. Associ-
ation for Computational Linguistics.

Thomas Diggelmann, Jordan Boyd-Graber, Jannis Bu-
lian, Massimiliano Ciaramita, and Markus Leippold.
2020. Climate-fever: A dataset for verification of
real-world climate claims.

Luyu Gao and Jamie Callan. 2021a. Condenser: a
pre-training architecture for dense retrieval. arXiv
preprint arXiv:2104.08253.

Luyu Gao and Jamie Callan. 2021b. Unsupervised cor-
pus aware language model pre-training for dense pas-
sage retrieval. arXiv preprint arXiv:2108.05540.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020. Mod-
ularized transfomer-based ranking framework. In
EMNLP, pages 4180—4190. Association for Compu-
tational Linguistics.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021a.
COIL: revisit exact lexical match in information re-
trieval with contextualized inverted list. In NAACL-
HLT, pages 3030-3042. Association for Computa-
tional Linguistics.

Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan.
2021b. Scaling deep contrastive learning batch size
under memory limited setup. In The 6th Workshop
on Representation Learning for NLP (RepL4NLP),
pages 316-321.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021c.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessan-
dro Presta, Jason Baldridge, Eugene Ie, and Diego
Garcia-Olano. 2019. Learning dense representations
for entity retrieval. In CoNLL, pages 528-537. Asso-
ciation for Computational Linguistics.

John M. Giorgi, Osvald Nitski, Bo Wang, and Gary D.
Bader. 2021. Declutr: Deep contrastive learning

3565

https://cseweb.ucsd.edu/~mil070/jojo/
http://ceur-ws.org/Vol-2696/
http://ceur-ws.org/Vol-2696/
http://arxiv.org/abs/2012.00614
http://arxiv.org/abs/2012.00614

for unsupervised textual representations. In ACL-
IJCNLP, pages 879—895. Association for Computa-
tional Linguistics.

Daya Guo, Duyu Tang, Nan Duan, Jian Yin, Daxin
Jiang, and Ming Zhou. 2020. Evidence-aware in-
ferential text generation with vector quantised varia-
tional autoencoder. In ACL, pages 6118-6129. Asso-
ciation for Computational Linguistics.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and Jian
Yin. 2019. Coupling retrieval and meta-learning for
context-dependent semantic parsing. In ACL, pages
855-866. Association for Computational Linguistics.

Suchin Gururangan, Ana Marasovic, Swabha
Swayamdipta, Kyle Lo, 1z Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretrain-
ing: Adapt language models to domains and
tasks. In ACL, pages 8342-8360. Association for
Computational Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisz-
tian Balog, Svein Erik Bratsberg, Alexander Kotov,
and Jamie Callan. 2017. Dbpedia-entity v2: A test
collection for entity search. In SIGIR, pages 1265—
1268. ACM.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross B. Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In CVPR,
pages 9726-9735. Computer Vision Foundation /
IEEE.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-
Hsuan Sung, Lasz1l6 Lukacs, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. arXiv preprint arXiv:1705.00652.

Sebastian Hofstétter, Sheng-Chieh Lin, Jheng-Hong
Yang, Jimmy Lin, and Allan Hanbury. 2021. Ef-
ficiently teaching an effective dense retriever with
balanced topic aware sampling. In SIGIR, pages 113—
122. ACM.

Sebastian Hofstitter, Sophia Althammer, Michael
Schroder, Mete Sertkan, and Allan Hanbury. 2021.
Improving efficient neural ranking models with cross-
architecture knowledge distillation.

Doris Hoogeveen, Karin M Verspoor, and Timothy Bald-
win. 2015. Cqadupstack: A benchmark data set for
community question-answering research. In Proceed-
ings of the 20th Australasian document computing
symposium, pages 1-8.

Junjie Huang, Duyu Tang, Wanjun Zhong, Shuai Lu,
Linjun Shou, Ming Gong, Daxin Jiang, and Nan
Duan. 2021. Whiteningbert: An easy unsuper-
vised sentence embedding approach. arXiv preprint
arXiv:2104.01767.

Kalervo Jérvelin and Jaana Kekildinen. 2002. Cu-
mulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS),
20(4):422-446.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-scale similarity search with gpus. IEEE
Trans. Big Data, 7(3):535-547.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In ACL, pages 1601-1611. Association for
Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval
for open-domain question answering. In EMNLP,
pages 6769—6781. Association for Computational
Linguistics.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over BERT. In SIGIR, pages 39-48.
ACM.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In ACL, pages 6086—
6096. Association for Computational Linguistics.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Sasko, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
siere, Lysandre Debut, Stas Bekman, Pierric Cistac,
Thibault Goehringer, Victor Mustar, Frangois Lagu-
nas, Alexander M. Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In EMNLP (Demos), pages 175—-184.
Association for Computational Linguistics.

