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Abstract

As more and more pre-trained language mod-
els adopt on-cloud deployment, the privacy is-
sues grow quickly, mainly for the exposure of
plain-text user data (e.g., search history, medi-
cal record, bank account). Privacy-preserving
inference of transformer models is on the de-
mand of cloud service users. To protect pri-
vacy, it is an attractive choice to compute
only with ciphertext in homomorphic encryp-
tion (HE). However, enabling pre-trained mod-
els inference on ciphertext data is difficult due
to the complex computations in transformer
blocks, which are not supported by current HE
tools yet. In this work, we introduce THE-X,
an approximation approach for transformers,
which enables privacy-preserving inference
of pre-trained models developed by popular
frameworks. THE-X proposes a workflow to
deal with complex computation in transformer
networks, including all the non-polynomial
functions like GELU, softmax, and Layer-
Norm. Experiments reveal our proposed THE-
X can enable transformer inference on en-
crypted data for different downstream tasks,
all with negligible performance drop but enjoy-
ing the theory-guaranteed privacy-preserving
advantage.

1 Introduction

Accompanying the revolution of pre-trained mod-
els in many NLP applications, such as senti-
ment analysis (Xu et al., 2019a), question an-
swering (Yang et al., 2019b), information re-
trieval (Yang et al., 2019c), and text genera-
tion (Raffel et al., 2020), many related technologies
have been deployed on the cloud to process user
data from personal customers, small businesses,
and large enterprises by industrial service providers.
However, the convenience of the on-cloud pre-
training technology also comes with a series of
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Figure 1: An overview of our THE-X. The transformer-
based model could inference on encrypted data with
our THE-X, enabling theory-guaranteed privacy protec-
tion for users.

privacy challenges due to the sensitive nature of
user data. For example, the input text or even text
vector representations in user requests can leak pri-
vate information, which may cause the specific user
to be identified (Schwartz and Solove, 2011; Zhu
and Han, 2020). This lack of privacy guarantees
may impede privacy-conscious users from releas-
ing their data to service providers. Thus, service
providers may suffer from the deficiency of evolv-
ing models with user data. Besides, unintended
data disclosure and other privacy breaches may
result in litigation, fines, and reputation damages
for service providers. These concerns spark our
proposal of THE-X, to enable privacy-preserving
inference of transformer.

Specifically, we identify two challenges for the
privacy-preserving inference of pre-trained mod-
els. The first challenge is how to protect users’
plain text data from access by third-party service
providers. (e.g., the clinic record or shopping his-
tory). Prior work has applied Differential Privacy
(DP) (Dwork et al., 2006) and its variants to address
similar privatization issues - originally for statis-
tical databases and more recently for DL (Abadi
et al., 2016) and NLP (Qu et al., 2021; Basu et al.,
2021b; Fernandes et al., 2019; Lyu et al., 2020;
Basu et al., 2021a). However, this solution may
suffer from eavesdropping attackers. A handful of
research (Zhu and Han, 2020; Zhao et al., 2020)
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demonstrated it possible to recover raw data from
gradient leakage. Also, privacy protection could
never be theory-guaranteed. The second challenge
is the performance concern, recent works like Tex-
tHide (Huang et al., 2020) and FedNLP (Lin et al.,
2021) leverages the federated learning (Yang et al.,
2019a) to train model on encrypted data, at cost
of considerable performance dropping. Focusing
on the privacy of training data, they have not fully
explored privacy-preserving inference.

To solve the concerns above, we depict one prac-
tice of privacy-preserving inference in Figure 1,
where a fine-tuned language model could be con-
verted into the cloud service mode with THE-X,
and process users’ data with its eyes blind. During
inference, the content of the user query is anony-
mous to the transformer model. The results of
computation are also ciphertext, which only can be
decrypted by the user’s private key.