Fangyu Liu, Ivan Vuli¢, Anna Korhonen, and Nigel
Collier. 2021. Fast, effective and self-supervised:
Transforming masked languagemodels into univer-
sal lexical and sentence encoders. arXiv preprint
arXiv:2104.08027.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,

3566

http://arxiv.org/abs/2010.02666
http://arxiv.org/abs/2010.02666

Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Sean MacAvaney, Franco Maria Nardini, Raffaele
Perego, Nicola Tonellotto, Nazli Goharian, and Ophir
Frieder. 2020. Efficient document re-ranking for
transformers by precomputing term representations.
In SIGIR, pages 49-58. ACM.

Macedo Maia, Siegfried Handschuh, André Freitas,
Brian Davis, Ross McDermott, Manel Zarrouk, and
Alexandra Balahur. 2018. WWW’18 open challenge:
Financial opinion mining and question answering.
In WWW (Companion Volume), pages 1941-1942.
ACM.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In CoCo@NIPS, vol-
ume 1773 of CEUR Workshop Proceedings. CEUR-
WS.org.

Rodrigo Nogueira and Kyunghyun Cho. 2020. Pas-
sage Re-ranking with BERT. arXiv preprint
arXiv:1901.04085.

Barlas Oguz, Kushal Lakhotia, Anchit Gupta, Patrick
Lewis, Vladimir Karpukhin, Aleksandra Piktus,
Xilun Chen, Sebastian Riedel, Wen-tau Yih,
Sonal Gupta, et al. 2021. Domain-matched pre-
training tasks for dense retrieval. arXiv preprint
arXiv:2107.13602.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. Rocketqa: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In NAACL-HLT, pages
5835-5847. Association for Computational Linguis-
tics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In EMNLP-IJCNLP, pages 3980-3990. Association
for Computational Linguistics.

Kirk Roberts, Tasmeer Alam, Steven Bedrick, Dina
Demner-Fushman, Kyle Lo, Ian Soboroff, Ellen
Voorhees, Lucy Lu Wang, and William R Hersh.
2020. Trec-covid: rationale and structure of an in-
formation retrieval shared task for covid-19. Journal
of the American Medical Informatics Association,
27(9):1431-1436.

Stephen Robertson and Hugo Zaragoza. 2009. The prob-
abilistic relevance framework: BM25 and beyond.
Now Publishers Inc.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Tan Soboroff, Shudong Huang, and Donna Harman.
2019. Trec 2019 news track overview. In TREC.

Axel Suarez, Dyaa Albakour, David P. A. Corney,
Miguel Martinez-Alvarez, and José Esquivel. 2018.
A data collection for evaluating the retrieval of related
tweets to news articles. In ECIR, volume 10772 of
Lecture Notes in Computer Science, pages 780-786.
Springer.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and verification. In NAACL-HLT, pages 809-819.
Association for Computational Linguistics.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, etal. 2015. An overview of the bioasq large-scale
biomedical semantic indexing and question answer-
ing competition. BMC bioinformatics, 16(1):1-28.

Henning Wachsmuth, Shahbaz Syed, and Benno Stein.
2018. Retrieval of the best counterargument with-
out prior topic knowledge. In ACL, pages 241-251.
Association for Computational Linguistics.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or fiction: Verify-
ing scientific claims. In EMNLP, pages 7534—7550.
Association for Computational Linguistics.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. In NeurIPS.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
EMNLP (Demos), pages 38—45. Association for Com-
putational Linguistics.

Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua
Lin. 2018. Unsupervised feature learning via non-
parametric instance discrimination. In CVPR, pages

3567

http://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1901.04085
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ

3733-3742. Computer Vision Foundation / IEEE
Computer Society.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian Khabsa,
Fei Sun, and Hao Ma. 2020. Clear: Contrastive
learning for sentence representation. arXiv preprint
arXiv:2012.15466.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In ICLR. OpenReview.net.

Nan Yang, Furu Wei, Binxing Jiao, Daxing Jiang, and
Linjun Yang. 2021. xmoco: Cross momentum con-
trastive learning for open-domain question answering.
In ACL-IJCNLP, pages 6120-6129. Association for
Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. In EMNLP, pages 2369-2380. Association for
Computational Linguistics.

Wen-tau Yih, Kristina Toutanova, John C. Platt, and
Christopher Meek. 2011. Learning discriminative
projections for text similarity measures. In CoNLL,
pages 247-256. ACL.