In addition, we need a theory-guaranteed en-
cryption solution like the homomorphic encryp-
tion (HE) (Gentry, 2009) to convince both service
providers and users of the privacy security in pro-
duction scenarios. The semantic security of HE
is guaranteed by lattice-based cryptography, and
the HE computation results on ciphertext could be
decrypted to the same results in plaintext, prevent-
ing performance reduction cost. The basic idea of
homomorphic encryption is to perform computa-
tions on encrypted data without first decrypting it,
which could fully ensure privacy in cloud-serving
scenarios. It allows user data to be encrypted and
out-sourced to commercial cloud environments for
processing.

However, due to the complex operations (e.g.,
GELU activation) in transformer-based models, the
popular partially homomorphic encryption solu-
tion, which only supports addition or multiplica-
tion, can not easily be adapted into scenarios of
pre-trained models. Based on HE transformer back-
end (Boemer et al., 2019b,a, 2020), we designed a
series of approximation components to fulfill the
whole inference pipeline of the mainstream trans-
former backbone. We evaluate THE-X for BERT-
tiny on the GLUE benchmark (Wang et al., 2019)
and the CONLL2003 task (Tjong Kim Sang and
De Meulder, 2003). Our results show that THE-X
can achieve the privacy-preserving inference with
the averaged performance reduction of only 1.49%.

Our contributions include:

• We are the first work to explore the privacy-

preserving transformer inference with HE.

• We design a practical and effective approxi-
mation workflow for converting transformer-
based models into a function that consists of
fully HE operations.

• A thorough set of experiments confirms the
negligible performance reduction with our
proposed THE-X approximation.

2 Background

2.1 Security and Privacy Concern of
Pre-trained Models

Pre-trained models like BERT (Devlin et al., 2019)
and GPT-3 (Brown et al., 2020) rely heavily on
the use of plain text data to get human-like perfor-
mance. Despite the remarkable achievements of
pre-trained models, these state-of-the-art models
can not directly answer some sensitive use cases, in-
cluding the medical record (Christoph et al., 2015),
search history (Shen et al., 2007) and other person-
ally identifiable information (PII).

To avoid the direct computation on plain-text
data, recent works like TextHide (Huang et al.,
2020) and DP-finetuning (Kerrigan et al., 2020)
introduce the classical federated learning and dif-
ferential privacy (DP) to protect the sensitive data.
However, TextHide (Huang et al., 2020) can only
be applied to sentence-level tasks. Due to the mix-
up operation, TextHide fails to model token-level
tasks like named entity recognition or semantic
role labelling. DP-finetuning would greatly sacri-
fice the performance of fine-tuned model by 20%
perplexity for a generation model like GPT-2.

2.2 Practical Homomorphic Encryption
The classic definition of homomorphic encryption
is a form of encryption that permits users to per-
form computations on its encrypted data without
first decrypting it. These computations results are
retained in an encrypted form, which could be de-
crypted into identical output produced by the same
computations on the unencrypted data. Let F be a
function or the entire pre-trained model, E as an
encryption function, D as a decryption function.
Then for any allowed plain text input x, we have:

F (x) = D(g(E(x)), (1)

where g is a constructed function to play the same
role of function F , except on encrypted data. Fig-
ure 1 shows how a user performs inference using
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a cloud-deployed pre-trained model which is not
trusted. First, the pre-trained model receives a ci-
phertext encrypted by the user private key and per-
forms inference function g on the ciphertext. Then,
the server will send an encrypted result to the user,
which can only be decrypted by the user key. At no
point does the cloud service provider gain access
to the plain text.

The Intel HE transformer for nGraph (Boemer
et al., 2019b,a) is a Homomorphic Encryption
backend to the deep learning models. Currently,
it supports the CKKS (Cheon et al., 2017) en-
cryption scheme, implemented by the Simple En-
crypted Arithmetic Library (SEAL) (SEAL) from
Microsoft Research. It is a research tool to demon-
strate the feasibility of HE on deep learning.

2.3 Challenges of Transformer Inference
with HE

Some HE schemes only support a single alge-
braic operation, such as addition or multiplica-
tion. These are known as "partially homomor-
phic" schemes (PHE). Other schemes, called "fully
homomorphic"(FHE), support two such as addi-
tion and multiplication. Note that composing
addition and multiplication suffices to construct
polynomial functions, and hence polynomial ap-
proximations to non-polynomial functions such as
GELU (Hendrycks and Gimpel, 2016) or Layer-
Norm (Xu et al., 2019b). Notably, this limitation
prevents the exact computation of any comparison-
based operations such as Max, Min, as well as
common functions such as exponential or sigmoid.
Finally, "leveled homomorphic" schemes (LHE)
support addition and multiplication, only up to a
fixed computational depth.

3 THE-X: Formal Description

There are two core ideas in THE-X. The first one is
to incorporate the user device into the HE inference,
and the second is using "simplified computation"
to approximate the non-polynomial functions.

In the following, we will describe how to enable
homomorphic encryption of transformer-based
models with THE-X.

3.1 Approximation Workflow

First, we present the approximation workflow of
THE-X, which consists of two stages: Standard
Finetuning and LN Distill as depicted in Figure 2.
Given a pre-trained modelM and corresponding

Algorithm 1: Approximation Workflow
Data: labeled task data D.
Input: pre-trained Transformer modelM,

softmax estimation model S.
1 M̂ ←M� (S, ReLU).

// replace GELU and Softmax

2 while not done do
3 sample batches (xi, yi) from D,
4 let (xi, yi) optimize M̂ with S frozen.

end
5 M̃ ← M̂ ⊕ Ñ .

// add the layernorm approximation

6 while not done do
7 sample batches (xi, yi) from D,
8 freeze the parameters of M̃ except Ñ .
9 compute k-th layernorm output Ok, Õk.

10 compute loss `k = MSELoss(Ok, Õk).
11 update Ñ with loss L =

∑
k `k.

end
12 M̄ ← M̃ 	N .

// discard the origin layernorm

return M̄.

downstream data, we aim to produce a fully HE
supported M̄ which is fine-tuned and ready for
deployment.

The two-stage optimization of algorithm 1 aims
to find the best approximation checkpoint. For com-
putation efficiency, pre-trained models can also be
fine-tuned together with the layernorm approxima-
tion, and it needs only a single optimization loop.
We will discuss the schedule of the different ap-
proximation workflow in Sec 4.6. There are three
major non-polynomial functions in the transformer
block, where we will study in detail.

3.1.1 Gaussion Error Linear Units (GLEU)
With a computation of Gaussian error, Gaussian Er-
ror Linear Units (GLEUs) (Hendrycks and Gimpel,
2016) is not suitable to serve as an active func-
tion in HE state. The Gaussian kernel includes
unsupported functions like exponential. While in
the implementation of the transformer, GELU is
defined as a fast approximated version, where the
tanh function is still non-polynomial, unsupported
by HE.

G(x) = 0.5x(1+tanh[
√

2/π(x+0.044715x3)]).
(2)
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Figure 2: The Approximation Workflow of THE-X. To replace the non-polynomial operations, we split the fine-
tuning stage into several subphases. Given a pre-trained checkpoint, we drop the pooler of the pre-trained model
and replace softmax and GeLU. Afterward, we follow the standard fine-tuning for classification or regression tasks.
We add LayerNorm approximation into the fine-tuned model and distill knowledge from original LN layers. After
dropping the original LN, we convert the model into fully HE-supported ops with the HE transformer.
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Figure 3: The activation results of GELU compared
with ReLU. With an input around zero, the activation
results are very close. With a larger or smaller input
value, the activation results tend to converge.

We illustrate the numerical comparison between
GELU and RELU in Figure 3 , where the outputs
of GELU are very close to RELU. Hence, we pro-
pose to replace the GELU layer in the model with a
ReLU activation function. Despite the Max func-
tion in ReLU, other computations are well sup-
ported by HE. To enable the computation of Max,
we implement the first key idea, incorporating the
user device into the inference. The server will
convey ciphertext input to the user for local Max
computation. Once received the connection, a user
device decrypts the ciphertext input and calls the
local Max function to get the results and return
re-encrypted results to the server. Despite the com-
munication cost, no plaintext is leaked during the
TLS connection and semantic security is guaran-
teed.