A The BEIR Benchmark

Datasets We list the statistics of the BEIR bench-
mark in Table 5. The 18 English zero-shot evalua-
tion datasets come from 9 heterogeneous retrieval
tasks, including bio-medical information retrieval,
question answering, tweet retrieval, news retrieval,
argument retrieval, duplicate question retrieval, ci-
tation prediction, and fact checking.

Metric To measure effectiveness of search al-
gorithms or retrieval models, the benchmark uses
Normalized Discounted Cumulative Gain (nDCG)
(Jarvelin and Kekéldinen, 2002) as the evaluation
metric. We will give the definition of the metric in
the following.

Given top k retrieved documents {d;, da, .., dj }
with their relevance {r1, 72, .., . } for a query, the
traditional formula of discounted cumulative gain
(DCG) accumulated at a particular rank position k
is defined in Equation 10, where r; is 1 if d; is the
ground truth otherwise 0.

K
Ty

DCGAK = Z; logli T 1) (10)

Since the length of ground truth list depends on
the query, using DCG to compare the performance

of retrieval models from one query to the next can-
not be consistently achieved. Therefore, the dis-
counted cumulative gain is normalized (nDCG) as:

DCGQK 1
IDCGAQK (ih
where IDCG@K is the DCG@K score for the list
of relevant documents (ordered by their relevance)
in the corpus up to position k. Since IDCG@K pro-
ducs the maximum possible DCG through position
k, the value of nDCG@K is in the range O to 1.

nDCGAQK =

B Baselines

We use the baselines from the current BEIR leader-
board (Thakur et al., 2021). These baselines can
be divided into four groups: dense retrieval, lexical
retrieval, late interaction and re-ranking.

Dense Retrieval For dense retrieval, the base-
lines are the same dual-tower model as ours.
We consider DPR (Karpukhin et al., 2020),
ANCE (Xiong et al., 2021), TAS-B (Hofstitter
et al., 2021) and GenQ (Thakur et al., 2021) in this

paper.

* DPR uses a single BM25 retrieval example
and in-batch examples as hard negative ex-
amples to train the model. Following Thakur
et al. (2021), we use Multi-DPR as the base-
line. The model is a BERT-base model
and is trained on four QA datasets, includ-
ing NQ (Kwiatkowski et al., 2019), Trivi-
aQA (Joshi et al., 2017), WebQuestions (Be-
rant et al., 2013) and CuratedTREC (Baudis
and Sedivy, 2015).

* ANCE constructs hard negative examples
from an ANN index of the corpus. The hard
negative training instances are updated in par-
allel during fine-tuning of the model. The
model is a RoBERTa (Liu et al., 2019) model
trained on MS-MARCO for 600k steps.

» TAS-B is trained with Balanced Topic Aware
Sampling using dual supervision from a cross-
encoder and a ColBERT model (Khattab and
Zaharia, 2020). The model is trained with a
combination of a pairwise Margin-MSE (Hof-
stitter et al., 2021) loss and an in-batch nega-
tive loss function.

¢ GenQ fine-tunes a T5-base (Raffel et al.,
2020) model on MS MARCO for 2 epochs

3568

Split (—) Train Dev Test Avg. Word Lengths
Task (]) | Domain (|) | Dataset (|) | Title | Relevancy | #Pairs | #Query | #Query #Corpus Avg.D/Q | Query Document
Passage-Retrieval | Misc. | MSMARCO (2016) | X | Binary | 532761 | — | 6980 8841823 L1 | 59 55.98
Bio-Medical Bio-Medical | TREC-COVID (2020) v 3-level — 171,332 493.5 10.60 160.77
Information Bio-Medical | NFCorpus (2016) v 3-level 110,575 ?24 323 3,633 38.2 3.30 232.26
Retrieval (IR) Bio-Medical | BioASQ (2015) v Binary 32,916 500 14,914,602 4.7 8.05 202.61
Question Wikipedia NQ (2019) v Binary 132,803 3452 2,681,468 1.2 9.16 78.88
Answering Wikipedia HotpotQA (2018) v Binary 170,000 5,447 7,405 5,233,329 2.0 17.61 46.30
QA) Finance FiQA-2018 (2018) X Binary 14,166 500 648 57,638 2.6 10.77 132.32
Tweet-Retrieval | Twitter | Signal-IM (RT) (2018) | X | 3-devl | — | — | 97 2866316 196 | 930 13.93
News News TREC-NEWS (2019) v S-level — — 57 594,977 19.6 11.14 634.79
Retrieval News Robust04 (2004) X 3-level — — 249 528,155 69.9 15.27 466.40
Argument Misc. ArguAna (2018) v Binary — — 1,406 8,674 1.0 192.98 166.80
Retrieval Misc. Touché-2020 (2020) v 3-level — — 49 382,545 19.0 6.55 292.37
Duplicate-Question | StackEx. CQADupStack (2015) v Binary — 13,145 457,199 14 8.59 129.09
Retrieval Quora Quora X Binary — 5, 000 10,000 522,931 1.6 9.53 11.44
Entity-Retrieval | Wikipedia | DBPedia (2017) | v | 3devel | — | 67 | 400 4635922 382 | 539 49.68
Citation-Prediction | Scientific | SCIDOCS (2020) | v | Bimary | — | — | 1,000 25657 49 | 9.38 176.19
Wikipedia FEVER (2018) v Binary 140,085 | 6,666 6,666 5,416,568 1.2 8.13 84.76
Fact Checking Wikipedia Climate-FEVER (2020) v Binary —_ — 1,535 5,416,593 3.0 20.13 84.76
Scientific SciFact (2020) v Binary 920 — 300 5,183 1.1 12.37 213.63