3.1.2 Softmax
The second non-polynomial function is softmax,
which includes the exponential and division com-
putation.

Softmax(xi) =
exp(xi)∑
j exp(xj)

. (3)

The first thought to approximate softmax is to
find alternatives of softmax operation in trans-
former, which include Taylor series approxima-
tion (Vincent et al., 2015), softmax-free linear at-
tention (Lu et al., 2021). However, both of them
have some limitations. The Taylor series approxi-
mation can only approximate the exponential oper-
ation. Softmax-free linear attention utilizes newton-
inverse to approximate division, but the approxi-
mation error is unbounded in full-scale attention
settings.

For these considerations, we have no choice but
to design an estimation network with addition and
multiplication.

S(xi) = xi ∗T (
∑
j

ReLU(((xj)/2 + 1)3)). (4)

Equation 4 is the formal description of our soft-
max estimation network. Same as the approxima-
tion of GELU, ReLU operation here is realized
by communication with the client. Instead of a
division operation, we approximate reciprocal op-
eration with a three-layer linear neural network
denoted as T .

To get a better estimation of softmax, we ran-
domly generate input tensors whose values are be-
tween [−3, 3] and use their softmax scores as MSE
targets. Then we optimize the T for 100k steps
with a learning rate of 1e-3 until the MSE loss drop
down to 1e-6.

An under-explored problem here is the Infinite
value of Masked Attention, where the input of soft-
max is always the masked attention scores. To
prevent the attention of masked tokens, the origin
transformer model fills the masked attention scores
with negative infinity before softmax. When fed
with an infinite value, the softmax estimation model
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may face numerical disaster. We will discuss this
phenomenon and the corresponding solution in Sec
4.5.

3.1.3 LayerNorm
Recall that the layer normalization (Ba et al., 2016)
in transformer is implemented over a mini-batch of
inputs, which could be formulated as:

y =
x− E[x]√
V ar[x] + ε

∗ γ + β. (5)

The mean and standard deviation are calculated
over division operations where the approximation
is needed. γ and β are learnable affine transform
parameters. To avoid the introduction of new pa-
rameters, we keep the learnable parameters while
leaving the mean and standard deviation achieved
by regression.

ŷ = x ◦ γ + β. (6)

The new parameter γ predicts the value of stan-
dard deviation by regression from origin γ̂. We find
the simple linear replacement is enough for values
with a small scale of bias. Here γ, β ∈ R and ◦
denotes the Hadamard product.

The layer normalization will be applied in each
multi-head attention block and after the output
dense layer. So the approximation error tends to
accumulate when the transformer stacks with too
many layers.

We treat the layernorm approximation as an indi-
vidual stage in Figure 1 as LN-Distill to learn from
origin LN layers. A challenge here is the Attention
Overflow, where the input attention score before
normalization may have an unbounded scale, lead-
ing to numerical problems. We will discuss the
detail of Attention Overflow in Sec 4.5.

3.1.4 Other Practical Replacement
After the approximation workflow, a fine-tuned
model consists of only addition and multiplication
operations, which is fully compatible with homo-
morphic encryption. We power the model by HE
transformer backend. Since the HE transformer
backend could only work for TensorFlow check-
point, any pre-trained transformers inherited from
PyTorch building version need to be converted into
TensorFlow format first. There are some other de-
tails worth mentioning here.

• For the softmax(QKT
√
dk

)V operation in atten-
tion score computation, we absorb the value

of 1√
dk

into the weights of query projection
layer.

• We use a fully kernel convolution layer in-
stead of linear projection due to the lack of
supported dense operation.

• All matrix multiplication will be converted
into the element-wise style.

• We drop the pooler layer for the unsupported
operation of tanh.

3.2 Privacy-preserving Inference
In this section, we describe the behavior of HE
models during privacy-preserving inference. Note
that inference is completed by the joint effort of the
server and the user device.

Algorithm 2: Inference with HE
Input: user plain text query Pq, private key

K generated under server protocol,
encrypted server modelM.

1 client computes embeddings: Eq ← Pq.
2 client encrypts query embeddings:
Cq ← Encrypt(Eq,K).

3 server forwards the model: Ci =M(Cq).
4 client handles activation: Ca = ReLU(Ci).
5 server continues forwarding: Co =M(Ca).
6 client decrypts results:
Po = Decrypt(Co,K).

In Algorithm 2, notably absent is the support
of ReLU operations, where the server exchanges
the activation results with the client. However, all
the communication between client and server is in
ciphertext, ensuring the privacy of user queries and
may prevent eavesdropping attackers from recover-
ing private text data.

4 Experiments

In this section, we design both sequence-level and
token-level tasks to evaluate the approximation per-
formance of our THE-X solution. We also discuss
several identified factors which greatly affect ap-
proximation workflow.

4.1 Evaluation Tasks
GLUE (Wang et al., 2019), the General Language
Understanding Evaluation benchmark, is a collec-
tion of tools for evaluating the performance of
models across a diverse set of existing NLU tasks.

3514



Table 1: Performance on the GLUE1 tasks for both baseline (standard finetuning) and THE-X with BERT-tiny,
measured on the development sets. We report the best results by hyper-parameter search. |D| denotes the number
of training examples. THE-X only suffers average utility performance loss: < 1.5% in most tasks. ‘P/S corr.’ is
Pearson/Spearman correlation and ‘m/mm’ denotes the accuracy scores on matched/mismatched set.

Tasks |D| Type Metrics Baseline ReLU ReLU-S ReLU-S-L HE Perf ↓

SST-2 67k Sentiment Acc. 82.45 82.40 82.34 82.11 82.11 0.34
MRPC 3.7k Paraphrase F1/Acc. 81.57/70.10 81.69/70.34 80.81/69.85 79.93/68.87 79.94/68.87 1.63/1.23
STS-B 7k Similarity P/S corr. 72.83/73.66 72.89/73.03 74.19/74.27 68.38/70.96 68.39/70.97 4.44/2.69
QQP 364k Paraphrase F1 80.28/84.03 79.55/82.89 79.38/83.36 78.28/83.75 78.33/83.63 1.95/0.40

MNLI 393k NLI m/mm 69.75/70.75 69.51/70.60 68.61/69.13 68.59/69.41 68.47/69.08 1.28/1.67
QNLI 108k NLI ACC. 78.38 78.35 78.33 78.33 78.20 0.18
RTE 2.5k NLI ACC. 58.56 58.32 58.27 58.12 58.12 0.44

Average Perf ↓ 0.00 0.25 0.34 1.42 1.48 1.48

Table 2: Performance on the CONLL2003 task for both
baseline and THE-X with BERT-tiny, measured on the
development sets. We find that the replacement with
ReLU has a slight effect on performance and even gets
a better F1 score by 0.12 than original GELU activa-
tion.

Metrics Precision Recall F1 Perf ↓

Raw 82.34 84.85 83.57 0
ReLU 82.29 85.13 83.69 -0.12

ReLU-S 82.08 84.73 83.38 0.19
ReLU-S-L 79.65 83.79 81.67 1.90

HE 79.65 83.79 81.67 1.90

We choose a subset of GLUE1 tasks, which in-
clude: MRPC (Dolan and Brockett, 2005), SST-
2 (Socher et al., 2013), QQP2, STS-B (Cer et al.,
2017), MNLI (Williams et al., 2018), QNLI (Ra-
jpurkar et al., 2016), and RTE (Dagan et al., 2005;
Haim et al., 2006; Giampiccolo et al., 2007; Ben-
tivogli et al., 2009).