Table 5: Statistics of datasets in the BEIR benchmark. The table is taken from Thakur et al. (2021). Few datasets
contain documents without titles. Relevancy indicates the query-document relation: binary (relevant, non-relevant)
or graded into sub-levels. Avg. D/Q indicates the average relevant documents per query.

and generate 5 queries for each document as
additional training data to continue to fine-
tune the TAS-B model.

Lexical Retrieval Lexical retrieval is a score
function for token matching calculated between
two high-dimensional sparse vectors with token
weights. BM25 (Robertson and Zaragoza, 2009) is
the most commonly used lexical retrieval function.
We use the BM25 results reported in Thakur et al.
(2021) for comparison.

Late Interaction We also consider a late inter-
action baseline, namely ColBERT (Khattab and
Zaharia, 2020). The model computes multiple con-
textualized embeddings for each token of queries
and documents, and then uses a maximum similar-
ity function to retrieve relevant documents. This
type of matching requires significantly more disk
space for indexes and has a higher latency.

Re-ranking Re-ranking based approaches use
the output of a first-stage retrieval system (e.g.,
BM25), and then re-rank the retrieved documents
using a cross-encoder (Nogueira and Cho, 2020).
In this paper, we use the BM25+CE baseline
implemented in Thakur et al. (2021) that uses
BM25 to retrieve top-100 documents and a 6-layer
MiniLM (Wang et al., 2020) model to further re-
rank the recalled documents.

C More Examples

In addition to examples in Section 4.3, we provide
more examples here, from a commonsense question

answering dataset HotpotQA (Yang et al., 2018).

Q1: In what month is the annual documentary film festival, that is presented by the fort
nightly published British journal of literary essays, held?

BM25 (Top 1): X

The DOXA Documentary Film Festival is a documentary film festival based in Vancouver,
British Columbia, Canada. It is held annually held for 10 days in May and is presented by
The Documentary Media Society, a non-profit organization.

BM25 (Top 2): </
The London Review of Books (LRB) is a British journal of literary essays. It is published
fortnightly.

LaPraDoR (Top 1): ./

The London International Documentary Festival (or LIDF) is an annual documentary film
festival that takes place in the months of March and April every year. [1] The event is
presented in association with the London Review of Books. [2]

LaPraDoR (Top 2): </
The London Review of Books (LRB) is a British journal of literary essays. [3] It is
published fortnightly. [4]

Q2: Ethel Winter worked with which avant-garde theater director?

BM25 (Top 1): X
Avant-garde refers to a style in experimental work in art, music, culture, or politics.

BM25 (Top 2): X

Christoph Marthaler (born October 17, 1951, Erlenbach, Switzerland) is a Swiss director
and musician, working in the style of avant-garde theater, such as Expressionism and Dada,
a theater of the absurd elements.

LaPraDoR (Top 1): v

Ethel Winter (June 18, 1924 — March 10, 2012) [5] was an American ballet dancer and
dance instructor. Winter was an early ballet dancer with the Martha Graham Dance
Company from the 1940s to the 1960s, working with other notable early members of the
company, including Martha Graham, Yuriko, Yuriko, Ethel Butler, Jean Erdman, and
Patricia Birch. [6] She later taught dance and ballet at the Juilliard School.

LaPraDoR (Top 2): v
Jean Erdman (born February 20, 1916) [7] is an American dancer and choreographer of
modern dance as well as an avant-garde theater director. [&]

Figure 4: Examples from the HotpotQA dataset (Yang
et al., 2018). The key facts are highlighted. The rea-
soning path for Q1 is [3]—[4]—[2]—[1] and for Q2 is
[5]—=[6]—=[7]1—[8].

3569