Following previous work (Devlin et al., 2019;
Turc et al., 2019), we exclude the WNLI task from
the GLUE benchmark. We also use the famous
CoNLL-2003 (Tjong Kim Sang and De Meulder,
2003) named entity recognition task as our addi-
tional token-level evaluation. In conclusion, we
include the most varieties of NLU tasks, covering
both sequence-level and sentence-level tasks, in
both regression and classification format.

4.2 Experiment Settings
For computation efficiency and energy-saving con-
sideration, we use the released BERT-tiny (Turc

1CoLA task is not reported because of the limited capacity
of BERT-tiny.

2https://www.quora.com/profile/Ricky-Riche-2/First-
Quora-Dataset-Release-Question-Pairs

et al., 2019) as our demo model, which is a stan-
dard transformer-based language model with only
2 layers and a hidden size of 128. We provide four
settings to evaluate different parts of our approxi-
mation components.

• Baseline. In this setting, we make no replace-
ment or approximation. We use the raw pre-
trained checkpoint to fine-tune on downstream
tasks.

• ReLU. We fine-tune the pre-trained model
with all GELU activation replaced with ReLU.

• ReLU-S. In addition to ReLU, we fine-tune
the model with the softmax operation replaced
by the softmax estimation model.

• ReLU-S-L. We implement full approximation
including a layer normalization replacement.

• HE. We convert the fine-tuned checkpoint
with HE-transformer and power the inference
with SEAL backend.

Implementation. To reduce the variance of re-
sults under different settings, we choose hyper-
parameters from a fixed set during approximation
fine-tuning and HE inference runtime.

• For fine-tuning the approximation compo-
nents, we choose a batch size from {4, 8, 16,
32, 128} and a learning rate from 1e-4, 3e-
4, 3e-5, 5e-5 as mentioned in the initial bert
code (Turc et al., 2019). We use an Adam op-
timizer with weight decay chosen from {0.05,
0.1, 0.2, 0.4, 0.5}

• For HE evaluation, we use the HE-transformer
backend, where two parameters are recom-
mended searching by Intel, the poly modules
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and coeff-modules. We choose the poly mod-
ules degree from {1024, 2048, 4096, 8192,
16384} and choose the coeff-modules from
{20, 30, 60}.

4.3 Approximation Results
Table 1 shows the results of the baseline and THE-
X on the GLUE benchmark. The averaged perfor-
mance reduction of THE-X is 1.48% when com-
pared to the baseline model. We observe the most
performance reduction comes from the approxi-
mation of layernorm, which incurs a reduction of
1.08%. The softmax estimation model contributes
the least performance drop among the approxima-
tion components, for only 0.09% on average, in-
dicating the softmax function could be well imi-
tated by neural networks. We also find the average
performance reduction of HE is quite negligible,
where the slight drop may be due to the sequence
truncation.

The results of THE-X on token-level NER task
are reported in Table 2. The replacement of GELU
with ReLU even improves the performance of the
F1 score. We assume the slight improvement may
come from unexpected bias. However, the layer-
norm approximation incurs the most performance
reduction. We assume token-level tasks need a
more detailed pattern in attention score. After all,
THE-X still works well in the token-level task with
a merely F1 reduction of 1.9%.

Across different types of tasks, we find our THE-
X yields the best performance on the classification
tasks, including paraphrase, sentiment and NLI.
Among the classification tasks, the performance
of QNLI drops the least, for only 0.18%. We also
find the performance drops most on the regression
tasks, such as the similarity task STS-B, for 4.44%
pearson correlation and 2.69% spearman correla-
tion. We assume the regression task needs a higher
numerical precision than the classification task.

4.4 Negative Infinity
Recall in Equation 4, we replace softmax with a
neural estimation model. To prevent the attention
of masked tokens, the origin transformer model
fills the masked attention scores with negative in-
finity before softmax, where the numerical disas-
ter occurs in our approximation method. In Fig-
ure 4, to solve this problem, we give an empiri-
cal study of how "negative" the masked attention
scores should be. Despite the indistinguishable F1
score change of raw model fine-tune with different

Figure 4: Performance on CONLL2003 task with dif-
ferent mask values. We find the “Negative Infinity”
value of the 0 mask greatly reduces approximation per-
formance. In THE-X using a mask value in [-3, -5]
might be a default choice.

attention mask values, the approximation method
is extremely sensitive to the numerical changes.
We assume the softmax estimation model fails to
deal with large input values and leads to a credi-
ble performance drop. However, when the value
of the attention mask becomes too small, it serves
as a bias to attention scores, which also leads to a
certain performance drop. We recommend using a
moderate mask value between -2 and -5.

4.5 Attention Overflow

Another challenge of THE-X is the attention score
input of layer normalization. In most cases, the
scale of multi-head attention output is very dense
around [−1, 1]. However, before normalization, we
also observe the attention scores are scarily sparse,
with some extreme values reaching 1e4, which is
difficult for our LN-distill stage. To prevent the
overflow attention scores, we use the weight decay
of Adam optimizer as regularization.

In Figure 5, we present the attention overflow
phenomenon across different tasks. Without any
regularization, our approximation method yields
uncontrolled attention scores, leading to poor per-
formance. As the weight decay increases, the at-
tention scores tend to converge and benefit better
approximation results. We also observe that the
larger weight decay may harm the performance
on NLI tasks, where the regularization could be
seen as trade-off between better approximation re-
sults and higher performance upper bound. For the
NER task, larger weight decay may even benefit
the performance and also boost our approximation
method.
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Figure 5: Performance on all tasks with different weight decay values, measured on the development sets. Metrics
are marked on the y-axis and weight decay values are marked on the x-axis.

4.6 Schedule of Approximation workflow

There are still doubts about how to organize the sev-
eral optimization steps for the best approximation
performance. We investigate four schedule plans:

• Two Stages. Where we freeze the softmax
estimation model during standard fine-tuning.
We select the best checkpoint to implement
the second stage - distill the layer normaliza-
tion network.

• Joint FT S. We optimize the softmax estima-
tion model during standard fine-tuning and
apply the LN-distillation after.

• Joint FT LN. We apply one-pass optimiza-
tion with the softmax estimation model frozen
but update the other parameters including
layer normalization network. No further LN-
distill will be implemented.

• Joint FT S + LN. A total one-pass optimiza-
tion with all approximation parameters up-
dated with the model together.

As illustrated in Figure 6, we observe that fine-
tuning the different approximation components in-
dividually (aka. "Two stages") may be a good de-
fault to keep the best performance of approxima-
tion. For the regression task STS-B, jointly fine-
tuning the softmax estimation model and approx-
imated layernorm even fails to fulfill the approxi-
mation pipeline, pulling the performance down to
0.4%. We assume fine-tuning different components
may fall into a bi-level optimization problem and

100 
- Two Stages - Joint FT S 一 Joint FT LN - Joint FT S+LN 

80 

60 

40 

20 

。

多飞一？ 沁邸； 多－8 Q咄 愤\_\ Q~\..\ «t ｀饺

Figure 6: Performance on all tasks with different or-
ganizations of approximation workflow. Jointly fine-
tuning the softmax estimation model or approximated
layernorm leads to a performance drop across all tasks.

it is hard to achieve satisfying results. In conclu-
sion, the softmax estimation model and the approx-
imated layernorm are both critical components to
the performance of THE-X, deserving individual
optimization.

5 Conclusions

We present THE-X, a practical approach to enable
pre-trained transformer models to infer under ho-
momorphic encryption. It requires several approxi-
mation components to replace the original opera-
tions in the transformer model. It imposes a slight
burden in terms of performance cost but enjoys the
full advantage of homomorphic encryption - the
theory-guaranteed user privacy.

We see this as a first step in combing homomor-
phic encryption to address emerging privacy issues
in pre-trained models. We hope our work motivates
further research, including better approximation so-
lutions on different NLP applications.
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